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Direct Oral Anti-Coagulants (DOACs) are the primary treatment for the long-term
prevention of stroke in patients with atrial fibrillation. Strict adherence to DOAC
therapy is crucial and must be maintained over the long term. Therefore, predicting
long-termadherence is valuable for identifying patients at risk of non-adherence.We
developed a novel method for predicting long-term adherence using first-order
Markov models to assess adherence in new DOAC users during years 2–5. The
prediction utilized age, CHA2DS2-VASc score, and first-year adherence data as
predictors. Adherence was measured by calculating the proportion of days covered
within consecutive 90-day windows, which were then stratified into deciles. We
subsequently calculated the probability of a patient being in a specific adherence
decile. The developed model demonstrated good calibration. We discovered that
missing even 1 day of treatment per month in the first year was predictive of a lower
likelihood of achieving the highest adherence decile in years 2–5. Additionally, we
noted a non-linear relationship between age and adherence; adherence increased
linearly with age but plateaued around age 75. This innovative approach tomodelling
and predicting adherence to DOACs for long-term therapy can help identify patients
at risk of low adherence and may be applicable to other chronic medications.
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Introduction

Atrial fibrillation (AF) is the most commonly treated cardiac arrhythmia (Lip et al.,
2012). Direct oral anticoagulants (DOACs) are widely used for the prevention of ischemic
stroke in patients with AF. DOAC therapy is usually a lifelong therapy, and the extent of
non-adherence was shown to be associated with worsened clinical outcomes (Borne et al.,
2017; Ozaki et al., 2020). A large meta-analysis has found that up to 30% of AF patients are
non-adherent to DOAC therapy (Salmasi et al., 2020).

Summary measures of adherence, such as 1-year proportion of days covered (PDC), do
not capture adherence trajectory and may hide the patterns of long-term adherence
(Hernandez et al., 2019; Salmasi et al., 2021). Therefore, group-based trajectory
modeling (GBTM) has been suggested as an alternative (Hernandez et al., 2019;
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Alhazami et al., 2020; Chen et al., 2020; Salmasi et al., 2021). In
several publications using GBTM, PDC was calculated for 90-day
consecutive windows, spanning periods ranging from 3 to 5 years.
Subsequently, patterns or groups were identified (Hernandez et al.,
2019; Salmasi et al., 2021). While this method is an improvement
over a single yearly PDC, it ultimately results in three to four groups
that are modeled using multinomial regression. One extensive study
has shown that while GBTM may identify interesting adherence
groups, the ability to predict to which group a patient will be
assigned was somewhat limited, reducing the clinical applicability
of such models (Salmasi et al., 2021). Therefore, while this method
may identify general patterns of adherence, it has little utility in the
case of predicting adherence for a single patient.

Other methods to deal with longitudinal adherence data are
available (Pinheiro and Bates, 2000). One such method is first-order
Markov models (Rohde et al., 2024). In such models, also called
transition models, the previous outcomes for the specific subject are
included along with the covariates (Rohde et al., 2024). Applied to
long-term adherence, the PDC of each 90-day window can be
calculated for consecutive 90-day windows over 5 years. The
PDC can be transformed to an ordinal scale, and then from the
transition model, the probability of transition between adherence
states can be obtained. A more relevant derived quantitative
parameter is the probability of state occupation (Rohde et al.,
2024). It can be derived from a first-order Markov model for
each 90-day window. Such quantitative parameter is beneficial
for clinicians as it allows them to calculate and visually present
the probability of their patient’s PDC states for all the 5-year period.

Recently, we have shown that without data on the first months of
adherence, PDC prediction is poor with baseline clinical,
demographic, and socioeconomic predictors (Tannous et al.,
2025). Based on these conclusions, the current study focuses on
development of a first-order Markov model to predict 5-year
adherence of DOACs in AF patients using the first-year
adherence data as a predictor along with other covariates.

Materials and methods

Data collection

We collected social and demographic information from the
electronic medical records. The electronic medical records of
Leumit Healthcare Services (LHCS), one of Israel’s providers of
public and semi-private health services, include data from multiple
sources, including records of primary care physicians, community
specialty clinics, hospitalizations, laboratories, and pharmacies.
Diagnoses were captured in the registry through diagnosis-
specific algorithms, utilizing the International Classification of
Diseases, Ninth Revision (ICD-9) code reading and laboratory
test results. The study protocol was approved by the LHCS
Ethics Committee (Protocol number: 0022–22-LEU).

Patient cohort

Candidate patients were screened from the LHCS database between
January 2012 and December 2018. Patients under the age of 18 and

pregnant women were excluded. Moreover, patients who died less than
5 years post-index date and patients who switched health insurance
provider during the first 5 years post-index date were excluded.

Using a validated algorithm (Navar-Boggan et al., 2015), we
included individuals if they had ≥3 recorded visits in the Medical
Services Plan related to AF or atrial flutter (ICD-9 codes,
427427.3427.31427.32) with at least one of the recorded visits
being AF-specific (ICD-9: 427.31, 427.32). At least two of the
visits had to occur within 365 days (Navar-Boggan et al., 2015;
Salmasi et al., 2021). Individuals with indications for oral anti-
coagulants other than nonvalvular AF were excluded. Only patients
who had prescriptions for DOAC for at least 2 months were
included. Calculation of the minimal required sample size is
available in the Supplementary Material.

PDC calculation

PDC calculation was conducted according to the
recommendations of a recently published scoping review and the
TEN-SPIDERS tool (Dalli et al., 2022).

PDC was calculated for 90-day consecutive windows. In all
cases, the denominator was 90. The numerator was calculated using
the followingmethod: First, adjustment of dates and identification of
gaps post-index date was performed using the ‘adheRenceRX’
package in R, so that carry-over was granted for early refills of
the same drug (Beal, 2020). Switching between different DOACs was
allowed for, and the final PDC was calculated for DOACs as a group
(i.e., carry-over was granted). Hospitalization days during the
follow-up period were added to the numerator, and in-hospital
supply was assumed since patients in hospitals in Israel do not use
their own medications, as hospitals are required to supply them,
unless contraindicated. The final formula used to calculate PDC was:

PDC � Gapadjusted covered days + Inhospital days
90

For the full TEN-SPIDERS tool, please see Supplementary Table
S1 (Supplementary Material).

Subsequently PDC was transformed to an ordinal scale
according to Table 1, to allow the use of first-order proportional
odds Markov transition model.

First-order proportional odds Markov
transition model

First-order proportional odds Markov transition models were
used to analyze ordinal longitudinal data. A first-order Markov
process models transitions from one period to the next, conditioning
on the outcome (or state) at the previous period (hence the “first-
order”) in addition to baseline covariates or predictors. After model
fitting, a recursive matrix multiplication was used to perform
unconditioning on previous states, yielding state occupancy
probabilities (SOPs). State occupancy probabilities are conditional
only on the previous state at the first prediction period and baseline
covariates (Rohde et al., 2024). In the current study, the outcome was
modeled as an ordinal variable, the PDC state at each consecutive
90-day window. The first-order Markov model for each period was
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conditioned on the PDC state of the previous period and time, in
addition to baseline covariates.

Model predictors

Based on previous studies, baseline clinical and demographic factors
by themselves are poor predictors of PDC (Rymer et al., 2023; Tannous
et al., 2025). In contrast, the first 90-day adherence data improved the 1-
year PDCprediction (Tannous et al., 2025). Since we aimed to predict 5-
year adherence, we hypothesized that adherence data (i.e., the number
of days covered in 90-day windows) from the first year would be
necessary to predict PDC in years 2–5. Therefore, our basic model
included the first four 90-day windows as predictors. Moreover, since in
previous studies adherence was associated with increasing age and
CHA2DS2-VASc score (Hernandez et al., 2019; Salmasi et al., 2021), we
tested whether the addition of age and CHA2DS2-VASc score would
improve PDC prediction in comparison to 1-year adherence data alone.
The number of days covered, age, and CHA2DS2-VASc score were
modeled using restricted cubic splines with four knots to allow for a
non-linear relationship with PDC.

Model comparison

The basic model was compared to a model with a basic model
with interaction with time for the third and fourth window
adherence data, a model with only the first two 90-day windows
adherence data (i.e., data from the first half of the first year), a basic
model in addition to age and CHA2DS2-VASc score, a basic model
and age alone, and a basic model and CHA2DS2-VASc score alone.
Models were compared based on the Akaike Information Criteria
(AIC) and the likelihood ratio (LR) test.

Model calibration and discrimination

The final model was evaluated for calibration and discriminative
performance. For model calibration, we produced a subject-level
calibration curve, time-stratified.

Calibration, and subject-level calibration curve smoothed
with generalized additive models. For state transition
probabilities calibration we produced plots for PDC states
90%–100%,80%–89% and 0%–9%. For discrimination, we
analyzed SOP Distribution Width (length of Inter Quartile
Range (IQR)) Over time. A wider SOP distribution across
states, predictions that allocate substantial probability to
different categories rather than clustering near a single state,
provide greater separation between these state-specific
probabilities. Wider range leads to better discrimination
between states. We used the bootstrap, with 100 repetitions,
for internal validation of SOP Distribution Width. Moreover,
we calculated the median and IQR for the absolute difference
between SOP-derived mean time in state and observed time in
PDC state 90%–100%.

Predictor effects

Partial effects plots were used to examine the effect of
continuous predictors on adherence state.

TABLE 2 Demographic and clinical characteristics of the patients who were
included in the study, n = 2,829.

Characteristic Number of patients (%) or
median (IQR)

Sex

Female 1,382 (49%)

Male 1,447 (51%)

Age 78 (73, 85)

Diagnosis

Atrial Fibrillation 2,678 (95%)

Atrial Flutter 151 (5.3%)

Heart Failure 1,044 (37%)

Hypertension 2,109 (75%)

Type 2 Diabetes 1,545 (55%)

Myocardial Infarction 295 (10%)

Stroke 952 (34%)

PAD 368 (13%)

CHA2DS2-VASc score

Median (IQR) 5 (4,6)

1 41 (1.4%)

2 211 (7.5%)

3 448 (16%)

4 644 (23%)

5 607 (21%)

6 474 (17%)

7 280 (9.9%)

8 112 (4.0%)

9 12 (0.4%)

Number of days covered

0–90 days 90 (85, 90)

90–180 days 90 (76, 90)

180–270 days 89 (72, 90)

270–360 days 89 (70, 90)

0–360 days 345 (287,360)

TABLE 1 PDC states and their corresponding ranges.

PDC PDC state

0%–9% 1

10%–19% 2

20%–29% 3

30%–39% 4

40%–49% 5

50%–59% 6

60%–69% 7

70%–79% 8

80%–89% 9

90%–100% 10
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State occupancy probabilities (SOPs) and
mean time in state at 90-day windows

From the final model, SOPs were calculated for each 90-day
window for the period between the start of the second year and the
end of the fifth year. SOPs are calculated using the
‘soprobMarkovOrdm’ function from the ‘rms’ package in R.
mean time in state was calculated from SOPs.

All statistical analyses were performed in R using ‘rms’ package
(Harrell, 2024).

Results

The study included data from 2,829 patients (see
Supplementary Figure S1 in the Supplementary Material) with
a nearly even sex distribution (49% female, 51% male) and a
median age of 78 years. Hypertension was the most prevalent
diagnosis (75%), followed by type 2 diabetes (55%), and heart
failure (37%). CHA2DS2-VASc scores mostly ranged from three
to 5. Table 2 presents demographic and clinical characteristics of
the patients.

TABLE 3 PDC states over all 90-day windows from years two–5.

Period, days Period, years N = 2,829a

360–450 days PDC ordinal 1.0–1.25 90%–100% (70%–79%–90%–100%)

450–540 days PDC ordinal 1.25–1.50 90%–100% (70%–79%–90%–100%)

540–630 days PDC ordinal 1.50–1.75 90%–100% (60%–69%–90%–100%)

630–720 days PDC ordinal 1.75–2.0 90%–100% (70%–79%–90%–100%)

720–810 days PDC ordinal 2.0–2.25 90%–100% (60%–69%–90%–100%)

810–900 days PDC ordinal 2.25–2.5 90%–100% (60%–69%–90%–100%)

900–990 days PDC ordinal 2.5–2.75 90%–100% (60%–69%–90%–100%)

990–1,080 days PDC ordinal 2.75–3.0 90%–100% (60%–69%–90%–100%)

1,080–1,170 days PDC ordinal 3.0–3.25 90%–100% (50%–59%–90%–100%)

1,170–1,260 days PDC ordinal 3.25–3.5 90%–100% (50%–59%–90%–100%)

1,260–1,350 days PDC ordinal 3.5–3.75 90%–100% (40%–49%–90%–100%)

1,350–1,440 days PDC ordinal 3.75–4.0 90%–100% (20%–29%–90%–100%)

1,440–1,530 days PDC ordinal 4.0–4.25 90%–100% (20%–29%–90%–100%)

1,530–1,620 days PDC ordinal 4.25–4.5 90%–100% (10%–19%–90%–100%)

1,620–1,710 days PDC ordinal 4.5–4.75 80%–89% (10%–19%–80%–89%)

1,710–1,800 days PDC ordinal 4.75–5.0 90%–100% (0%–9%–90%–100%)

1,800–1,890 days PDC ordinal 5.0–5.25 90%–100% (0%–9%–90%–100%)

an (%); Median (IQR).

TABLE 4 Model comparison using Akaike Information Criterion (AIC) and Likelihood Ratio (LR) Test.

Model AIC P-value LR test

Age, CHA2DS2-VASc score, first 90-day window, second 90-day window, third 90-day window fourth 90-day window 86,775 -

Age, CHA2DS2-VASc score, first 90-day window, second 90-day window, third 90-day*time, window fourth 90-day window*time
(interaction with time added for third and fourth window)

86,676 <2.2e-16

Age, CHA2DS2-Vasc score, first 90-day window, second 90-day window 87,783 <2.2e-16

CHA2DS2-Vasc score, first 90-day window, second 90-day window, third 90-day window fourth 90-day window 86,891 <2.2e-16

Age, first 90-day window, second 90-day window, third 90-day window fourth 90-day window 86,804 2.98e-08

first 90-day window, second 90-day window, third 90-day window fourth 90-day window 87,016 <2.2e-16

Age, CHA2DS2-Vasc score, first 90-day window, second 90-day window, third 90-day window 87,239 <2.2e-16

Age, CHA2DS2-Vasc score, first 90-day window, second 90-day window, fourth 90-day window 87,064 <2.2e-16

Age, CHA2DS2-Vasc score, second 90-day window, third 90-day window fourth 90-day window 86,777 0.0736

Age, CHA2DS2-Vasc score, first 90-day window, third 90-day window fourth 90-day window 86,792 4.38e-05
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FIGURE 1
Calibration curves for the final model. (A) Subject-level calibration curve. Each point signifies a decile group of subjects, classified based on their
mean predicted outcome. The x-axis shows themean predicted outcome per decile, while the y-axis shows the correspondingmean observed outcome.
The dashed red diagonal line denotes perfect calibration. (B) Time-stratified calibration curve. These curves illustrate the concordance between
predicted and observed outcomes across various time periods (Early = first 90 days window in year 2, middle = from the second 90-day window of
year two till year 3, and late = from year three to year 5). For each period, subjects were grouped into deciles according to their mean predicted outcome
(expected value of predicted state probabilities), and the mean observed outcomes were computed within each group. Each panel presents a distinct
time stratum, with points indicating decile averages and the dashed red line representing perfect calibration. (C) Subject-level calibration curve smoothed
with generalized additive models (GAM). This curve depicts the relationship between mean predicted and observed outcomes at the individual subject
level, with a smooth trend estimated via a GAM. Grey points denote individual subjects, and the blue curve illustrates the GAM-smoothed calibration line.
The dashed red diagonal line signifies perfect calibration.
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Overall, the median PDC state was high, 90%–100%, in all 90-
day windows from year two to year 5 (see Table 3). However, the
interquartile range changed from PDC 70–79%-90%–100% in the
first 90-day windows of year two to 0–9%-90%–100% in the last
90-day windows of year 5, indicating that overall there was a
decline in PDC state over time. Table 3 presents PDC states
across all 90-day windows from years two–5. About two-thirds of
patients were prescribed Apixaban, followed by Rivaroxaban and
dabigatran. 11.7% of patients switched between DOAC agents
(Supplementary Table S2; Supplementary Material). PDC
variation by DOAC agent is presented in table (Supplementary
Table S3; Supplementary Material).

Model choice and comparison

The Basic model plus age and CHA2DS2-VASc score, was
compared to several other models using AIC and LR test
(Table 4). The basic model plus age and CHA2DS2-VASc score
with time interaction with the third and fourth window adherence

had the lowest AIC and was used as the final model in all
further analyses.

Model calibration and discrimination

Subject-level calibration curve, time stratified calibration curve,
subject-level calibration curve smoothed with generalized additive
models are presented in Figure 1. The model appears to be well
calibrated. State transition probabilities calibration plots for PDC
states 90%–100%, 80%–89% and 0%–9% are presented in
Supplementary Figures S4–S6. SOP Distribution width varied
between PDC states. SOP Distribution Width (length IQR) was
highest for PDC state 90%–100% with an average of 0.398 across
time and for PDC state 0%–9% with an average of 0.282 across time.
These results indicate that for PDC state 90%–100% and PDC state
0%–9% the model shows relatively good discriminative ability.
Bootstrapped internal validation of SOP Distribution Width
(length IQR) was highest for PDC state 90%–100% with a
median 0.391 (bootstrapped 95% CI 0.370–0.413) across time

FIGURE 2
Bootstrapped Distribution of SOP Width (interquartile range length) for PDC states over time. A line plot illustrates the bootstrapped median of the
interquartile range (IQR length) of predicted state occupancy probabilities (SOPs) across different time points for each ordinal state (ranging from PDC
0%–9% to PDC 90%–100%). The shaded area represents the bootstrapped upper (97.5 percentile) and lower (2.5 percentile) confidence limits. The IQR
length measures the variability of predicted probabilities across subjects at each time point, with wider IQRs signifying greater discrimination
capacity of the model in distinguishing subjects’ likelihood of occupying specific states. Each line corresponds to a distinct ordinal state.
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and for PDC state 0%–9%with a median of 0.255 (bootstrapped 95%
CI 0.237–0.273) across time. These results indicate that for PDC
state 90%–100% and PDC state 0%–9% the model shows relatively
good discriminative ability. For all other PDC states SOP
Distribution Width ranged between 0.009 and 0.027, indicating
relatively weak discriminative ability for these states.
Bootstrapped SOP Distribution Width (length of IQR) over time
is presented in Figure 2.

Moreover, we calculated Median Absolute Error of mean time in
the highest PDC state (90%–100%). Median Absolute Error was 2.95
(IQR 1.40–4.28).

Two additional sensitivity analyses were performed. In the first
analysis we fitted the same final model but with four states instead of
ten; 0%–9%, 10%–69%, 70%–89%, 90%–100% and in the second we
fitted the same final model but with three states instead of ten;
0%–9%, 10%–89%, 90%–100% and evaluated the models
discriminative ability. The results are presented in Supplementary
Figures S2, S3 in the Supplementary Material. As in the original
analysis, discrimination performance was good for the extreme
states 0%–9% and 90%–100% but weak for the intermediate
states regardless of the method of grouping.

Predictor effects

The partial effects of age, CHA2DS2-Vasc score, and the effect of
the first four 90-day windows adherence data on log odds of PDC
state are shown in Figures 3, 4, respectively. Additionally, since age is
included in the calculation of CHA2DS2-Vasc score we investigated
the possible correlation between age and CHA2DS2-Vasc score. The
linear correlation between age and CHA2DS2-Vasc score was weak
(p = 0.4) and the effect of the presence of CHA2DS2-Vasc score in
the model on age was minimal (see Supplementary Figure S7 in the
Supplementary Material).

State occupancy probabilities at 90-
day windows

Four examples of the visual presentation of SOPs along the
follow-up period are shown in Figures 5, 6. In Figure 5, the contrast
between a patient with all days covered in the first four 90-day
windows and a patient who misses only 5 days in the third and
fourth windows is shown. Predicted mean time in PDC 90%–100%

FIGURE 3
Partial effects of age and CHA2DS2-VASc score on log odds of ordinal PDC category for DOACs. Point estimates and confidence intervals for effects
of individual predictors are computed holding other predictors to selected constants (mean for numeric variables). (A) Age. (B)CHA2DS2-VASc score. The
shaded zones indicate the 95% confidence intervals.
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was 11.54 (90-day units) for a patient with all days covered in the
first four 90-day windows, compared to a predicted mean time in
PDC 90%–100% of 7.15 (90-day units) for a patient whomissed only
5 days in the third and in the fourth 90-day windows. R code and
code for a Shiny application to reproduce these figures and similar
ones are provided in the Supplementary Material.

Discussion

We developed a first-order Markov model to predict 5-year
adherence of patients on DOACs. This novel approach enabled the
derivation of PDC state occupancy probabilities for each 90-day
window over 5 years. This method allows for the longitudinal
modeling of PDC over extended periods. It provides a
straightforward approach to visualize the probability of a patient
on DOAC being in a specific PDC state. Our model demonstrated
good discrimination performance for PDC states of 90%–100% and

0%–9%. For other PDC states, discrimination was weak. In addition,
this approach allows for the estimation and comparison between
patients of the expected mean time in a particular PDC state.

Moreover, we used the first-year adherence data (from the first
four 90-day windows) as predictors of long-term adherence.
Interestingly, using restricted cubic splines to model the first four
90-day windows showed an interesting relation between number of
days covered and adherence (Figure 4). In the third and fourth 90-
day windows, the slope is steep in the fourth knot, where days
covered is equal to 89, suggesting that there is a significant increase
in the odds of being at higher PDC state in patients whose number of
days covered is 89 or 90, as compared to lower values. This finding
implies that patients who miss 1 day of DOACs per month will have
a dramatically lower probability of staying in the highest PDC state
(PDC 90%–100%) through a 5-year period as compared to patients
who miss none or 1 day per 3 months. Focusing, for example, on
patients who miss 1–2 days of DOACs per month may significantly
increase their probability of staying in the highest PDC state.

FIGURE 4
Partial effects of the first, second, third and fourth 90-day windows on log odds of ordinal PDC category for DOACs. Point estimates and confidence
intervals for effects of individual predictors are computed holding other predictors to selected constants (mean for numeric variables). (A) First 90-day
window. (B) Second 90-day window. (C) Third 90-day window. (D) Fourth 90-day window. The shaded zones indicate the 95% confidence intervals.
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Presumably, such patients are convinced of the necessity and
efficacy of the treatment, otherwise they would not continue
purchasing their medications for such a long period but may
experience occasional forgetfulness. Therefore, strategies such as
sending SMS massages to remind them to purchase their DOACs or
occasional reminders by phone calls, may be helpful (Whitmore
et al., 2025). Persistently adhering to extended DOAC therapy is
linked to a lower risk of recurrent VTE without increasing major
bleeding. Even small decreases in DOAC adherence among patients
with atrial fibrillation are associated with significant increases in the
risk of stroke (Park et al., 2023).

The relationship between age and the probability of being in a
higher PDC state was also interesting and showed a non-linear
pattern. At ages younger than 75, there is a linear increase in log-
odds of being at a higher PDC state as age increases. However, at
ages above 75, a quasi-plateau is reached. Borne et al. and
Hernandez et al had found that increased age is associated with

increased adherence; In contrast, we found that this relationship is
not linear (Borne et al., 2017; Hernandez et al., 2019). However, this
non-linear pattern could reflect the effect of increased comorbidities
rather than age.

Although an increased CHA2DS2-VASc score was associated
with an increased probability of being at a higher PDC state, the
increase was modest. For example, compared with patients with
CHA2DS2-VASc scores of 4, patients who had CHA2DS2-VASc
scores of six had higher odds of being at a higher PDC state, OR =
1.091 (95% CI 1.057–1.125). These results are consistent with
previous studies (Borne et al., 2017; Hernandez et al., 2019). This
might be due to heightened awareness of consequences of
nonadherence to DOACs in those with higher risk.

The adherence rates in the current study are consistent with
those in previous studies. For example, a nationwide survey from
Belgium reported a mean PDC of 97.3% in the first year compared to
a median of 99.4% in the current study (Sabaté et al., 2021).

FIGURE 5
State occupancy probabilities. Y-axis shows state occupancy probabilities at consecutive 90-day windows, starting from the fifth 90-day window to
the 20th 90-day window. (x-axis) State occupancy probabilities were calculated with age and CHA2DS2-VASc score held constant at 99 and 99,
respectively. (A) With the first four windows having 90, 90, 90, and 90 days covered, respectively. (B) With the first four windows having 90, 90, 85 and
85 days covered, respectively.
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Moreover, in the current study, patients on Dabigatran had a lower
probability of having PDC >90% compared to patients on Apixaban
or Rivaroxaban (54.7% vs. 59.8% and 61.2%, respectively). These
results are consistent with a cross-national comparison in six
European Countries, which found that patients on Dabigatran
had the highest dropout rate (Grymonprez et al., 2022).

We proposed an approach for modeling long-term adherence.
The other principal approach in the literature is GBTM. GBTM
offers an improvement over calculating a single 5-year PDC, and is
primarily used for population-level pattern identification
(Hernandez et al., 2019; Salmasi et al., 2021; An et al., 2021;
Mohan et al., 2022; Park et al., 2023; Fatima et al., 2024; Mohan
et al., 2024) However, predicting to which trajectory a patient would
belong is challenging and Salmasi et al. found that only a few
variables were linked to any particular trajectory (Salmasi et al.,
2021). Therefore, GBTM is less suitable for individual prediction.
The approach we proposed could serve as a suitable method for

estimating probabilities of PDC states for a specific patient for each
90-day window across 5 years.

Limitations

The current study has several limitations. First, we assumed that
patients who purchased DOACs administered them as prescribed, an
assumption we cannot test. Second, we only included patients who had
filled at least two prescriptions of DOACs; therefore, our results do not
apply to patients who never initiate DOAC therapy. Third, predictions
of adherence can only be generated after the first year of use; therefore,
other tools should be used for adherence prediction during the first year.
Fourth, for PDC states other than the highest and lowest states,
discrimination was relatively weak. Fifth, we have not shown that
model guided intervention improves patient outcomes. Finally, we did
not performmodel validation on a new dataset (i.e., external validation).

FIGURE 6
State occupancy probabilities. Y-axis shows state occupancy probabilities at consecutive 90-day windows, starting from the fifth 90-day window to
the 20th 90-day window. (X-axis) state occupancy probabilities were calculated with age and CHA2DS2-VASc score held constant at 99 and 99,
respectively. (A) With the first four windows having 90, 80, 70, and 77 days covered, respectively. (B) With the first four windows having 90,90, 80, and
70 days covered, respectively.
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Implications for practice

The approach to modeling longitudinal DOAC adherence has
several implications for practice. First, patients with a relatively low
probability of being at a PDC state between 90% and 100% can be
identified and prioritized. Ruff et al., using a simulation pharmacokinetic-
pharmacodynamic approach, suggested a threshold of PDC >90% to
discriminate between patients with low or high risk of non-adherence
(Ruff et al., 2019). Our approach enables clinicians and policy managers
to identify such patients and implement interventions that enhance
adherence. We provided the R code that enables the implementation of
model-based prediction of PDC into decision support systems.
Additionally, the individual clinician can use the Shiny applications to
generate graphs of state occupancy probability predictions. Second, the
finding thatmissing even 1–2 days amonth in thefirst year ofDOACuse
significantly decreases the probability of maintaining PDC >0.9 in the
long term can be used to identify patients at risk of lower long-term
adherence probability and possible ill-health consqeuences. Therefore,
while such patients may have been deemed adherent in the past, our
findings suggest that they are nevertheless at risk of low adherence in the
long term. Third, the relatively high discrimination of the model for the
lowest PDC state (0%–9%) means that a clinician can identify which
patients are at high risk of being at the lowest PDC state. Non-adherence
causes recurrent cardio-embolic events and a higher risk of mortality,
especially in the population with a high CHA2DS2-VASc score. In such
patients, it is crucial to identify the risk of low PDC (0%–9%) promptly,
and the currentmodel allows that. Fourth, while the current study cannot
identify patient groups who might benefit most from adherence-
enhancing interventions, the method introduced—using a first-order
Markov proportional odds model—can be used to examine how a
specific intervention would affect PDC in the long term and how this
effect might differ between patient subgroups.

Conclusion

We developed a first-order Markov model for 5-year DOAC
adherence data. This new approach to modeling long-term adherence
allows the calculation of the probability to occupy PDC states in
consecutive 90-day windows for 5 years. This tool enables the
identification of patients with low probabilities of occupying the
highest PDC state. Moreover, we found that even missing as little
as one to 2 days a month in the first year of DOAC is predictive of a
lower probability of staying at higher PDC states in the long term.
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