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Drug target discovery is the core breakthrough point of new drug research and
development. The chemical complexity and biological network regulation
characteristics of natural product systems with a long history of clinical
application pose a challenge to the traditional single-target research
paradigm. Although traditional technologies based on molecular docking and
chemical probes are still dominant, breakthroughs in disruptive technologies
such as artificial intelligence and deep learning are driving the transformation of
research methods from ‘broad-spectrum screening’ to ‘precise capture’. This
review systematically discusses the latest progress of drug target capture
technology. Studies have shown that the deep integration of deep learning
and knowledge graph not only significantly improves the accuracy of target
prediction, but also constructs an interdisciplinary collaboration network across
chemical informatics, systems biology and clinical medicine. The fusion of this
technology shows three core advantages: multi-dimensional drug-target
interaction analysis ability based on deep representation learning; integrate
the dynamic predictive modeling ability of multi-omics data; and the
interpretable decision support ability with clinical transformability. The
purpose of this paper is to provide a theoretical framework for the academic
community, and to build a bridge from basic research to clinical application, so as
to promote the development of precision drugs into a new era of intelligent drive.
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1 Introduction

In the progression of human disease treatment, a central challenge in drug discovery lies
in the precise identification and validation of molecular targets that can modulate disease
pathways. Historically, the field has relied on conventional strategies such as phenotypic
screening (Ege et al., 2021), genomics analysis (Yang et al., 2024) and chemical genetics
approaches (Arang et al., 2023). Although these approaches have successfully facilitated the
discovery of several critical targets—exemplified by the identification of p60AmotL2 by
Fonseca et al. and the investigation into Mycobacterium tuberculosis targets by Li
et al—their overall efficiency remains limited (Li et al., 2022; Fonseca et al., 2024).
Inherent limitations, including low screening throughput and protracted timelines for
target validation, often result in a vast number of potential targets remaining obscured
within the complexity of biological systems (Gu et al., 2021).
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To address these limitations, innovative research strategies
represented by “target fishing” have emerged in recent years.
This approach integrates chemical biology, high-resolution
proteomics, and artificial intelligence technologies, driving drug
discovery from an experience-oriented paradigm toward a data-
driven one. Its core mechanism involves using active small
molecules as probes to directly “fish” for binding proteins from
complex biological samples, thereby reversing the conventional
research path from “target-to-drug” to “drug-to-target”
(Moumbock et al., 2019). Currently, multiple mature technical
frameworks have been established based on different principles,
including ligand-based, receptor-based, and complex structure-
based methods. The efficacy of this strategy has been
demonstrated in numerous studies, such as the structural

optimization of berberine by Bin Hong’s team, the discovery of a
PD-L1 inhibitor by Luo et al., (Figure 1) and the elucidation of the
mechanism of action of celastrol byWang Jigang’s team, all of which
validate the distinct advantages of “target fishing” in target
identification and mechanistic exploration (Luo et al., 2021).

Despite the rapid advancement of “target fishing” technologies
and existing reviews that have synthesized their methodologies and
application cases, a significant gap remains in the current field: most
available summaries focus primarily on technical principles or
specific application scenarios, while a systematic integration and
critical evaluation of the drug-active ingredients and their
corresponding targets discovered through this approach is still
lacking. To address this gap, this review aims to systematically
summarize the active compounds and their biological targets
identified via the “target fishing” strategy, analyze the core
distinctions and potential advantages of this technology over
conventional methods, and outline future research directions
integrating artificial intelligence (Figure 2). We anticipate that
this work will provide researchers in the field with a systematic
and forward-looking academic reference.

2 Ligand-based to screen drug targets

Target fishing uses ligand-based approaches to identify drug
targets by analyzing the similarities between active molecules in
pharmaceuticals and the corresponding chemicals associated with
known disease targets. The primary methodologies utilized in this
context include the pharmacophore model and quantitative
structure-activity relationship (QSAR) analysis (Galati et al.,
2021). At the same time, the combination of multi-ligand fishing
technology with various highly sensitive instruments facilitates the
rapid identification and purification of natural products (Miranda
De Souza Duarte-Filho et al., 2023). 2D and 3D molecular
descriptors are ligand fishing techniques developed based on the
principle that compounds with similar chemical structures have the

FIGURE 1
The find of compound 51320.

FIGURE 2
Examples of target fishing methods.
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FIGURE 3
Ligand based target fishing (A)Natural Product; (B) natural extracts (C) Composition Database; (D)QSARmodel; (E) pharmacophore model; (F) The
combination of QSAR and pharmacophore model (G) Active Ingredient (The pharmacophore model is used for preliminary screening of compound
libraries, rapidly narrowing down the range of candidate molecules, while the QSAR model can predict the activity and prioritize the screened
compounds, optimizing candidate molecules)).

FIGURE 4
ABPP workflow: (A) Active molecule (B) protein probe; (C) characterization of protein probes; (D) cell lysate; (E) target protein; (F) Identification of
proteins by MS.

TABLE 1 Comparison of the advantages and disadvantages of various target fishing.

Pharmacophore QSAR ABPP

Data requirements Active molecular structure information Bulk structure-active data Probe design and synthesis

Scope of application Wide Small molecule compound Clear targets of enzymes and active sites

New target discovery Limited Limited Strong

Experimental verification Virtual filtering requires experimental verification Experiment validation following prediction Direct laboratory validation

Technology threshold Medium Low to high models High

Cost and time Low Low High
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same biological activity. Among them, 2D descriptors are dominant
in the discovery of ligands, while 3D molecular descriptors have
unique advantages in the verification of biological activity (Du et al.,
2023). The techniques discussed herein represent the predominant
strategies employed in contemporary drug research and
development. For instance, in a model of Cisplatin-induced
Acute Kidney Injury (AKI) in mice, alisol B has been shown to
reduce apoptosis by modulating the Bax/Bcl-2 ratio through the
p53 signaling pathway. Additionally, it mitigates renal inflammation
by inhibiting the expression of phosphorylated p65 within the NF-
κB pathway, as well as downregulating both mRNA and protein
expression of Keap1 in the Nrf2 pathway, thereby alleviating
oxidative stress and endoplasmic reticulum stress in the kidneys,
which may contribute to the amelioration of AKI symptoms. In
target fishing, alisol B was used to directly target Gln384 hydrogen
bond and soluble epoxy hydrolase for SPR experiment verification
(Zhang et al., 2023). The research team from Sudan employed the
independently developed Active-IT system to evaluate the efficacy of
Ageratum Tigiatum against Staphylococcus aureus, Escherichia coli,
Pseudomonas aeruginosa, and Candida albicans, utilizing thin-layer
chromatography and HPLC for analysis (Sudan et al., 2021).
Furthermore, the Shouhui Tongbian Capsule is recognized for its
purgative effects, and is utilized in the treatment of chronic
constipation. The magnetic microspheres of the total extract of
Shouhui Tongbian capsule were used to obtain the target protein for
high resolution mass spectrometry analysis. Target proteins were
identified through a direct screening method known as target
fishing, resulting in the selection of 138 target proteins and the
enrichment of eight signaling pathways (Guo et al., 2021). Zhang
et al. integrated two computational targeting techniques to identify
23 target proteins relevant to the treatment of cough with Beimu A
(Zhang et al., 2020). The above content indicates that
pharmacophore-based drug target screening can be applied to
target fishing for natural products. This approach demonstrates
superior efficacy in screening therapeutic targets for specific diseases
using traditional Chinese medicine formulations or single herbal
medicines, and can further elucidate their mechanisms of action.

2.1 Pharmacophore model

The pharmacophore model is a ligand-based methodology for
the identification and screening of potential drug targets, offering
significant advantages in the drug discovery process. Contemporary
drug discovery often necessitates the screening of thousands of
compounds; pharmacophore models facilitate the rapid
evaluation of potentially active compounds on a large scale
through computational simulations, thereby enhancing the
efficiency of drug discovery efforts. These models can simulate
the active conformations of ligand molecules through
conformation searches and molecular superposition, allowing for
the inference and elucidation of possible interaction patterns
between receptor and ligand molecules. The identification of
drug targets utilizing pharmacophore models can achieve a
synergistic effect by targeting multiple sites (Sun et al., 2022).
The pharmaceutical group model primarily employs
pharmaceutical group matching servers for predictive analysis,
including the CDD-CPI and DRAR-CPI servers (Ye et al., 2015).

The pharmacophore model provides specific physicochemical
properties, such as the number of hydrogen bonds, the quantity
and distribution of hydrophilic and hydrophobic groups, and the
number of aromatic rings. The number of databases available for
screening based on pharmacophore models has been steadily
increasing, with current databases including PharmaDB and
HypoDB, among others. It is important to note that screening
the same component across different databases does not
guarantee the identification of identical targets. Typically, two
databases are utilized in research: one for target identification
and the other for validation, which helps to ascertain targets
based on screening criteria such as molecular docking fit values
and shape similarity (Lei et al., 2015). The core of this methodology
lies in the selective validation of target proteins through a multi-
angle scoring mechanism, which is essential for ensuring the
reliability of the approach. However, a limitation of this method
is that the scores generated by the scoring function do not
necessarily correlate with the affinity of the compounds (Gao
et al., 2013). Recursive partitioning, a multivariate data analysis
technique that encompasses both single tree models and multi-tree
bagged forests, has been integrated into pharmacophore models.
This approach can rank active ingredients in natural products
according to their activity levels, which may serve as a proxy for
their affinity with target proteins (Zhang et al., 2018). Based on the
pharmacophore model, a specialized automatic switching valve for
HPLC was developed to enhance gene knockout or knock-in
technologies in relation to gene function, thereby facilitating the
identification of active ingredients in natural medicines (Song et al.,
2016). In instances involving unknown biomolecules, the ADMET
properties of natural drugs can be designed utilizing the BIOVIA
Discovery Studio software package, which allows for the
construction of the corresponding pharmacophore model
(Tanwar et al., 2019).

Cyclin-dependent kinases (CDK), which function as core
regulators of the cell cycle and transcriptional processes, have
long been regarded as critical therapeutic targets in anticancer
drug discovery due to their ability to drive uncontrolled tumor
proliferation and sustain oncogene overexpression upon aberrant
activation. However, first-generation pan-CDK inhibitors are often
limited by their broad-spectrum inhibitory profiles, resulting in
inadequate selectivity, narrow therapeutic windows, and
significant systemic toxicity. In response, research efforts have
shifted from “pan-CDK inhibition” toward a “precision-
targeting” strategy, focusing on the development of next-
generation highly selective CDK inhibitors designed to achieve
safer and more effective therapeutic interventions against specific
CDK family members. (Di Giovanni et al., 2016). Yau et al.
integrated binding pose metadynamics with pharmaceutical
agents to predict six targets associated with captopril, Lenvatinib,
and a novel triazole-carboximidamide adenosine A2A receptor
inhibitor. This approach enhanced the accuracy of molecular
docking and the stability of target binding (Yau et al., 2024). The
target protein CDK2 for curcumin was predicted through
computational modeling. Following the preparation of curcumin-
sepharose 4B beads, the fishing protein was validated via Western
blotting experiments, ultimately demonstrating that curcumin
directly binds to the ATP site of CDK2 (Lim et al., 2014).
Clinical research has indicated that Marantodes pumilum exhibits
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therapeutic effects on breast cancer. Azfaralariff et al. selected five
components of Marantodes pumilum for literature review and
identified the top ten target proteins with the highest fitting
scores using a reverse pharmacodynamic matching server.
Through co-expression and gene analysis, the inhibitory effect of
Marantodes pumilum on breast cancer cell proliferation was
confirmed (Azfaralariff et al., 2022). Baruah constructed a library
of active compounds derived from the natural product Leucaspera
using the PubChem database and employed pharmacokinetic
ADMET analysis to screen for drug-like components, further
refining the targets through a reverse pharmacophore matching
server (Baruah et al., 2022). A compound library of Aloe from
Ethiopia was compiled, and its 3D structure was obtained from the
PubChem database. The target of the compound was predicted using
BIOVIA Discovery Studio based on a pharmacophore model
(Bultum et al., 2022). A pharmacodynamic group model,
grounded in 3D chemical characteristics, identified the targets of
alkaloids in Maca, leading to the synthesis of eleven amide alkaloids,
the screening of several pharmacological targets, and the
confirmation of new therapeutic effects. Ultimately, models for
prostate cancer, osteoporosis, and kidney diseases were selected
to validate the predictive results of the targets, thereby affirming the
reliability of the experimental findings (Yi et al., 2016).
Glycopentalone, extracted from Glycosmis pentaphylla, has been
reported to possess anti-hepatocellular carcinoma activity in vitro;
however, the specific mechanism remains unclear. Targets were
screened using a 3D pharmacophore database that included
information on hydrophobic centers, positive centers, negative
centers, hydrogen bond receptors, hydrogen bond donors, and
aromatic rings, with the affinity sequence among the targets
determined through docking experiments (Gurung et al., 2016).

Furthermore, the pharmacophore model exhibits significant
flexibility and scalability. Researchers have the capability to modify
the parameters and characteristics of the pharmacophore model to
accommodate various compound libraries and target types,
depending on specific research requirements. This adaptability
enables pharmacophore models to be employed across a diverse
array of drug development initiatives, encompassing both small
molecules and biomacromolecules. The research team led by Jan
Kihlberg investigated the modulation of binding pocket size during
Keap1-Nrf2 binding by employing structural biological analysis in
combination with computational chemistry and molecular dynamics
simulations. Their work highlighted the dynamic nature of the
binding site and the critical role of hydration networks, providing
guiding implications for the development of novel therapies in fields
such as cancer and neurodegenerative diseases (Begnini et al., 2022).
Separately, Rojan Shrestha discussed the pharmacological
characterization of binding interfaces using molecular dynamics
simulations, specifically explaining the effects of solvation and
conformational flexibility (Shrestha et al., 2021). With
advancements in computational chemistry and bioinformatics
technologies, the precision and applicability of pharmacophore
models are continually enhancing. In comparison to traditional
molecular docking methods, virtual screening based on
pharmacophore models demonstrates superior efficacy in
identifying the pharmacological targets of specific compounds,
thereby providing a foundation for the subsequent identification of
effective components (Yi et al., 2016).

2.2 QSAR model

The Quantitative Structure-Activity Relationship (QSAR)
model is a method used to predict the biological activity of
chemical compounds. By establishing a mathematical relationship
between a compound’s structural characteristics and its biological
activity, the QSAR model can aids researchers in identifying
potentially active compounds. The basic principle of the QSAR
model is to predict the biological activity of a compound based on its
molecular structural attributes, which include physical and chemical
properties, topological properties, and geometric characteristics.
Through the analysis of the relationships between these structural
features and biological activity, researchers can develop predictive
models for the activity of novel compounds. The QSAR model can
assess the interaction between ligands and targets using specific
scoring programs, thereby providing robust support for the validity
of the results. The Structure-Activity Relationship (SAR) model
offers advantages such as low cost and high feasibility. A QSAR
model utilizing a Random Forest (RF) algorithm has been
established by the research team led by Kyoungyeul Lee,
employing the Receiver Operating Characteristic (ROC) curve to
evaluate the activity and inactivity of ligands for each target. The
sample recall rate is utilized to validate the efficacy of this method
(Lee et al., 2017). Building upon this foundation, researchers have
integrated Support Vector Machine (SVM) techniques with
Multiple Linear Regression (MLR) to further enhance the QSAR
model, thereby improving the reliability of its predictive capabilities
and addressing its limitations to a certain extent (Cao et al., 2012;
Tur Razia et al., 2023). With the development of this method,
Chakraborty et al. combined zebrafish animal models with QSAR
models (Chakraborty et al., 2009). Linyan Zhu et al. also used QSAR
model to study the toxicity of triclosan metabolites to 16 target
proteins of zebrafish (Zhu et al., 2018).

Dipteris wallichii was extracted by different polar solvents,
separated via TLC and HPLC, purified by column
chromatography, get a new compound (E)-4-amino-1-(5-((1E,
4E)-hexa-1,4-dienyl)-1-methylpyrrolidin-2-yl) pent-2en-1-one.
QSAR equation was obtained by Multi-Linear Regressions
analysis and was compared with 34 known β-secretase-
1 inhibitors to determine that the compound has therapeutic
effect on Alzheimer’s disease (Chetia et al., 2020). At the same
time, Subrata Das et al. used multiple linear regression QSAR to
search for the active components of flavonoids in the A. anisophyllus
of Acetylcholinesterase, a target protein of Alzheimer’s disease (Das
et al., 2017). The human mitogen-activated protein kinase one was
identified the target protein of N-Substituted Tetrahydro-β-
Carboline Imidazolium Salt Derivatives by random Forest QSAR
models, which provided theoretical basis for the discovery of anti-
tumor drugs (Liang et al., 2017).

QSAR can be used for the preliminary screening of compounds.
In large compound libraries, QSAR models can quickly identify
compounds that may have target activity, thus reducing the effort
and cost of experimental screening. In addition, QSARmodel can be
used to optimize compound structure. By analyzing the contribution
of individual structural features to activity in the model, researchers
can design and synthesize compounds with higher activity, and
QSAR models can quickly predict the interaction between
compounds and targets through computational methods, thus
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greatly improving screening efficiency, not only predicting the active
ingredients of pharmaceuticals but also predicting the binding
activity of known targets.

2.3 The mixed application of QSAR and
pharmacophore

The above two methods do not necessarily use only one, can be
combined to improve reliability (Figure 3). For example,: Xuewu
Zhang et al. uses pharmacophore and 3D-QSAR to screen six
tripeptide inhibitors of Dipeptidylpeptidase-4 VSM, ISW, VSW,
ICY, ISD, and ISE(Wang, 2020). Reliability Evaluation of Drug
Target Based on Ligand Method Based on Real-Time Update of
Database and Analysis of Protein Structure and Biological Spectrum
(Peón et al., 2016). In order to improve the accuracy of active
ingredient search based on structural similarity, multiple databases
will be used to search at the same time to compare the consistency of
retrieval results so as to evaluate the rationality of the judgment
method (Chávez-Fumagalli et al., 2018). Scoring function is an
important evaluation index in structure-based molecular docking,
including data-driven model and experience scoring function,
whose introduction improves the accuracy of target fishing
(Zheng et al., 2022). At the same time, it can also use multiple
protein preparation software to simultaneously process proteins to
prevent the deviation of experimental results caused by the
contingency of single processing software (Chen et al., 2017).
Ligand-Based targeting is generally targeted at ligands as small
molecules, with few proteins or peptides as ligands, but the study
has never stopped. The Chai team obtained paramyosins from
marine animals, hydrolyzed the corresponding dipeptides using
gastrointestinal digestive enzymes, and further predicted the
anti-angiotensin-converting-enzyme dipeptides, which were then
identified by molecular docking and molecular dynamics (Chai
et al., 2022).

At present, the ligand-based target acquisition technology has
gradually matured, but there are still many factors that cannot be
overcome. Firstly, there is the active cliff phenomenon observed in
the QSAR model (Stumpfe et al., 2019). For example, existing studies
have found that Janus kinase 1 has a structure-activity relationship of the
cliff structure, its efficacy and structure-activity relationship of research
challenges (Daoud and Taha, 2020). When the target is screened
according to the mechanism similarity, the potential information
should be fully mined to reduce or avoid the activity “cliff”
phenomenon (Bajorath, 2019). Secondly, the establishment of QSAR
and pharmacophore relies on a large amount of preliminary basic data.
Therefore, when there is limited basic data, the screening results may be
inaccurate (Du et al., 2022). Pharmacophore is a spatial template that
provides key functional groups. Therefore, when there is insufficient 3D
structure of the target protein or high-quality ligand data, the
construction of pharmacophore may deviate, resulting in false
positives and false negatives during result analysis (Giordano et al., 2022).

To address biases in pharmacophore modeling arising from
inadequate protein structural data or limited ligand information, a
multi-level integrated strategy is proposed. Initially, a complementary
framework combining AlphaFold2-predicted structures with ligand-
based pharmacophore modeling should be established to mitigate
constraints imposed by sparse initial data. Subsequently, molecular

dynamics simulations and ensemble modeling approaches should be
incorporated to enhance model robustness against conformational
dynamics and data uncertainty. Most critically, a rigorous validation
protocol encompassing decoy validation and independent test set
evaluation must be implemented, forming a closed-loop optimization
system of “computational prediction-experimental validation -model
iteration.“This framework enables continuous refinement of
pharmacophore parameters through feedback from in vitro activity
data, systematically improving predictive reliability.

For addressing the complexity of multi-component and multi-
target natural product research, it is essential to transcend
traditional boundaries between computation, analysis, and
experimentation by establishing a comprehensive research
continuum. This integrated pathway can be summarized as:
“network pharmacology for panoramic navigation →
chromatography/mass spectrometry coupled with affinity-based
fishing for precise compound identification → SPR/CETSA for
interaction verification → gene editing techniques for functional
confirmation. “This systematic approach enables breakthrough
advancements from initial activity identification to
comprehensive mechanistic elucidation.

Deep learning models, excelling at capturing complex nonlinear
patterns, demonstrate higher predictive accuracy across both training
and testing stages. Integrating them into QSAR frameworks can be
regarded as a paradigm upgrade—one that not only elevates predictive
performance but also propels the evolution of QSAR modeling
architecture itself (Tropsha et al., 2024). Daniel Merk employed a
variational autoencoder (VAE) as the core generative model, utilizing
SMILES strings for molecular structure representation. By training an
auxiliary predictive neural network, the VAE was guided to perform
directed sampling in the latent space toward regions associated with
ideal multi-target activity, thereby enabling the prediction of
biological activity of corresponding molecules against multiple
specific targets. This research methodology demonstrates a
paradigm shift from the conventional “screening and optimization”
approach to an “objective-driven automated creation” framework,
highlighting the advanced capabilities of generative artificial
intelligence in rational drug design (Isigkeit et al., 2024). The
innovative aspect of diffPhore lies in its adoption of a denoising
diffusion probabilistic model. This model employs a forward process
to progressively add noise to an initially aligned ligand conformation,
transforming it into a randomly unaligned state. Subsequently,
through a reverse process, a neural network is utilized to
incrementally remove the noise, thereby refining the conformation
back into one that precisely matches the pharmacophore. Unlike
conventional generative models, which rely primarily on data
distribution, diffPhore incorporates external knowledge—such as
molecular force fields—as strong constraints at each step of the
reverse denoising process. This ensures that the generated results
are not only statistically sound but also consistent with
physicochemical principles (Yu J.-L. et al., 2025).

3 Receptor -based to screen
drug targets

Target trapping based on receptor is to use the known target
proteins to screen and predict the active components, and to verify
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the binding modes and mechanism of the proteins. This approach
relies on the 3D structure of proteins, so the introduction of
proteomics is very important for this approach. At present,
homologous modeling is widely used. This method uses sequence
homology of known structure to predict corresponding protein
structure. If the two proteins have high enough sequence
similarity, then their 3D structure is also more likely. Validity is
the primary consideration in modeling, and a flexible hairpin shape
loop that the binding pocket can be used to obtain a relatively open
conformation by adjusting the size of the binding cavity according to
the size of the ligand and the distance from the receptor (Sander
et al., 2011).

The role of receptor structure analysis in drug target recognition
is crucial. By analyzing the 3D structure of the protein, we can know
how the protein binds to the potential drug molecule and choose the
suitable binding pocket to identify the potential drug target. The core
of the structural analysis of the receptor is the recognition of the
protein active center, which is an important region of drug
interaction. By locating these sites, the researchers looked for
target compounds that could bind to them and regulate the
function of proteins (ElGamacy and Van Meervelt, 2015). In the
treatment of some diseases, the mutation of receptor may cause
the change of drug binding site. By analyzing the structure of the
mutant receptor, the problem of drug resistance can be solved
(Gámez-Chiachio et al., 2022). Researchers can use the protein
structure to design new drugs to overcome or reduce resistance,
or to restructure existing resistant drugs to restore their
effectiveness. This application is particularly important in the
research of anticancer and anti-infective drugs.

Activity-based protein profiling (ABPP) is a method of directly
questioning naturally expressed active proteins in highly complex
biological environments (Xu et al., 2020). Compared with the
traditional pulldown method, ABPP is a simple and efficient
click-chemical method. After capturing the target protein, ABPP
is analyzed by magnetic bead-pull mass spectrometry. The binding
ability and morphology of protein and molecule were further
verified by surface plasma and heat transfer. LC-MS is commonly
used for protein identification by Click chemistry activity-based
protein profiling (CC-ABPP) (Chen et al., 2020). This method is
mainly to overcome the difficulty of protein probe entering cells.
ABPP’s tandem orthogonal proteolysis technology (TOP-ABPP) is a
fusion of click chemistry, biotin-streptavidin enrichment, which
improves protein selectivity and general probe adaptability (Jiang
et al., 2024). The core of the ABPP strategy is to design small
molecular probes that can covalently interact with the target protein
(Nodwell and Sieber, 2011). It is very important to design a protein
probe with high specificity and selectivity for the successful
experimental study. Thomas Bottcher’s team proposed a probe
preparation method based on ligand selectivity (Schmid et al.,
2022). Protein probes that use photoactive groups to make
covalent bonds are the most widely used method. There are
many photoaffinity groups, including Aryl Azide, Diazirine,
Benzophenone and so on. There are two kinds of molecular
probes. One is based on activity, the other is based on affinity
(Geurink et al., 2011). Demonstrating its relationship to disease by
inhibiting or activating protein activity is one of the main tools used
in the study of natural products by the target fishing strategy
(Figure 4).

Ping Li’s team developed a screening system to obtain sn-1,2-
diacylglycerol inhibitor atractylenolide II and its direct target
protein, DGKQ, for atractylenolide II in combination with the
ABPP strategy. In addition, experiments showed that it could
activate DGKQ-AMPK-PGC1a-UCP-1signaling in adipose tissue,
providing evidence that atractylenolide II is a precursor for
improving insulin resistance induced by obesity (Zheng et al.,
2023). Using the same strategy, Sheng-Cai Lin’s team identified
113 target proteins using metformin probes coupled to their target
proteins under ultraviolet radiation and then pulled down the
conjugate with a neutral protein magnetic sphere (Ma, 2022). A
small molecular probe of Bavachinin was designed and synthesized
based on the CC-ABPP technique, and its target, Proliferating cell
nuclear antigen (PCNA) was hooked. PCNA was identified by SPR,
CETSA, DARTS and Co-IP test (Dong et al., 2024). Elisabeth
Davioud-Charvet team used 3-benzyl-6-fluoromenadione AfBPP
probe to catch a target against malaria parasites (Iacobucci
et al., 2024).

In addition to ABPP, researchers have used other techniques to
target fishing based on receptors, for example,: Dingqi Zhang
screens the crystal of RBD of the spike protein SARS-CoV-
2 from the PDB database, downloads the chemical structure from
the PubChem database for molecular docking, and sorts the VS
scores of the best binding poses according to the VS scores of the
highest rank of active ingredients for subsequent validation
experiments (Zhang et al., 2021). Rehman et al. isolated
14 compounds from Lycium shawii and Aloe vera, and found
Carbonic anhydrases which is the effective target for cancer. 1,8-
dihydroxy-3-(hydroxymethyl)anthracene-9,10-dione was obtained
from inverse docking was the most effective component for cancer
treatment (Ur Rehman et al., 2020). In cisplatin-induced deafness
mice model, Tiliroside reduces apoptosis and oxidative stress and
treats the cisplatin ototoxicity by deactivating the activity of aldose
reductase (Liao et al., 2024). Spiro-acridine derivatives was used to
reverse the virtual screening to find inhibitors of chitinase (De
Oliveira Viana et al., 2023). Eight compounds of 4-Phenyl-1,3-
Thiazole-2-Amines skeleton series were screened by reverse target
to obtain the best target protein for treating leishmaniasis
(Rodrigues et al., 2018). Synthesis of 8 3-aryl-4-alkylpyrazol-5-
amines derivatives by target fishing to find the most effective
anti-tumor components 5 h (Ma et al., 2020). Mitochondrial
chaperonin HSP60 has been proved to be a directly targeted
functional target protein of Myrtucommulone regulating
apoptosis. In heat shock test, the LRP130 and LONP proteins
regulated by HSP60 protein were proved to be indirect targets of
MC inducing apoptosis (Wiechmann et al., 2017). Screening of real
anticancer targets for Calactin, Calotropin, and Calotoxin to provide
new ideas for the development of anticancer drugs (Parthasarathy
et al., 2021). Leishmania donovani NH (LdNH) is a key target for the
treatment of leishmaniasis. Extracts from M. oleifera leaves and
flowers have therapeutic effects on Leishmaniasis. The bioactive
compounds in the extracts were obtained through ligand fishing
experiments. The specific components were identified by UPLC-MS,
and their contents were directly determined by HPLC (De Faria
et al., 2022).

ABPP, pharmacophore modeling, and QSAR represent
complementary methodologies in drug discovery, spanning from
experimental validation to theoretical prediction. ABPP, with its
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functional and global experimental capabilities, plays an
indispensable role in target identification and validation.
Pharmacophore modeling, leveraging its intuitive conceptual
framework, demonstrates considerable utility in virtual screening
and scaffold hopping. In contrast, QSAR capitalizes on its capacity
for quantitative prediction, serving a critical function in the lead
optimization phase. Consequently, the integration of these three
techniques into a synergistic strategy—for instance, employing
ABPP for target validation and initial lead discovery, followed by
pharmacophore modeling for scaffold refinement and virtual
screening, and finally utilizing QSAR models for precise activity
prediction and optimization—holds significant potential to enhance
the overall efficiency of the drug discovery process (Table 1).

The use of Target fishing in drug discovery and development is
increasing, and its use in multi-pharmacology could help find new
targets for old drugs and expand the scope of clinical treatment. The
same target for the same disease can be studied in different ways.
Taking the targeted treatment of Alzheimer’s disease with ace
methylcholinesterase (AChE) as an example: Anupam D.
Talukdar’s team used Lipinski rule filtering, ADME/Tox
screening, molecular docking and QSAR analysis, as well as
in vitro activity evaluation to predict and confirm the inhibitory
effect of flavonoids contained in Artocarpus anisophallus on AChE
(Das et al., 2017). Jose Manuel Villalgordo et al. screened novel
highly selective AChE inhibitors from compound libraries based on
ligand based three-dimensional shape similarity and
pharmacophore model screening, as well as structure based
molecular docking and pharmacophore guided re scoring, using a
drug repositioning strategy combined with a structure ligand dual
drive design method (Pérez-Sánchez et al., 2021). In order to avoid
the side effects generated during the treatment of AChE
(acetylcholinesterase) inhibitors, the Haopeng Sun team also
found but Butyrylcholinesterase inhibitors by combining
pharmacophore construction with molecular dynamics
simulations (Lu et al., 2019).

4 Methodology and discussion

The proteins obtained via target fishing can be systematically
validated by multi - scale computational methods, including
molecular dynamics, quantum chemical calculations, and
molecular docking, to evaluate the biological rationality of the
screened protein structures. Yi Mao employed the coarse-grained
Elastic Network Model (ENM) to analyze the crystal structures of
HIV-1 protease before and after binding (with substrate and nine
FDA-approved inhibitors). The correlation matrix was used to
describe the dynamic coupling between residues. Additionally,
the Markov Clustering (MCL) algorithm was employed to
identify functionally relevant residue networks, and the dynamic
differences in residues between the bound and unbound states were
compared (Mao, 2011). Through molecular dynamics simulations
and free energy calculations, Xiaoyun Wu et al. systematically
elucidated the binding mechanisms of EGFR allosteric inhibitors
and their dynamic regulatory networks, revealing dynamic
communication pathways between the allosteric site and the
kinase functional domain. This work provides a theoretical
foundation for designing highly selective allosteric drugs (Wu

et al., 2022). Angus T. Voice et al. employed QM/MM
simulations combined with molecular dynamics (MD) pre-
equilibration methods to investigate the covalent bonding process
between ibrutinib and Cys481 residue in BTK’s active site via
Michael addition reaction. Their study delineated the atomic-
level reaction pathway and energy profile, demonstrating the
powerful capability of QM/MM methodology in deciphering
covalent drug reaction mechanisms (Voice et al., 2021).

Integrating these multi-dimensional computational evidences,
the research team not only validated the thermodynamic stability of
protein conformations obtained through targeted conformational
sampling, but also atomistically revealed the mechanism of ligand-
induced allosteric effects. These findings establish a solid theoretical
framework for subsequent structure-based drug design targeting this
therapeutic target.

Natural products are characterized by multiple components and
targets. Thus, when exerting pharmacological effects in organisms,
natural products inevitably interact with other biological targets,
resulting in toxic side effects. This has driven continuous research
and clinical advancement in targeted drugs. Compared to traditional
drugs, targeted drugs exhibit stronger specificity for particular cells
while minimizing effects on normal cells. Particularly in cancer
clinical treatment, targeted therapy demonstrates lower cellular
toxicity and higher safety when compared to chemotherapy and
immunotherapy. There are 15 FDA-approved targeted drugs in
clinical use: Datopotamab Deruxtecan, Telisotuzumab Vedotin,
Gemtuzumab ozogamicin, Brentuximab vedotin, Trastuzumab
emtansine, Inotuzumab ozogamicin, Moxetumomab pasudotox,
Polatuzumab vedotin, Enfortumab vedotin, Trastuzumab
deruxtecan, Sacituzumab govitecan, Disitamab vedotin,
Loncastuximab tesirine, Tisotumab vedotin, and Mirvetuximab
soravtansin (Liu et al., 2024). Taking Polatuzumab vedotin as an
example, it treats diffuse large B-cell lymphoma by inhibiting MCL-
1 to induce apoptosis.

Research teams have employed an integrated multidisciplinary
approach combining molecular docking technology, surface
plasmon resonance (SPR) analysis, and bioactivity validation to
systematically elucidate the structure-activity relationships (SAR)
and mechanisms of action (MOA) of candidate compounds, thereby
establishing critical theoretical foundations for clinical translation.
For instance, the STAT3-selective inhibitor OPB-31121, currently
undergoing Phase II clinical trials, has had its molecular recognition
characteristics resolved through X-ray crystallography-based
structural biological characterization (Huang et al., 2020).
Furthermore, innovative applications of proteolysis-targeting
chimera (PROTAC) technology to investigate targeted
degradation mechanisms of the clinical-stage STAT3 inhibitor
napabucasin have provided novel insights for addressing drug
resistance challenges (Hanafi et al., 2021). Notably, the
lymphocyte-derived agent (LDA), recognized as the first-in-class
small-molecule inhibitor targeting tumor necrosis factor receptor-
associated factor 2 (TRAF2), has demonstrated significant
antitumor efficacy in preclinical models along with favorable
pharmacokinetic properties, demonstrating promising clinical
translation potential (Yan et al., 2022). These representative cases
underscore the expanding applicability of computational target
identification methodologies in contemporary drug
discovery pipelines.
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In recent years, with the development of technologies such as
X-ray crystallography (Zha et al., 2016), bioinformatics (Li et al.,
2019), NMR spectroscopy (Ur Rehman et al., 2020) and freezing
electron microscope (Wang et al., 2024), significant progress has
been made in the structural analysis of receptors. The analysis of
receptor structure can help identify drug targets and provide
important information for drug design. This structure- oriented
CAD improves the accuracy of drug selection, reduces the possibility
of side effects, and reveals the relationship between receptor
conformation and mechanisms of action.

The introduction of computer and molecular dynamics
simulations provides support for researchers to model receptors
and their interactions between receptors and drug molecules at the
molecular level. With the introduction of machine learning and
artificial intelligence technology, the predictive power and accuracy
of virtual filtering have improved significantly (Carullo et al., 2023).
For example, the combination of intelligent recognition technology
and mass spectrometry was used to analyze the components of
Xiaokewan, and computer simulation docking and network
pharmacology were used to screen the anti-diabetic activity of
the high-exposure components of Xiaokewan in the mass
spectrum, and the efficacy experiment was verified (Zhu et al.,
2020). By training machine learning models, researchers can
more accurately predict the activity and selectivity of compounds,
thus improving the success rate of virtual screening (Bagherian
et al., 2021).

In recent years, artificial intelligence, machine learning, and
biosensors have emerged as hot topics, and their applications in
target identification have gradually deepened, continuously
providing new technologies and possibilities for the advancement
of this field. Over the past 5 years, artificial intelligence has rapidly
integrated into various industries, including the pharmaceutical
sector. In drug discovery, AI-driven target identification and
synthesis planning have become pivotal (Zhang, n.d.).
Particularly in oncology drug target identification, artificial
intelligence technologies not only facilitate the discovery of novel
anti-tumor targets but also efficiently record and quantify
interactions among various components in cancers and other
diseases, laying the foundation for developing new anti-tumor
drugs (You et al., 2022). Firstly, network-based biological analysis
algorithms offer alternative pathways for identifying cancer targets.
Secondly, machine learning-driven bioanalytical methods effectively
process high-throughput, heterogeneous, and complex molecular
data, extracting intricate biological networks. For instance, Diego
Galeano’s team developed the “sChemNET” machine learning
approach and applied it to miRNA target discovery (Galeano
et al., 2024). The high precision, sensitivity, and real-time
monitoring capabilities of novel biosensors are increasingly
valued in drug target discovery. These biosensors play a critical
role in conformational dynamics and biological signal transduction,
aiding in the detection of downstream protein signals in signaling
pathways and elucidating the conformational relationships between
drugs and their targets. This provides deeper theoretical insights into
drug mechanisms. For example, G protein-coupled receptors
(GPCRs), a superfamily of transmembrane signaling proteins that
mediate chemical signal transduction across membranes, are ideal
drug targets. Research on GPCRs biosensors has long been a focus
and has achieved significant progress (Saca et al., 2025). Fluorescent

and bioluminescent biosensors are crucial in targeted drug discovery
for oncology (Kelly and Yang, 2024), while redox protein-based
fluorescent biosensors have been successfully developed and applied
to study the anti-inflammatory mechanisms controlled by Msr B1
(Shim et al., 2024).

5 Conclusion

To effectively address the core challenges of data quality, model
generalization, and validation reliability faced by pharmacophore
and QSAR models in natural product research, a multidimensional
synergistic strategy is essential. This can be achieved by integrating
multi-source data—including AlphaFold2-predicted structures and
chemical proteomics—to enhance fundamental data quality;
employing advanced algorithms such as graph neural networks
and multi-task learning to improve model characterization of
complex chemical spaces; establishing a closed-loop optimization
workflow of “computational prediction-experimental validation-
model iteration” utilizing orthogonal verification techniques like
SPR and CETSA; and combining reverse target fishing with network
pharmacology to systematically analyze the multi-component,
multi-target interaction networks of natural products. This
integrated paradigm, synthesizing data, algorithms, validation,
and systems biology perspectives, will significantly enhance the
accuracy of active ingredient identification and the depth of
mechanistic interpretation.

A large number of studies have shown the feasibility of target
fishing in drug design. At present, the application of target fishing
technology in drug design is still combined with computer-aided
drug design. It is still a big challenge to evaluate the rationality of
drug design for computer-aided drug involving 5V characterization,
namely, volume, velocity, variety, variability, veracity (Zloh and
Kirton, 2018). Based on ligand-based active component screening
often encounters the challenge of activity cliffs (ACs). To improve
prediction accuracy, existing studies have adopted MMP models
based on specific chemical substructures to replace traditional
computational similarity metrics, thereby relying on statistical
evidence from large-scale experimental data rather than
theoretical speculation (Hu et al., 2012). The ACtriplet deep
learning model, by integrating a triplet loss function and pre-
training techniques, effectively enhances the ability to identify
key subtle structural differences that trigger Acs (Yu X. et al.,
2025). How to more accurately predict and interpret Acs remains
an important direction worthy of further attention in
future research.

Despite its existing limitations, target fishing technology has
demonstrated significant potential in the field of drug screening,
particularly in natural medicine research. Given the complexity of
natural medicines characterized by multi-component and multi-
target profiles, the continued development and optimization of this
technology are of paramount importance. To advance the
standardization and practical application of target fishing
technology, future research should focus on the following
dimensions: establishing standardized benchmark datasets
covering diverse target types and activity levels to provide a
unified framework for algorithm evaluation; deeply integrating
three-dimensional structural data from structural proteomics and

Frontiers in Pharmacology frontiersin.org09

Chen et al. 10.3389/fphar.2025.1673688

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1673688


cryo-electron microscopy with artificial intelligence technologies to
develop dynamic binding site prediction models; and refining
standardized workflows from computational prediction to
experimental verification by constructing multi-level validation
systems utilizing technologies such as surface plasmon resonance
and chemical proteomics. Through systematic advancement in
algorithm benchmarking, data integration, and validation pipeline
optimization, the reliability and translational value of this
technology in natural medicine research will be significantly
enhanced. Furthermore, promoting interdisciplinary applications
of target fishing technology is crucial, requiring the integration of
multidisciplinary knowledge to establish comprehensive research
methodologies (Lima et al., 2021). Such cross-disciplinary
approaches will facilitate a comprehensive understanding of the
mechanisms of action of active constituents and provide innovative
perspectives for new drug development.
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