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Background: Severe adverse drug reactions (SADRs) pose significant challenges
to pharmacotherapy. Machine learning (ML) models hold promise in providing
reliable solutions for predicting SADRs. This study is designed to pinpoint the
independent risk factors contributing to SADRs through the application of ML
techniques, thus constructing a predictive model for SADRs applicable in real-
world clinical settings.
Methods: This retrospective dual-center cohort study analyzed adverse drug
reaction (ADR) cases reported in two Chinese tertiary medical centers from
2014 to 2022. Per the World Health Organization - Uppsala Monitoring
Centre severity criteria, cases were classified as SADRs or common ADRs.
Independent predictors were identified via univariate and multivariate logistic
regression (LR). A random partitioning of the data set resulted in a 75% training set
and a 25% test set. The performance of three ML algorithms, including LR,
Random Forest and Gradient Boosting Machine, was compared. A nomogram
was constructed, model performance was measured by the area under the
receiver operating characteristic curve (AUC), concordance index (C index),
Hosmer-Lemeshow test (H-L test), Decision Curve Analysis (DCA), and Clinical
Impact Curve (CIC).
Results: A total of 508 SADRs were identified. The AUC values of LR model
demonstrates the highest predictability among the three ML models. The AUC
was 0.707 in the test set and the AUC in the training set was 0.689. A nomogram
was established based on the LR model and evaluated. The C-index was 0.714 in
the test set and the AUC in the training set was 0.713; The H-L test produced a
chi-square value of 9.769 (p = 0.369), indicating good calibration. The DCA and
CIC verify that the LR model possesses significant predictive value. According to
the LR model, there were 20 predictors, including age ≥54 years, concurrent
diseases ≥3, cardiac insufficiency, hemorrhagic disorders, active malignancies,
cerebral infarction, bone fractures, anti-infectives, cytotoxic antineoplastics,
proton pump inhibitors, antiepileptics, anticoagulants, diagnostic agents,
arterial administration.
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Conclusion: This study established a predictive nomogram for SADRs based on LR
through comparative analysis of three ML approaches. The developed nomogram
enables clinically meaningful risk stratification for SADRs, facilitating prophylactic
surveillance of high-risk populations.
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severe adverse drug reactions, adverse drug reactions, machine learning, nomogram,
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Introduction

Adverse drug reactions (ADRs) refer to harmful and unexpected
pharmacological reactions that manifest at standard therapeutic
doses (Montané and Santesmases, 2020). Approximately 10%–
20% of inpatients and 25% of outpatients experience ADRs
(Garon et al., 2017). Systematic review and meta - analysis reveal
marked variations in the incidence of serious adverse drug reactions
(SADRs) linked to hospitalization, spanning from 1.0% to 16.8%
(Formica et al., 2018). It was showed that 6.7% of hospitalized
patients incur SADRs, with a 0.32% prevalence of fatal ADRs
(Formica et al., 2018). Alarmingly, research in pharmacovigilance
has shown that ADRs are the fourth top cause of death around the
world (Moyer et al., 2019).

Pharmacovigilance constitutes a pivotal strategy for the
prevention and mitigation of adverse drug events (ADEs) and
ADRs (Song et al., 2023). Methodologically, it is dichotomised
into passive and active monitoring systems (Li and Yin, 2019).
Passive surveillance relies on spontaneous reporting systems (SRS),
through which healthcare professionals voluntarily submit observed
ADRs. Owing to its minimal infrastructural requirements, SRS is the
predominant mode of data collection in many jurisdictions
(Mulchandani and Kakkar, 2019). Its advantages include high
data volume, ease of access, and low operational cost.
Nevertheless, this approach is intrinsically limited by under-
reporting, duplication, low reporting rates, and variable data
quality (Shamim et al., 2024; Crisafulli et al., 2025; Alatawi and
Hansen, 2017). Active pharmacovigilance leverages comprehensive
electronic health records that encapsulate detailed patient-level
information, thereby enabling the simultaneous control of
confounders such as polypharmacy, combination therapies, and
sociodemographic characteristics (Zhuo et al., 2014). However,
the substantial human and financial resources required for its
implementation have constrained its widespread adoption.
Recently, artificial intelligence (AI), particularly machine learning
(ML), has emerged as a transformative paradigm in
pharmacovigilance (Demirsoy and Karaibrahimoglu, 2023; Hu
et al., 2024; Salas et al., 2022). By learning patterns from large-
scale data, these algorithms facilitate the automated identification of
ADEs/ADRs, extraction of drug–drug interactions, and stratification
of patients at elevated ADR risk (Salas et al., 2022). The principal
advantages of AI-driven approaches are threefold: (i) Automated
report generation and multimodal data integration, amalgamating
electronic medical records, genomic data, social media content, and
other heterogeneous sources, thereby enhancing both the velocity
and accuracy of data processing (Kompa et al., 2022; Golder et al.,
2025; Dsouza et al., 2025; Dimitsaki et al., 2024). (ii) Objective risk
assessment, wherein AI models generate causal probability scores by
systematically analysing confounding factors, temporal

relationships, and the hierarchy of literature evidence, thereby
mitigating subjective bias (Desai, 2024). (iii) Individualised risk
prediction, achieved through predictive models that integrate
patients’ genomic, metabolic, and medication histories to deliver
personalised ADR risk estimates (Ward et al., 2021). Although ML
approaches have demonstrated significant advantages in ADR
research, the prediction of ADRs still face challenges, particularly
as studies on ML models for predicting SADRs remain scarce.

Given the significant adverse impact of SADRs on patient health,
it is important to identify risk factors associated with SADRs and
develop predictive models. This retrospective study aims to establish
an accurate and reliable model for predicting SADRs by using ML
algorithms.

Materials and methods

Study design

Pharmacovigilance data from two different tertiary care
institutions in China were used in this dual-center retrospective
cohort study: Affiliated Hospital of Zunyi Medical University
(Zunyi, Guizhou); Yuncheng Central Hospital affiliated to Shanxi
Medical University (Yuncheng, Shanxi). The dataset spans from
1 January 2014, to 31 December 2022, and includes all ADR reports
registered in the national surveillance systems of the
institutions involved.

This study was conducted in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of the Affiliated
Hospital of ZunyiMedical University (Approval No. KLL-2021-257)
and the collaborating center. The requirement for written informed
consent was waived by the Ethics Committee due to the
retrospective nature of the research.

Data assessment

Experts from the Drug Reevaluation Centre of China National
Medical Products Administration evaluated all the adverse drug
reactions (ADRs), which were categorized as “certain”, “probable”,
“possible”, “irrelevant”, “to be evaluated”and “unable to evaluate”
based on World Health Organization - Uppsala Monitoring Centre
(WHO-UMC) causality assessment criteria (Chen et al., 2018). The
authors reassessed the causal relationship of the ADR using the
Naranjo algorithm (Shukla et al., 2021). Inclusion criteria were
limited to ADRs categorized as “certain”, “probable”, or
“possible” (The Uppsala Monitoring Centre, 2013). Cases were
excluded if: (i) Causality assessments classified as “irrelevant”, “to
be evaluated” or “unable to evaluate”; (ii) Key information were
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missing, as gender, age; (iii) Occurrence time was unclear; (iv)
Diagnosis incomplete.

In accordance with ICH E2A guidelines (Therapeutic Goods
Administration of Department of Health of Australian Government,
2000), SADRs are defined as any event meeting at least one of the
following standards: (i) Requires inpatient hospitalization or
prolongation of hospitalization; (ii) Results in persistent or
significant disability/incapacity; (iii) A congenital anomaly/birth
defect; (iv) Life-threatening; (v) Fatal outcome; (vi) Other serious
medical events that may lead to the aforementioned outcomes
(Chen et al., 2018).

Additionally, ADR outcomes were typically encompassed within
several definitive categories: cured, improvement, recovered with
sequelae, no healing, death and unknown (Sun et al., 2020).

The MedDRA v24.0 classification system was used to describe
organ-specific injury manifestations of common ADRs and SADRs
(International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use, 2021). The WHO-ATC
classification system was employed to evaluate the ADR profiles of
different drug categories (Norwegian Institute of Public Health, 2025).

Data analysis

SPSS (version 26.0, Chicago, IL, United States) and R software
(version 3.5.1, R Foundation for Statistical Computing, Vienna,
Austria) were used for statistical analyses. The Shapiro test was
employed to evaluate the distribution of continuous variables. For
normallydistributed variables, data were shown as mean ± standard
deviation (SD), while skewed data were presented as median
(interquartile range, IQR). Categorical data were represented by
frequencies and percentages.

The comparison of the common ADRs cohort with the SADRs
cohort was conducted using the unpaired Student’s t-test or the non-
parametric Mann-Whitney test for continuous variables, and chi-
square or Fisher’s exact tests for categorical variables. Through
receiver operating characteristic (ROC) curve analysis, continuous
variables that showed statistical significance were divided into two
groups, with the Youden index used to find the optimal diagnostic
thresholds (Obuchowski and Bullen, 2018). To identify risk factors for
SADRs, chi-square (or Fisher’s exact) tests or univariate LR analysis
were conducted. In the univariate analysis, variables with
p-values <0.10 along with clinically relevant parameters were
included in the multivariate LR model via forward stepwise selection
(Faria et al., 2022; Eastment et al., 2019). Clinically relevant parameters
were included in the multivariate LR model via forward stepwise
selection (Faria et al., 2022). Two-tailed tests were used, and a P
value below 0.05 was regarded as statistically significant.

In this study, a fixed ratio of 75%-25% was employed for data
partitioning in accordance with the requirements of TRIPOD-AI
and PROBAST by using the R language (via the createDataPartition
function from the caret package).

In building the model, three ML algorithms were used: LR,
Random Forest (RF), and Gradient Boosting Machines (GBM). The
hyperparameter tuning part is in the Supplementary File 1. These
classifiers were systematically implemented to construct prediction
systems using two independent datasets containing optimally
selected feature variables (Lin et al., 2024). The effectiveness of

each model’s predictions was assessed using the area under the
receiver operating characteristic curve (AUC) (Li et al., 2022).
Furthermore, we also calculated specificity, accuracy, sensitivity,
F1-score and precision for each model’s AUC at the “best”
thresholds (Zhang S. T. et al., 2025; Peng et al., 2025). Bootstrap
calculated using 1,000 stratified repetitions in the “pROC” program.

Nomogram implementation and test

Using the “rms” package in R statistical software, a nomogram for
SADRs was developed from a multivariate LR model (Hoshino et al.,
2018). Its performance was assessed with a concordance index
(C-index) and calibration plots derived from bootstrap samples.
Calibration plots provide a visual evaluation of predictive accuracy
by comparing observed probabilities with those predicted by the
nomogram, while a C-index measures discriminative ability
numericallya. Decision Curve Analysis (DCA) was utilized to
measure the clinical utility of the predictive models. By assessing the
net benefit over various threshold probabilities, DCA allows for
comparison of the nomogram with other models and highlights
their respective differences. By showing the false-positive and true-
positive rates as functions of the risk threshold, DCA effectively
addresses the limitations of ROC curves (Zhang et al., 2022). Finally,
the net clinical benefit of the model with the best diagnostic results was
assessed by plotting clinical impact curves (CIC) (Hou et al., 2020).

Results

Baseline characteristics

Of the 4,860 cases, 4,333, accounting for 89.2%, fulfilled the
inclusion/exclusion criteria and were retained for subsequent
analysis (Figure 1). Causality assessment using the WHO-UMC
criteria classified 2.5% (n = 109) of the cases as “certain,” with the
remainder distributed between “probable” (62.4%, n = 2,702) and
“possible” (35.1%, n = 1,522).

To better understand the risk factors associated with SADRs, the
cases were divided into two cohorts: the common ADRs cohort
(3,825 cases, 88.3%) and the SADRs cohort (508 cases, 11.7%). A
comparison of demographic and clinical characteristics is shown in
Table 1. The key findings are summarized as follows: (i) Male
patients exhibited higher risks of SADRs, constituting 53.3% of
SADRs. (ii) Patients aged 54 years and older had a significantly
higher proportion of SADRs compared to those younger than
54 years (58.3% vs. 41.7%, p < 0.001). (iii) Among the routes
examined, IA administration was associated with high
occurrences of SADRs (2.6% vs. 0.3% for common ADRs). (iv)
There were significant differences (p < 0.001) between SADRs and
common ADRs in ADR type, clinical aoutcomes, impacts on the
primary disease, and the occurrence time of ADRs.

Compared with common ADRs, SADRs showed significantly
higher incidence in systemic organ injury, hepatobiliary
dysfunction, hematologic abnormalities and urinary system injury
(p < 0.05) (Supplementary File 2; Supplementary Tables S1, S2).

In terms of medications, diagnostic drugs had the highest
proportion in SADRs at 28.9%, followed by central nervous
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system agents (18.0%), hematopoietic modulators (16.9%), anti-
tumor medications (15.5%), gastrointestinal drugs (12.6%),
immunomodulatory compounds (12.2%), anti-infective agents
(12.0%), and traditional Chinese medicine preparations (11.0%)
(Supplementary File 2; Supplementary Tables S3).

Univariate analysis of SADRs

Univariate analysis of the association between patients’ diseases and
the occurrence of SADRs are shown in Supplementary File 2;
Supplementary Table S4, which yielded the following results: (i)
multiple comorbidities: patients with concurrent diseases ≥3 had
elevated risks of SADRs compared to those with fewer than
3 concurrent diseases (p < 0.001). (ii) Disease-specific risks (p <
0.05): active malignancies, cardiac insufficiency, hemorrhagic
disorder, cerebral infarction and bone fractures.

The univariate analysis results showed no statistically significant
association between multidrug combination therapy and SADRs
incidence (p > 0.05). The subsequent univariate LR analysis of SADRs
included drugs that met the inclusion criteria of having 10 or more
recorded SADR cases and an increased incidence. The results showed
that SADRs occurrence were significantly associated with the following
drugs (p < 0.05): ceftazidime, ceftriaxone, cefoperazone/sulbactam,
carbapenems, vancomycin, antifungal agents, antiviral medications,
antiepileptics, cytotoxic antineoplastics, antithrombotic agents, proton
pump inhibitors and diagnostic agents (Supplementary File 2;
Supplementary Table S5).

Multivariate analysis of SADRs

The “administration routes” were dichotomized into intra-arterial
(IA) versus non-IA administration. All predictors were assessed for
multicollinearity, with only those exhibiting a variance inflation

factor <10 being retained in the model (Supplementary File 2;
Supplementary Table S6). At last, the model identified
20 independent predictors of SADRs (Supplementary File 2;
Supplementary Tables S7): (i) demographic predictors included
age ≥54 years (OR 1.280, 95% CI 1.041–1.573; p = 0.019) and
multi-morbidity (concurrent diseases ≥3: OR 1.581, 95% CI
1.223–2.043; p < 0.001). (ii) Pathological conditions: bone fractures
showed the strongest pronounced association with SADRs (OR 2.900,
95% CI 1.703–4.939; p < 0.001), followed by cerebral infarction (OR
2.658, 95%CI 1.827–3.866; p< 0.001), hemorrhagic disorder (OR 1.984,
95%CI 1.272–3.094; p= 0.003), cardiac insufficiency (OR 1.694, 95%CI
1.247–2.303; p = 0.001) and active malignancies (OR 1.386, 95% CI
1.016–1.890; p = 0.040). (iii) Drug exposure: Among anti-infective
drugs, cefoperazone/sulbactam showed the highest association (OR
9.499, 95%CI 5.187–17.397; p < 0.001), exceeding antiviral medications
(OR 5.484, 95% CI 2.597–11.578; p < 0.001), vancomycin (OR 5.021,
95% CI 2.560–9.848; p < 0.001), ceftriaxone (OR 4.259, 95% CI
2.029–8.939; p < 0.001), ceftazidime (OR 3.457, 95% CI 1.964–6.083;
p < 0.001), antifungal agents (OR 2.922, 95%CI 1.390–6.142; p = 0.005)
and carbapenems (OR 2.880, 95% CI 1.331–6.232; p = 0.007). Among
other types of drugs, antiepileptics (OR 5.732, 95%CI 3.139–10.467; p <
0.001) was higher than that of proton pump inhibitors (OR 5.283, 95%
CI 2.746–10.164; p < 0.001), diagnostic agents (OR 3.884, 95% CI
2.538–5.944; p < 0.001), cytotoxic antineoplastics (OR 2.497, 95% CI
1.618–3.853; p < 0.001), antithrombotic agents (OR 2.271, 95% CI
1.351–3.818; p < 0.001). (iv) IA administration (OR 2.768, 95% CI
1.126–6.809; p = 0.027) also had a significant risk.

Comparison of SADRs prediction model by
different ML

Utilizing the 20 variables selected (Figure 2), we employed three
ML algorithms to construct an prediction model for SADRs.
Following rigorous nested hyperparameter tuning, the possibility

FIGURE 1
ADRs selection. SADRs: serious adverse drug reactions.
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that the observed superiority arose from overfitting or stochastic
parameter selection was effectively ruled out. As revealed in
Figure 3A, AUC values of the LR, RF and GBM models were
0.707, 0.673, and 0.703 respectively based on the training set.
Among the three models, LR showed the highest level of

predictive accuracy (AUC = 0.707, 95% CI 0.676–0.738). The
results of the test set were similar to the training sets
(Figure 3B). The additional performance metrics of each model,
including specificity, accuracy, sensitivity, F1-score and precision,
are detailed in Supplementary File 2; Supplementary Tables S8, S9.

TABLE 1 Baseline characteristics of 4,333 ADRs.

Characteristics All ADRs
(4,333)

Common ADRs
(3,825)

Severe
ADRs (508)

t/
X2/Z

P
value

Male 2,119 (48.9%) 1,848 (48.3%) 271 (53.3%) 4.546 0.033

Age ≥54 years 2,076 (47.9%) 1,780 (46.5%) 296 (58.3%) 24.732 <0.001

Previous ADR history Yes 175 (4.0%) 153 (4.0%) 22 (4.3%) 0.242 0.885

No 2,263 (52.2%) 2,002 (52.3%) 261 (51.4%)

Missing 1895 (43.7%) 1,670 (43.7%) 225 (44.3%)

Administration routes IV 2,822 (65.1%) 2,483 (64.9%) 339 (66.7%) 27.879 <0.001

PO 1,204 (27.8%) 1,082 (28.3%) 126 (24.8%)

SC 117 (2.7%) 103 (2.7%) 14 (2.8%)

IA 25 (0.6%) 12 (0.3%) 13 (2.6%)

Others 165 (3.8%) 145 (3.8%) 16 (3.1%)

Types of ADR Old 4,018 (92.7%) 3,525 (92.2%) 493 (97.0%) 15.909 <0.001

New 315 (7.3%) 300 (7.8%) 15 (3.0%)

Outcomes of ADR Cured 1,458 (33.6%) 1,290 (33.7) 168 (33.1) 35.844 <0.001

Improvement 2,508 (57.9%) 2,202 (57.6) 306 (60.2)

Recovered with sequelae 0 (0.0%) 0 (0.0%) 0 (0.0%)

No healing 46 (1.1%) 30 (0.8%) 16 (3.1%)

Death 0 (0.0%) 0 (0.0%) 0 (0.0%)

Unknown 321 (7.4%) 303 (7.9) 18 (3.5)

Impacts on primary
disease

Unobvious 4,013 (92.6%) 3,663 (95.8%) 350 (68.9%) 333.094 <0.001

Prolonged course of primary
disease

278 (6.4%) 150 (3.9%) 128 (25.2%)

Aggravation 38 (0.9%) 8 (0.2%) 30 (5.9%)

Unknown 4 (0.1%) 4 (0.1%) 0 (0.0%)

Causality assessments Probable 2,702 (62.4%) 2,481 (64.9%) 221 (43.5%) 99.030 <0.001

Possible 1,522 (35.1%) 1,243 (32.5%) 279 (54.9%)

Certain 109 (2.5%) 101 (2.6%) 8 (1.6%)

Occurrence time ≤5 min 180 (4.2%) 149 (3.9%) 31 (6.1%) 32.164 <0.001

6–30 min 531 (12.3%) 467 (12.2%) 64 (12.6%)

31–60 min 745 (17.2%) 676 (17.7%) 69 (13.6%)

1 h–24 h 894 (20.6%) 771 (20.2%) 123 (24.2%)

1 d–7 d 1650 (38.1%) 1489 (38.9%) 161 (31.7%)

8 days–30 days 333 (7.7%) 273 (7.1%) 60 (11.8%)

Abbreviation: Iv: Intravenous administration (including intravenous drip and intravenous injection); Po: Oral administration; Sc: Subcutaneous injection; IA: Intra-arterial injection; Other

administration routes include: 48 cases of inhalation (2 cases of SADRs), 59 cases of intramuscular (7 cases of SADRs), 22 cases of local topical application (3 cases of SADRs), 12 cases of nasal

feeding (0 cases of SADRs), and 24 cases of other administration routes (4 cases of SADRs). Bolded values denote statistically significant differences.
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Establishment of a nomogram model
for SADRs

Utilizing LR-derived predictors, a prognostic nomogram was
developed to visualize individual risk factors (Figure 4). This
graphical model incorporated all significant covariates identified
through multivariate LR, with weighted point allocations reflecting
effect magnitudes as detailed in Figure 2. Each risk factor was assigned a
specific score, and the cumulative scores of all risk factors can
correspond to the predicted probability of SADRs occurrence.

Evaluation of a nomogram model for
predicting SADRs

A random partitioning of the data set resulted in a 75% training set
and a 25% test set. Discriminative performance evaluation
demonstrated moderate predictive accuracy in the training set
(Figure 5A), with an AUC of 0.713 and a bootstrap-corrected
C-index of 0.714. Calibration accuracy, assessed via 1000-resample
bootstrap validation, revealed strong agreement between predicted
probabilities and observed outcomes (Hosmer-Lemeshow goodness-
of-fit test: χ2 = 9.769, p = 0.369), as visualized in the calibration curve
(Figure 5B). DCA quantified clinical translatability across a threshold
probability range of 7%–56%.Within this range of clinical relevance, the
nomogram demonstrated a higher net benefit compared to the “treat-
all” or “treat-none” strategies (Figure 5C), with the optimal threshold
probability resulting in a maximum absolute risk reduction of 32.5%.

The CIC illustrated that with a 20% threshold, the model’s prediction of
at-risk individuals greatly surpassed the real number (Figure 5D).When
the threshold probability was above 55%, the predicted number of high-
risk subjects (predicted positive cases by the scoring system) was nearly
identical to the true high-risk cases, indicating the nomogram model’s
significant predictive value for SADRs.

Discussion

SADRs are critical concerns in pharmacovigilance, linked to
prolonged hospitalization, higher medical costs, and adverse clinical
outcomes. This retrospective study analyzed 4,333 ADRs, including
508 SADRs, aiming to identify SADR determinants. Three ML
algorithms were developed for SADR prediction. The LR model
outperformed RF and GBM. Subsequently, a nomogram was
developed using the LR model.

It is important to highlight that in the present study, the continuous
variable of age was dichotomized. The cut-off point of ≥54 years was
determined based on the threshold corresponding to the optimal cut-off
point in ROC analysis, rather than arbitrarily setting 60 years as the age
limit for the elderly (Obuchowski and Bullen, 2018). This data-driven
approach is consistent with the methodology employed in the
pharmacovigilance study conducted by Han YZ et al., which
identified 52 years as the optimal cut-off point for predicting ADRs
of hepatotoxicity (Han et al., 2022). Consistent with the findings
reported by Toni E et al., the present study corroborated the
significant roles of age, comorbidities, and specific drug types in the

FIGURE 2
Forest plots of risk factors associated with SADRs. SADRs: serious adverse drug reactions; IA Administration: Intra-arterial Administration.
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FIGURE 3
Comparative evaluation of ROC among the three ML models for the prediction of SADRs. ROC: the receiver operating characteristic curve; LR:
logistic regression; RF: random forest; GBM: gradient boosting machine.

FIGURE 4
Nomogram for predicting SDARs. To estimate the probability of SADRs, mark patient values at each axis, draw a straight line perpendicular to the
point axis, and sum the points for all variables. Next, mark the sum on the total point axis and draw a straight line perpendicular to the probability axis.
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occurrence of SADRs (Toni et al., 2024a; Toni et al., 2024b). For patients
identified as high-risk, targeted preventive strategies can be
implemented. By employing close monitoring or optimizing
treatment plans, potential adverse reactions can be promptly
detected and managed, thereby enhancing both the efficacy and
safety of therapeutic interventions for these patients.

The application of ML techniques to predict SADRs is essential,
particularly when conducted in accordance with relevant policies. This
approach not only enhances the standardization and interpretability of
research data but also promotes regulatory consistency and facilitates

cross - departmental collaboration (Toni and Ayatollahi, 2025). ML,
encompassing unsupervised learning, supervised learning,
reinforcement learning, etc., has demonstrated notable advantages in
ADR-related studies (Salas et al., 2022). However, differences in study
population, data structure and confounding factors contribute to
variations in performing of different ML algorithms for predicting
ADRs (Deimazar and Sheikhtaheri, 2023). In the systematic report by
Deimazar G et al., eight comparative studies on various ML algorithms
for ADR prediction reported inconsistent results (Deimazar and
Sheikhtaheri, 2023). In a study comparing three ML algorithms--LR,

FIGURE 5
Evaluation of a nomogram model for predicting SADRs. (A) Receiver Operating Characteristic curve (ROC) of the training set and the test set. The
area under the curve (AUC) of the purposed nomogram for predicting SADR in the training set and in the test set was 0.713 and 0.709, respectively. (B) The
calilbration of the nomogram. The Calibration curve analysis of the nomogram in the test set. (C) The DCA of the nomogram for predicting SADR in the
test set. The DCA curve of the nomogram. it was revealed that SADR prediction using the nomogram isaccompanied with a higher net benefit than
using any single factor alone, as wel as by treating either no or all patients. (D) The CIC curve of the purposed nomogram in the test set. The red curve (the
number of individuals at high risk) indicates the number of persons who are classified as positive (high risk) by the prediction model at each threshold
probability; the blue curve (the number of individuals at high risk with outcomes) is the number of true positives at each threshold probability.

Frontiers in Pharmacology frontiersin.org08

Bu et al. 10.3389/fphar.2025.1669995

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1669995


decision trees, and artificial neural networks-for predicting
chemotherapy - induced ADRs, LR model had the highest AUC
(0.67–0.83) for the six types of ADRs caused by chemotherapy
drugs (On et al., 2022).

Following hyperparameter optimisation, the LR model exhibited
the best discriminative performance among the three ML models we
established, a finding that aligns with recent evidence (On et al., 2022).
In a cross-sectional study to predict osteoporosis in older adults at high
risk of cardiovascular disease, the LR model outperformed SVM,
Random Forest, XGBoost, and Decision Tree models (Peng et al.,
2025). Guo Y. et al. developed an ultrasound-based radiomics
nomogram for identifying HER2 status in breast cancer patients, the
LR model was found to perform the best on the validation set (Guo
et al., 2022). Similarly, Xu R et al. reported that the LR model exhibited
the highest discriminative power in identifying individuals with low
bone mineral density using ML algorithms (Xu et al., 2024).
Christodoulou E et al. compared the predictive capabilities of LR
with other machine learning models, concluding that LR often
performs comparably to or even outperforms ML algorithms in
clinical prediction studies, particularly in datasets with limited
sample sizes (Christodoulou et al., 2019). While ML algorithms hold
theoretical advantages, especially in datasets with complex interactions
or large sample sizes (Peng et al., 2025). In contrast, the LR model
demonstrates strong reliability and applicability in clinical predictive
analytics, with enhanced interpretability for binary outcomes (Dsouza
et al., 2025). This highlights that LR and other ML models may be
applicable in distinct scenarios: the LR model is preferable in studies
with limited sample sizes, a small number of predictors, or low signal-
to-noise ratio (SNR) data. Conversely, other ML models are more
suitable for large datasets with numerous predictors, complex
interactions/confounding factors, or high-SNR data (Christodoulou
et al., 2019; Wei et al., 2024). We posit that even with
hyperparameter tuning, the LR model may still exhibit advantages
in datasets characterized by limited sample sizes and low signal-to-noise
ratios. In future experiments, we recommend conducting a more
extensive exploration of the performance of various models across
different datasets, particularly under conditions of varying sample sizes
and signal-to-noise ratios. Additionally, we suggest experimenting with
a broader range of models and tuning methods to further validate the
reliability of the aforementioned conclusion.

Nomograms have been identified as an efficient means of
measuring ADRs risks in the past few years. Bai H et al.
developed a nomogram for hospitalized adult patients to predict
cefoperazone/sulbactam-induced hypoprothrombinemia, which
demonstrated satisfactory predictive performance (Bai et al.,
2023). Li P et al. constructed a nomogram to predict
granisetron-associated arrhythmias, showing high discriminative
and calibratioan capabilities (Li et al., 2024). Hong H et al.
designed a predictive model with high efficacy for identifying
vancomycin-induced acute kidney injury in overweight patients
(Hong et al., 2024). Zhang Z et al. created a nomogram to
forecast cutaneous adverse reactions induced by targeted cancer
therapies and immunotherapy, offering critical insights for
optimizing treatment efficacy and improving quality of life
(Zhang Z. M. et al., 2025). However, to the best of our
knowledge, no nomogram model specific to SADRs has been
developed, particularly among large hospitalized populations
using routinely collected clinical data.

Based on the LR model, we developed a nomogram to predict
SADRs. This nomogram integrated multiple predictors as scaled
axes aligned on a single plane, enabling clinicians to intuitively
visualize individualized SADR probabilities. In clinical practice,
physicians can utilize the nomogram model to assess the
likelihood of SADR occurrence based on a patient’s specific risk
factors. For instance, consider a 60-year-old male patient with more
than three underlying diseases and heart insufficiency, who received
treatment with cefoperazone/sulbactam for an infectious disease
during hospitalization. According to the nomogram, his cumulative
score for is 166, indicating a 60%–70% probability of SADR
occurrence. Upon receiving this risk signal, physicians should
implement stringent monitoring of the patient’s various clinical
indicators following the administration of cefoperazone/sulbactam
to preempt the occurrence of SADRs. Alternatively, physicians may
consider substituting the anti-infective agent with piperacillin/
tazobactam to mitigate the likelihood of SADR occurrence. The
nomogram model we have developed is characterized by its simple
structure and ease of understanding, thereby ensuring good
interpretability. This feature not only facilitates the application
and validation of the model across different settings but also
provides convenience for future collaborative efforts among
multiple institutions and departments. Therefore, this study
offers theoretical value by enriching and expanding the
methodological framework of SADR monitoring and
pharmacovigilance, and serves as a reference for the development
of personalized early-warning systems for SADRs.

The study presents multiple limitations. Firstly, it is a two-center
retrospective cohort study. While it provided a preliminary
pharmacovigilance approach, it was constrained by a small sample
size and limited inclusion of variables, necessitating validation through
larger, multicenter studies. Second, the study was restricted to the Han
Chinese population, limiting its generalizability to other ethnicities.
Third, the present study acknowledges several methodological
limitations. Pharmacokinetic and pharmacogenomic parameters were
not incorporated; future research could integrate these factors to
develop a more comprehensive predictive model. Fourthly, despite
our model demonstrating acceptable discrimination in internal
validation (AUC = 0.713; C-index = 0.714), its performance remains
at a moderate level. This suggests that while the nomogram holds value
for signal detection within the existing data range, it is not yet robust
enough to serve as an independent clinical decision-making tool.
Further validation through multicenter, prospective cohort studies,
or randomized clinical trials is necessary to comprehensively assess
its calibration, clinical utility threshold, and cost-effectiveness, thereby
delineating its true scope of application.

Future research on SADRs will be pursued along five
complementary trajectories to strengthen surveillance and advance
pharmacovigilance: (i) All variables in this study are derived from the
mandatory reporting fields of the national “Drug Adverse Reaction
Monitoring Specifications”. The two hospitals involved exhibit
differences in demographics and drug catalogues, suggesting that
the model has the potential for cross-regional migration.
Subsequently, a prospective validation will be conducted,
employing the same variable set and thresholds, and reporting the
C-index, calibration slope, and decision curve to further evaluate the
external validity. (ii) Employing ML models to perform sub-
classification-based predictions of SADRs, thereby achieving a
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higher level of prognostic precision. (iii) Harnessing natural language
processing for large-scale corpus analysis and integrating it with ML
algorithms to shift SADR surveillance from retrospective tracing to
prospective, real-time early warning (Le Glaz et al., 2021; Khanbhai
et al., 2021). (iv) Embedding validated ML-SADR prediction modules
into the Hospital Pharmacovigilance System to enable continuous,
real-time monitoring and support proactive pharmacovigilance. (v)
Collaborative research endeavors involving multiple stakeholders,
including research institutions, pharmaceutical companies, and
government agencies (Toni and Ayatollahi, 2025).

Conclusion

The occurrence of SADRs is associated with multiple factors.
This study identified key predictors of SADRs and construct a
nomogram, which facilitated prophylactic surveillance of high-
risk populations.
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