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Objective: Hepatotoxicity has been reported for Emilia sonchifolia (L.) DC (E.
sonchifolia). The plant materialis typically prepared using two extraction methods
for practical application: water extraction and ethanol extraction. However, our
previous research only investigated its water extract. Therefore, this study aims to
systematically evaluate the hepatotoxicity and underlying mechanisms of the
ethanol extract of E. sonchifolia, thereby providing a more comprehensive
scientific basis for its rational application and safety assessment.

Methods: An acute toxicity preliminary screening study was conducted by orally
administering E. sonchifolia ethanol extract to mice at doses ranging from 0 to
33.6 g/kg/day. Based on the results of the acute toxicity test preliminary screening
study, mice were divided into a control group and an E. sonchifolia ethanol
extract group (8.6 g/kg/day) for a 14-day delayed hepatotoxicity experiment
based on clinical treatment duration. At the end of the intervention, hepatic
pathological changes were examined using hematoxylin-eosin staining. Enzyme-
linked immunosorbent assay (ELISA) was employed to quantify the levels of
alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct
bilirubin, total bile acids, alkaline phosphatase, and y-glutamyl transferase in
serum, as well as malondialdehyde, superoxide dismutase, and catalase in liver
tissue. Proteomics and metabolomics analyses were performed to investigate the
mechanisms of hepatotoxicity induced by the ethanol extract. Additionally, the
MRNA expression levels of Cyp3a4la, Cyp2c29, Ugt2bl, and Hsd3b3 in mice liver
tissue were determined using quantitative reverse transcription polymerase chain
reaction (QRT-PCR).

Results: The acute toxicity preliminary screening study results showed that a dose
of 12.0 g/kg or higher of the E. sonchifolia ethanol extract caused acute liver
failure and death in mice. A dose of 8.6 g/kg or lower of the E. sonchifolia ethanol
extract produced dose-dependent acute hepatotoxicity. Meanwhile, a dose of
8.6 g/kg of the E. sonchifolia ethanol extract induced delayed toxicities in mice.
Proteomics and metabolomics results revealed that the hepatotoxicity induced
by the ethanol extract of E. sonchifolia was associated with cholestasis and
oxidative stress caused by disruptions in drug metabolism, steroid hormone
biosynthesis, and primary bile acid biosynthesis. Validation experiments
showed that the levels of Cyp2c29 were decreased, while the mRNA levels of
Cyp3a4la, Ugt2bl, and Hsd3b3 were increased in the liver tissues of mice treated
with the ethanol extract of E. sonchifolia. Additionally, serum levels of total
bilirubin, direct bilirubin, total bile acids, alkaline phosphatase, and y-glutamyl
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transferase were significantly elevated. Furthermore, in the livers of mice treated
with the ethanol extract, malondialdehyde levels were increased, whereas
superoxide dismutase and catalase levels were decreased.

Conclusion: In summary, the ethanol extract of E. sonchifolia can induce
hepatotoxicity in mice, and its mechanism is associated with cholestasis and
oxidative stress mediated by disruptions in drug metabolism, steroid hormone
biosynthesis, and primary bile acid biosynthesis.

KEYWORDS

drug-induced liver injury, ethanol extract of Emilia sonchifolia (L.) DC, hepatotoxicity,
proteomics, metabolomics

1 Introduction

In recent years, traditional Chinese medicine has gained widespread
use globally due to its notable therapeutic effects (Ma et al,, 2023).
However, its application has been associated with various adverse effects,
including hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity,
and carcinogenicity (Ma et al., 2023; Zhai et al., 2021). Among these, the
liver, as the primary organ responsible for drug metabolism, is
particularly vulnerable to injury due to the potential generation of
hepatotoxic metabolites during metabolism (Bjornsson and Jonasson,
2013). Consequently, herb-induced liver injury has emerged as a
prevalent and concerning adverse reaction. A systematic review and
meta-analysis revealed that the mortality rate associated with herb-
related liver injury can be as high as 10.4% (Singh et al,, 2015). These
findings underscore that herb-induced liver injury represents a
significant public health concern requiring urgent attention.

Emilia sonchifolia (L.) DC (E. sonchifolia), a widely used medicinal
and edible herb, possesses therapeutic properties such as clearing heat
and detoxifying, activating blood circulation to remove stasis, and
reducing swelling and alleviating pain (Yu et al, 2021). The plant
“World Flora Online”
worldfloraonline.org) mentioning the data of accessing that website.

name has been checked with (www.
It is commonly employed in the treatment of various diseases, including
upper respiratory tract infections, oral ulcers, pneumonia, mastitis,
enteritis, bacillary dysentery, and urinary tract infections (George and
Kuttan, 2019; Luo et al., 2019; Urumbil and Anilkumar, 2021). Despite
its significant efficacy in traditional medicine, the potential adverse
effects of E. sonchifolia cannot be overlooked. Clinical reports have
documented cases of hepatic sinusoidal obstruction syndrome caused by
E. sonchifolia (Deng et al., 2021). This has greatly limited the application
and broader promotion of the herb and its related preparations.

Emilia sonchifolia is typically prepared using either water or
ethanol extraction (An et al, 2025; Liu et al., 2025). Ethanol
extraction can preserve constituents more completely than water
extraction (Miao et al., 2019; Yang et al., 2022), which may result in
higher levels of toxic components and stronger hepatotoxicity. In
our previous study, the hepatotoxic mechanisms were explored only
for the aqueous extract. To provide a more comprehensive scientific
basis for the rational use and safety assessment of E. sonchifolia, the
present study further investigates the hepatotoxicity of its
ethanol extract.

Abbreviations: ELISA, Enzyme-Linked Immunosorbent Assay; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; gqRT-PCR,
Quantitative Reverse Transcription Polymerase Chain Reaction.
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Omics technologies have been widely applied to explore the
molecular complexity of biological systems and have shown great
potential in elucidating the mechanisms of herb-induced
hepatotoxicity (Chong et al, 2023; Gentien et al, 2023;
Sathyanarayanan et al., 2023; Subramanian et al., 2020; Wang et al,
2023). By integrating multi-omics data, toxicological mechanisms of
traditional herbal medicines can be analyzed from multiple dimensions
(Canzler et al, 2020; Karkossa et al, 2020). Approaches such as
proteomics and metabolomics provide valuable insights into
comprehensively understanding the hepatotoxicity mechanisms of
traditional herbal formulations.

This study confirmed the hepatotoxicity of E. sonchifolia ethanol
extract through acute toxicity preliminary screening study and
investigated its underlying mechanisms using proteomic and
metabolomic analyses. The expression levels of target genes involved
in E. sonchifolia-induced hepatotoxicity were validated via quantitative
reverse transcription polymerase chain reaction (qRT-PCR), while
cholestasis-related biomarkers and oxidative stress enzyme activities
were quantified using enzyme-linked immunosorbent assay (ELISA).
These findings offer a theoretical foundation for further in-depth studies
and the development of therapeutic strategies to mitigate E. sonchifolia-
induced hepatotoxicity.

2 Materials and methods
2.1 Plant material

Due to the higher bioactivity and lower risk of microbial
contamination associated with ethanol extracts, this study
focused on the ethanol extract of E. sonchifolia. The whole dried
plant of E. sonchifolia was purchased from Shanxi Xibolan
Biotechnology Co., Ltd. (Xian, Shanxi, China). The plant material
was air-dried in a cool, shaded area and ground into a fine powder. A
total of 500 g of E. sonchifolia powder was extracted twice with 30%
ethanol. The combined extracts were concentrated using a rotary
evaporator and dried in a vacuum drying oven. Finally, 109.5 g of
ethanol extract dry powder was obtained.

2.2 Animals

The research was conducted in accordance with the internationally
accepted principles for laboratory animal use and care as found in the US
guidelines (NTH publication #85-23, revised in 1985). Specific pathogen
free ICR mice (18-22 g, half male and half female) were purchased from
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Henan Skobes Biotechnology Co., Ltd. (Anyang, Henan, China) [License
number: SCXK (Yu) 2020-0005]. The animals were housed in the
specific pathogen free-grade animal facility at the Animal Research
Center of Guizhou University of Traditional Chinese Medicine. Mice
were separated by gender and maintained under controlled conditions
with a temperature of 23 °C + 2 °C, relative humidity of 40%-60%, and a
12-h light/12-h dark cycle. Food and water were provided ad libitum.
After a 7-day acclimation period, the experiments were initiated. All
experimental procedures and protocols were approved by the Animal
Ethics Committee of Guizhou University of Traditional Chinese
Medicine (Ethics Approval Number: 20230041).

2.3 Acute toxicity preliminary
screening study

Fifty-four ICR mice were randomly assigned to 9 groups, each
comprising 6 mice with an equal male-to-female ratio. Prior to the
experiment, the mice were fasted and deprived of water for 12 h. Dosage
groups were established at 0 g/kg, 4.4 g/kg, 6.2 g/kg, 8.6 g/kg, 12.0 g/kg,
17.0 g/kg, 24.0 g/kg, 27.0 g/kg, and 33.6 g/kg, along with a control group,
based on the acute toxicity data of E. sonchifolia ethanol extract reported
by Zhong et al. (2006)., as well as preliminary experimental results. Each
dosage group received a single oral gavage of the corresponding dose of
the ethanol extract, while the control group (0 g/kg) received an
equivalent volume of phosphate buffer saline. Behavioral changes
and survival were monitored for 24 h post-administration.

2.4 Delayed hepatotoxicity experiment

Twelve ICR mice were randomly assigned to two groups: the E.
sonchifolia ethanol extract group and the control group, with 6 mice
per group and an equal male-to-female ratio. The treatment group
received E. sonchifolia ethanol extract at a dose of 8.6 g/kg/day, while
the control group was administered phosphate buffer saline. The
dosing regimen lasted for 14 consecutive days, which is consistent
with the typical clinical administration duration. After the treatment
period, the mice were euthanized with pentobarbital sodium (100
mg/kg, intraperitoneal injection), and blood and liver tissue samples
were collected for subsequent analysis.

2.5 Hematoxylin and eosin staining

Liver tissue samples from the mice were subjected to gradient
dehydration, clearing, paraffin embedding, sectioning, and
dewaxing. The sections were then stained with Hematoxylin and
Eosin. After staining, the sections were dehydrated, cleared, and
mounted with a coverslip. Pathological changes in the liver tissue
were observed under a light microscope.

2.6 Enzyme-linked immunosorbent
assay (ELISA)

Blood samples were collected from mice and centrifuged to

obtain serum. Alanine aminotransferase, aspartate
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aminotransferase, total bilirubin, direct bilirubin, total bile acid,
alkaline phosphatase, and y-glutamyl transferase levels were
measured using ELISA kits provided by Changchun Huili
Biotech Co., Ltd. (Changchun, Jilin, China). Liver tissues were
excised, minced, and homogenized in phosphate-buffered saline
(1:9 weight-to-volume ratio) on an ice bath using a tissue grinder.
The homogenates were centrifuged, and the supernatants were
collected. Malondialdehyde, superoxide dismutase and catalase
levels were quantified using ELISA kits obtained from Nanjing
Jiancheng Bioengineering Institute (Nanjing, Jiangsu, China).

2.7 Determination and analysis of proteomic
and metabolomic

2.7.1 Proteomic sequencing and analysis

Liver tissue samples were collected and immediately frozen in
liquid nitrogen for proteomic analysis. TMT-based quantitative
proteomics analyses were implemented as Zhang described
(Zhang et al., 2023). Three biological replicates were prepared for
ethanol extract control group for proteomics analysis. The specific
operations will be carried out by LC-BIO Technologies Co., Ltd.
China).
purification, peptide tagging and reverse-phase chromatography

(Hangzhou, Zhejiang, Detailed protein extraction,
and mass spectrometry were referred to previous report (Zhang
et al., 2023). Protein identification, quantification, classification and
interaction prediction were analyzed (Liu et al., 2022). The raw files
generated by AQ Exactive Plus were converted using Proteome
Discoverer 2.1 (Thermo Fisher Scientific), and the files were sent to
OmicStudio tools for analysis (Kolli et al., 2023). Differentially
expressed proteins defined as those with a fold
change >1.2 or <1/1.2 -fold and a P-value<0.05. Protein-protein

interaction was further analyzed by string (http://www.string-db.

were

org) and the core genes were screened by cytoscape software. The
differentially expressed proteins were functionally classified by Gene
Ontology (GO) terms (http://www.omicsbean.com). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway of altered
proteins was categorized utilizing the same resource.

2.8 Metabolomic sequencing and analysis

Liver tissue samples were collected for metabolomic analysis.
Untargeted metabolomics profiling was performed as Chen
described (Chen et al., 2023). Six biological replicates were
prepared for ethanol extract and control group for metabolomics
analysis. The specific operations will be carried out by LC-BIO
Technologies Co., Ltd. (Hangzhou, Zhejiang, China). Partial least
squares discriminant analysis were employed to reveal differences
between groups. KEGG enrichment analysis was performed on
significantly different metabolites (fold change) >1.2 or <1/1.2
-fold and a P-value<0.05 and Variable
projection>1). Human Metabolome Database (https://hmdb.ca/)

importance in

was utilized to process and analyze metabolites, and metabolic
changes and pathways were concluded. Pathway enrichment
analysis was conducted using KEGG and Gene Set Enrichment
Analysis to interpret the metabolic changes induced by E. sonchifolia
ethanol extract.
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TABLE 1 Information of primers.

10.3389/fphar.2025.1669607

Gene Primer Sequence (5'-3’) PCR products
Mus f-actin Forward CCAGCCTTCCTTCTTGGGTAT 103 bp
Reverse GTTGGCATAGAGGTCTTTACGG
Mus Cyp2c29 Forward GTGAAGAACATCAGCCAATCC 207 bp
Reverse GCTAAAAACAACGCCAAAACC
Mus Ugt2bl Forward CTTCTGCTTCCATCCTCATT 122 bp
Reverse TGTCCAGTTTCCTACCCATT
Mus Cyp3adla Forward AAGAGGCAGAGAAAGGCAAG 190 bp
Reverse AGTACAACTGAGAAGACCAA
Mus Hsd3b3 Forward GTGTGCCAGCCTTCATCTTCT 149 bp
Reverse TGCCTTCTCAGCCATCTTTTT

2.9 Integrated proteomics and
metabolomics analysis

The top 30 enriched proteins and metabolites were subjected to
correlation network and heatmap analysis using the OmicStudio
cloud platform (https://www.omicstudio.cn/). Venn diagrams were
generated to identify shared pathways between proteomics and
metabolomics enrichments using the Bioinformatics online
analysis platform (www.bioinformatics.com.cn). Shared pathways
were further visualized in bubble plots to display the enrichment
status of these pathways. This integrated analysis provided a
comprehensive understanding of the molecular mechanisms
underlying E. sonchifolia-induced hepatotoxicity by linking
protein alterations and metabolic changes.

2.10 Quantitative reverse transcription
polymerase chain reaction (QRT-PCR)

Quantitative RT-PCR was used to detect the mRNA expression
levels of Cyp2c29, Cyp3a4la, Ugt2bl, and Hsd3b3 in mouse liver tissue.
Total RNA was extracted from mouse liver tissue using tissue lysis and
centrifugation methods. The reverse transcription reaction was
performed in two steps: RT1 for the removal of genomic DNA, and
RT?2 for the preparation of the reverse transcription reaction mixture.
The reaction conditions were as follows: initial denaturation at 95 °C for
10 min (1 cycle); denaturation at 95 °C for 15 s (40 cycles); annealing
and extension at 60 °C for 60 s (40 cycles); melt curve collection at 95 °C
for 15,60 °Cfor 60 s, and 95 °C for 15 s (1 cycle). The qRT-PCR primer
sequences are listed in Table 1, and all primers were synthesized by
Beijing Tsingke Biotech Co., Ltd. (Beijing, China). Each containing
three replicates for all genes and the relative fold changes were
calculated using the 274" method.

2.11 Statistical analysis
Values were expressed as mean + SEM. The statistical

differences among the different groups were compared using
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FIGURE 1

Acute toxicity evaluation of Emilia sonchifolia ethanol extract. (A)
Experimental scheme determining the acute toxicity of Emilia
sonchifolia ethanol extract in mice. (B) Effect of different doses of
Emilia sonchifolia ethanol extract on mice survival (n = 6).

two-sided Student’s t-test Values of P < 0.05 were considered
statistically significant (*P < 0.05; **P < 0.01; ***P < 0.001). The
statistical analysis was performed by GraphPad Prism version
10.0 software (GraphPad, San Diego, California, United States).

3 Results

3.1 The Emilia sonchifolia ethanol extract
displayed acute toxicity in mice

The acute toxicity preliminary screening study was conducted to
assess the effects of different doses of Emilia sonchifolia ethanol
extract on mice survival through continuous oral administration,
ranging from 0 to 33.6 g/kg (Figure 1A). The results showed that the
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FIGURE 2
Investigation of the delayed hepatotoxicity of Emilia sonchifolia ethanol extract in mice. (A) The timeline for determining the delayed hepatotoxicity
of Emilia sonchifolia ethanol extract in mice. (B) Representative micrograph of section of liver tissue from the mice treated with phosphate buffer saline or
Emilia sonchifolia ethanol extract (8.6 g/kg). The bottom image is a magnification of the yellow box above. Yellow arrows represent hepatocytes with
karyopyknosis. Green arrows represent vacuolated hepatocytes. Red arrows represent dilatation of the hepatic sinusoids around the central vein and
increased spaces between hepatocytes. Scale bar, 50 um. (C,D) Quantification of hepatocytes with karyopyknosis (C) and vacuolated hepatocytes (D) in
liver tissue from the mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. Four mice from each group were examined, and four
hepatic micrographs (200 X) from each animal were quantified. (E,F) Quantification of aspartate aminotransferase (E) and alanine aminotransferase (F) in
(Continued)
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FIGURE 2 (Continued)
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serum from the mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. Data are presented as mean + SEM (n = 4). *p < 0.05,

**p < 0.01, ***p < 0.001 by unpaired t-test.

survival rate of the mice was 100% when they were given doses of
8.6 g/kg or below of E. sonchifolia ethanol extract. However, the
survival rate dropped to 83.3% when the mice were administered a
dose of 12.0 g/kg of the E. sonchifolia ethanol extract. When mice
were given a E. sonchifolia ethanol extract at a dose of 17.0 g/kg, the
survival rate was only 33.3%. However, when mice were
administered doses equal to or greater than 24.0 g/kg of the
same ethanol extract, the survival rate dropped to 0 (Figure 1B).

3.2 The Emilia sonchifolia ethanol extract
induced delayed hepatotoxicity in mice

Based on the results of the acute toxicity study, E. sonchifolia
ethanol extract at a dose of 8.6 g/kg was selected to investigate its
delayed hepatotoxicity and underlying mechanisms. (Figure 2A).
Histopathological analysis of liver tissues revealed significantly
increased nuclear pyknosis and vacuolation in the E. sonchifolia
ethanol extract group compared to the control group (P < 0.001).
Furthermore, the livers of mice in the E. sonchifolia ethanol extract
group showed marked dilatation of the hepatic sinusoids around the
central vein and increased spaces between hepatocytes, resembling
the pathological findings of hepatic sinusoidal obstruction syndrome
in mice (Zhu et al., 2022) (Figures 2B-D). ELISA results indicated
that alanine aminotransferase and aspartate aminotransferase levels
were significantly elevated in the E. sonchifolia ethanol extract group
compared to the control group (P < 0.01) (Figures 2E,F). These
findings suggest that E. sonchifolia ethanol extract at a dose of
8.6 g/kg induces delayed hepatotoxicity in mice.

3.3 Comprehensive proteomics and
metabolomics analysis reveals the
mechanism of hepatotoxicity induced by
Emilia sonchifolia ethanol extract

We first conducted proteomic sequencing and analysis of the
livers from two groups of mice. The results showed significant
differences in principal component analysis distances between
control mice and the mice treated with a E. sonchifolia ethanol
extract (Figure 3A). The results showed that the E. sonchifolia
ethanol extract significantly altered the hepatic protein profile in
total of 425 differentially
(220 upregulated and 205 downregulated) with significantly

mice. A expressed proteins
distinct expression patterns before and after ethanol extract
treatment were identified (Figures 3B,C). Among them, E9QAAS,
G3X8P9 and QICWLS were key differentially expressed proteins
with the greatest fold changes, all of which displayed highly
significant differences (Figure 3B; Table 2). The differentially
expressed proteins were imported into the STRING database to
construct a protein-protein interaction network. The corresponding
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TSV file was then exported and analyzed using Cytoscape software.
Core genes were identified based on degree centrality, as shown in
Figure 3D, with Ugt2bl emerging as the most central gene. GO
enrichment analysis revealed that the biological processes primarily
involved response to bacterium, xenobiotic metabolic process,
innate immune response, defense response to bacterium, and
steroid metabolic process. The cellular components were mainly
enriched in the cytoplasm and cytosol, while molecular functions
were associated with identical protein binding, ATP binding, and
protein homodimerization activity (Figure 3E). KEGG pathway
analysis revealed significant changes in metabolic pathways,
steroid hormone biosynthesis, drug metabolism-cytochrome
P450, metabolism of xenobiotics by cytochrome P450, drug
metabolism-other enzymes, and primary bile acid biosynthesis in
the liver tissue of mice treated with the E. sonchifolia ethanol extract
(Figure 3F). Changes in metabolic pathways are associated with the
proteins Aoxl, Cyp2c29, Cyp3a4la, Cyp2b9, Cyp2el, Ugt2bl,
Ugtla5, Cyp2c23, Cyp2c68, Hsd3b7, Cyp2b10, Hsd3b3, Cyp3all,
Ugt2b34, Hsd11bl, Cyp3a25, etc. Changes in steroid hormone
biosynthesis are linked to the proteins Cyp3a4la, Cyp2blo0,
Cyp2el, Hsd3b3, Ugt2bl, Cyp3all, Ugtla5, Cyp2b9, Cyp2c68,
Cyp3a25, Cyp2c23, Cyp2c29, Sts, Cyp2d9, Ugt2b3, Hsd11b1, and
Cyp2d22. Alterations in drug metabolism through cytochrome
P450, metabolism of xenobiotics by cytochrome P450, and drug
metabolism by other enzymes involve the proteins Cyp2el, Gstml,
Ugt2bl, Ugtla5, Gstm4, Gm3776, and Ugt2b34. Additionally,
changes in primary bile acid biosynthesis involve the proteins
Acnat2, Cyp8bl, Baat, and Hsd3b7 (Figure 3G).

Then, we conducted metabolomic sequencing and analysis of
the livers from two groups of mice. The results showed significant
differences in partial least squares discriminant analysis distances
between control mice and the mice treated with a Emilia sonchifolia
ethanol extract (Figure 4A). This result indicates that the E.
sonchifolia ethanol extract significantly alters the hepatic
metabolic profile in mice. A total of 414 differentially expressed
proteins (201 upregulated and 213 downregulated) with significantly
distinct expression patterns before and after ethanol extract
treatment were identified (Figure 4B). The expression levels of
differential 7a,12a-
dihydroxycholest-4-en-3-one, and 7a-hydroxy-4-cholesten-3-one

metabolites, including taurine,
were significantly upregulated (Figure 4C). KEGG pathway
analysis revealed significant changes in metabolic pathways,
primary bile acid biosynthesis, and Taurine and hypotaurine
metabolism in the liver tissue of mice treated with the E.
Further gene set

enrichment analysis enrichment analysis revealed significant

sonchifolia  ethanol extract (Figure 4D).

activation of metabolic pathways and oxidative phosphorylation,
while steroid hormone biosynthesis and bile secretion pathways
were significantly suppressed (Figures 4E-I). In phase I drug
metabolism, the toxic pyrrolizidine alkaloids (PAs) from E.
sonchifolia can be oxidised by CYP450 enzymes and eventually
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Proteomics analyses of liver tissue from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. (A) Principal components
analysis to identify clusters of hepatic proteomes from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract (n = 3). (B) Volcano
plot of differentially expressed protein in the hepatic proteomics, in which the Bonferroni-adjusted -log;o (probability) is plotted against log; (fold
change). Significantly upregulated proteins are shown as red dots; significantly downregulated proteins, as blue dots. (C) Hierarchical cluster analysis

of differentially expressed proteins between the liver tissues from control mice and mice treated with Emilia sonchifolia ethanol extract. (D) The protein-
protein interaction (PPI) network was constructed using STRING (http://www.string-db.org) and Cytoscape software. Nodes represent proteins, while
edges indicate interactions. The size and color of each node indicate the degree of connectivity, with larger and darker nodes representing higher
degrees of interaction. (E) The GO enrichment Barplot for differentially expressed proteins in hepatic proteomics. The x-axis represents GO terms, while
the y-axis indicates the number of proteins. Blue bars correspond to biological processes, green bars to cellular components, and orange bars to
molecular functions. (F) The KEGG enrichment analysis of differentially expressed proteins in liver tissues from control mice and mice treated with Emilia
sonchifolia ethanol extract. (G) The Sankey diagram illustrates the association between differentially expressed proteins (left) and KEGG pathways (right)

identified in the hepatic proteomics analysis.
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TABLE 2 The top 3 differential proteins.

Protein_name Gene_name FC P_value Q_value

E9QAAS Gm4841 13.5889 0.000004 0.01145
G3X8P9 Aoxl 8.9977 0.000006 0.01145
QICWLS Ctnnbll 6.3707 0.000007 0.01145

form adducts, which can cause hepatotoxicity (Almazroo et al,
2017). And the blockage of glucuronidation process in phase II drug
metabolism can lead to disorders of bile acid metabolism, which in
turn causes liver injury (Hu et al., 2014; King et al., 2000). Steroid
hormones can alleviate cholestasis by inhibiting inflammatory
2012),
hormone biosynthesis is impaired, cholestasis and subsequent

responses (Payne and Freishtat, and when steroid
hepatic damage ensue. Enhanced primary bile acid biosynthesis
further increases bile acid production, thereby exacerbating liver
injury (Cai and Boyer, 2021). During this process, metabolites such
as 7a-hydroxy-4-cholesten-3-one, 7a,12a-dihydroxycholest-4-en-3-
one, and taurine were found to be upregulated. Thus, it can be
concluded that under the co-regulation of phase I drug metabolism
as a major pathway, phase II drug metabolism, steroid hormone
biosynthesis and primary bile acid biosynthesis as a minor pathway,
cholestasis is formed. This condition further induces oxidative
stress, ultimately leading to the development of hepatotoxicity.
Next, we conducted an integrated analysis of proteomics and
metabolomics. There is a significant correlation among these
proteins and metabolites (Figures 5A,B). Correlation clustering
heat map and network map revealed that the expression of the
protein Cyp2c29 was upregulated, while Ugt2bl, Cyp3a4la, and
Hsd3b3 were downregulated. These proteins are closely associated
with pathways such as drug metabolism and steroid hormone
biosynthesis (Sunoqrot et al., 2024). Additionally, the metabolites
taurine, 7a,12a-dihydroxycholest-4-en-3-one, and 7a-hydroxy-4-
cholesten-3-one were significantly upregulated, which are closely
linked to primary bile acid biosynthesis (Luo et al., 2024; Yin et al.,
2024). The Venn diagram indicated that 89 pathways were
commonly enriched in both the proteomics and metabolomics
(Figure 5C).
included metabolic pathways, steroid hormone biosynthesis, and

analyses The significantly enriched pathways
primary bile acid biosynthesis (Figure 5D).

Taken together, we hypothesized that the hepatotoxicity
induced by E. sonchifolia ethanol extract is associated with
cholestasis and oxidative stress mediated by Cyp2c29, Cyp3a4la,
Ugt2bl and Hsd3b3. We have validated the above hypothesis, and
the results show that in mice treated with E. sonchifolia ethanol
extract, the gene expression level of Cyp2c29 was upregulated, while
the expression levels of Ugt2bl, Cyp3a4la and Hsd3b3 were
downregulated (Figures 6A-D). Meanwhile, compared to the
control group, mice treated with E. sonchifolia ethanol extract
exhibited significantly elevated serum levels of total bilirubin,
direct bilirubin, total bile acids, alkaline phosphatase, and y-
glutamyl transpeptidase (Figures 6E-I). Furthermore, in the livers
of mice treated with E. sonchifolia ethanol extract, the
malondialdehyde level was increased, whereas the levels of
superoxide dismutase and catalase were significantly decreased
(Figures 6]-L).
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4 Discussion

Emilia sonchifolia is a plant that possesses both medicinal and
dietary applications (George and Kuttan, 2019; Jeeno et al., 2023).
The PAs of E. sonchifolia are natural toxins, which can cause
significant hepatomegalia, live venoocclusive disease, hepato-
carcinogenicity, neurotoxicity, mutagenicity and embryotoxicity
(Luo et al.,, 2019). Emilia sonchifolia is typically prepared using
either water or ethanol extraction (An et al., 2025; Liu et al., 2025).
Although our previous study has characterized the hepatotoxicity of
the water extract of E. sonchifolia, the pathological mechanisms of its
ethanol extract remain to be elucidated. In this study, we evaluated
E. sonchifolia ethanol extract’s hepatotoxicity and investigated its
mechanism by proteomics and metabolomics analysis. The results
revealed that the hepatotoxicity induced by E. sonchifolia ethanol
extract is associated with cholestasis and oxidative stress mediated
under the co-regulation of phase I drug metabolism as a major
pathway, phase |l drug metabolism, steroid hormone biosynthesis
and primary bile acid biosynthesis as a minor pathway, which had
some similarities with the mechanism of action of water extract. To
the best of our knowledge, this study represents the first systematic
investigation into the mechanism of hepatotoxicity induced by E.
sonchifolia ethanol extract.

Currently, the evaluation of E. sonchifolia dosage remains
inadequate. In this study, an acute toxicity preliminary screening
study was performed by orally administering E. sonchifolia ethanol
extract to mice at doses ranging from 0 to 33.6 g/kg. The results
revealed that a dose of 12.0 g/kg induced acute liver failure and
mortality in mice. At doses equal to or exceeding 24.0 g/kg, the
survival rate was 0%. In contrast, doses of 8.6 g/kg or lower resulted
in a 100% survival rate, demonstrating dose-dependent acute
hepatotoxicity. Notably, doses below 8.6 g/kg did not result in
acute liver failure.

We further investigated the delayed hepatotoxicity of E.
sonchifolia ethanol extract at a dose of 8.6 g/kg. The results
demonstrated that administering 8.6 g/kg of E. sonchifolia
ethanol extract to mice for 14 days led to a significant increase in
hepatocyte vacuolation and nuclear pyknosis. Additionally, the
serum levels of alanine aminotransferase and aspartate
aminotransferase were significantly elevated. The cytoplasm of
hepatocytes contains various biochemical enzymes, and the levels
of serum liver biomarker enzymes, such as alanine aminotransferase
and aspartate aminotransferase, are essential parameters for the
biochemical assessment of potential hepatotoxic effects (Tamber
et al,, 2023). When the liver is damaged, these enzymes are released
from hepatocytes into the bloodstream, resulting in elevated serum
levels (Ceriotti et al., 2010; Robles-Diaz et al., 2015). These findings
indicate that E. sonchifolia ethanol extract exhibits delayed
hepatotoxicity in mice.
further mechanisms

underlying the hepatotoxicity induced by E. sonchifolia ethanol

Furthermore, we investigated the
extract using integrated proteomics and metabolomics analysis.
The results demonstrated that the ethanol extract significantly
altered the proteomic and metabolic profiles in the livers of
treated mice compared to controls. Analysis of the proteomics
and metabolomics data revealed that the hepatotoxic effects of E.
sonchifolia ethanol extract are closely associated with disruptions in
drug metabolism, steroid hormone biosynthesis, and primary bile
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Metabolomics analyses of liver tissue from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. (A) Partial least squares

discriminant analysis to identify clusters of hepatic metabolomes from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract (n =
3). (B) Volcano plot of differentially expressed metabolites in the hepatic proteomics, in which the Bonferroni-adjusted -logyo (probability) is plotted
against log, (fold change). Significantly upregulated metabolites are shown as red dots; significantly downregulated metabolites, as blue dots. (C)

Hierarchical cluster analysis of the top 30 differentially expressed metabolites between the liver tissues from control mice and mice treated with Emilia
sonchifolia ethanol extract. (D) The KEGG enrichment analysis of differentially expressed metabolites in liver tissues from control mice and mice treated
with Emilia sonchifolia ethanol extract. (E) Gene set enrichment analysis of differential metabolites between the liver tissues from control mice and
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FIGURE 4 (Continued)

treated with Emilia sonchifolia ethanol extract. (F—1) Gene set enrichment analysis, indicating enrichment of processes related to response to
metabolic pathways (F), oxidative phosphorylation (G), steroid hormone biosynthesis (H) and bile secretion (I) in the metabolomes of liver tissues from
mice treated with Emilia sonchifolia ethanol extract compared to the control mice.

Correlation Heatmap

giRigcIsE bR ENBEIRIAILLILY
i %%g‘"*ﬁgiig” i§§§§s§
£E403 i b P
§38¢ 3 I
g ¥ L
g H F
3 } H
B o
Correlation Network
gty B A AR
Sl WA Lsboryline
C

Proteomics

degree
® 0
group
@ Datal
abs_rho
-0
-09
— 08
— o7
— 08
relation
— posiive
~ negtive

Metabolomics

FIGURE 5

Vitamin B6 metabolism 4

Tyrosine metabolism -

Tryptophan metabolism -

' Thermogenesis -
Taurine and hygotaunne metabolism 4
ynaptic vesicle cycle §

ulfur metabolism

Steroid hormone biosynthesis 4
Spinocerebellar ataxia 4

Renal cell carcinoma -

Pyruvate metabolism -

Pyrimidine metabolism 4

Purine metabolism 4

Proximal tubule bicarbonate reclamation 4
Protein digestion and absorption 4
Prostate cancer -

Prion disease 1

Primary bile acid biosynthesis 4

Porphyrin metabolism 4

Phospholipase D signaling pathway -
Phosphatldxllnosmol signaling system
henylalanine metabolism

Pentosé phosphate pathway 1

Pentose and glucuronate interconversions -
Pathways of neurodegeneration - multiple diseases -
Pathways in cancer+

Pancréatic cancer+

Oxidative

hosphoryla

Nucleotide metabol
Nitrogen metabol

tion 4
ism+
ism <

Pathway_Name

Nicotinate and nicotinamide metabolism 4
Neuroactive ligand-receptor interaction 4
Mineral absorption -

Metabolic pathways 4

Long-term potentiation 4

Long-term depression 4

Linoleic acid metabolism 1

ntington disease 4

Histidine metabolism -

HIF-1 signaling pathway

GnRH signaling pathway 4

Glyoxylate and dicarboxylate metabolism -
Glycerophospholipid metabolism -
Glycerolipid metabolism -

Glutathione metabolism 1

Glucagon signaling pathway -

p junction

Galactose metabolism

FoxO signaling pathway - 4

Folate biosynthesis
Ferroptosis 4
Fc gamma R~mediatquhagocytqsi51
Fatty acid metabolism 4
Fatty acid degradation -
i Fatty acid biosynthesis 4
Cysteine and methionine metabolism 4
Cushing syndrome
Cortisol synthesis and Secretion 4
Citrate cycle (TCA cycle)
Choline metabolism in cancer-
. . Cholesterol metabolism
Chemical carcinogenesis - receptor activation -
Chemical carcinogenesis - reactive ongen species -
cGMP-PKG signaling pathway
Central carbon metabolism in cancer+
Carbon metabolism 4
Carbohydrate digestion and absorption 4
cAMP signaling pathway 4
. . Butanoate metabolism 4
Biosynthesis of unsaturated fatty acids -
Biosynthesis of nucleotide sugars -
Biosynthesis of cofactors 4
Biosynthesis of amino acids 4
Bile secretion -
Ascorbate and aldarate metabolism 4
Arginine biosynthesis 4
Arginine and proline metabolism 1
Arachidonic acid metabolism 4
Antifolate resistance -
Amyotrophic lateral sclerosis -
Aminoacyl-tRNA biosynthesis 4
Amino sugar and nucleotide sugar metabolism 5
alpha-Linolenic acid metabolism 4
Aldosterone-regulated sodium reabsorption -
Aldosterone synthesis and secretion 4
Alcoholism 4
Alanine, aspartate and glutamate metabolism 4
. ABC transporters -
2-Oxocarboxylic acid metabolism 4

.
beo*
.

>

"n;"

>

»
i

°a

°)

Pvalue

0.50

0.25

w

00 01 02 03 04 05

Rich_Factor

Proteomics and metabolomics integrated analysis of liver tissue from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract.

(A) Correlation clustering heat map of proteomics and metabolomics. (B) Correlation network map of proteomics and metabolomics. (C) Venn diagram
of significantly enriched KEGG pathways in proteome and metabolome. (D) Bubble plot showed the 89 KEGG pathways that were co-enriched in
proteome and metabolome.
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Validation of the hepatotoxicity mechanism of Emilia sonchifolia ethanol extract. (A-D) The relative mRNA expression of key differentially expressed
genes (Cyp2c29, Cyp3a4la, Ugt2bl, and Hsd3b3) in liver tissue from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. (E-1)
Quantification of total bilirubin (E), direct bilirubin (F), total bile acids (G), alkaline phosphatase (H), and y-glutamyl transferase (I) in serum from the mice
treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. (J-L) Quantification of malondialdehyde (J), superoxide dismutase (K) and
catalase (L) in liver tissue from mice treated with phosphate buffer saline or Emilia sonchifolia ethanol extract. Data are presented as mean + SEM (n = 4).

*p < 0.05, ***p < 0.001 by unpaired t-test.

acid biosynthesis. Moreover, the integrated analysis further
indicated that the hepatotoxic mechanism involves cholestasis
and oxidative stress mediated by Cyp2c29, Ugt2bl, Cyp3a4la,
and Hsd3b3.

The term “drug metabolism” to the enzymatic
transformation of chemicals from one chemical moiety to another,
involving two types of reactions: Phase I and Phase II (King et al., 2000).
The most common Phase I drug-metabolizing enzymes belong to the
CYP450 superfamily (Almazroo et al, 2017; Zhao et al, 2021). In
humans, CYP450 enzymes are distributed across various tissues and
organs, including peripheral blood cells, platelets, the aorta, adrenal
glands, adipose tissue, nasal and vaginal tissues, seminal vesicles, brain,

refers
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lungs, kidneys, gut, and liver. Among these, the liver and small intestine
play the most significant roles in the overall metabolism and elimination
of drugs (Louisse et al, 2022). Among the CYP450 enzymes, CYP1,
CYP2, and CYP3 are the most abundant (Almazroo et al., 2017). In our
study, the Cyp2C29 was upregulated, which indicated that E. sonchifolia
extract metabolism were enhanced, leading to increased metabolites.
The metabolites can be either pharmacologically active or inactive. PAs
in E. sonchifolia are oxidized by cytochrome P450 enzymes, mainly in
the liver, to 6,7-dihydro-7-hydroxy-1-(hydroxymethyl)-5H-pyrrolizine
- DHP (pyrrolicester), a strong electrophile that can form adducts with
biological macromolecules, such as protein and DNA. This bioactive
metabolite is considered the main reason for PAs toxicity. Thus, we
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deduced that the hepatotoxicity of E. sonchifolia extracts was related to
increase of Cyp2C29 expression. During phase II drug metabolism, the
drugs or metabolites from phase I reactions are enzymatically
conjugated with hydrophilic endogenous compounds by transferase
enzymes. The most common phase II drug-metabolizing enzymes
include UDP-glucuronosyltransferases, sulfotransferases,
glutathione

S-methyltransferases, and catechol O-methyltransferases. In humans,

N-acetyltransferases, S-transferases, thiopurine
three subfamilies of UDP-glucuronosyltransferases (UGT), namely,
UGT1A, UGT2A, and UGT2B, are primarily responsible for
glucuronidation (Hu et al, 2014). Glucuronidation is a key
metabolic pathway for many small endogenous and exogenous
lipophilic compounds, including bilirubin, steroid hormones, bile
acids, carcinogens, and therapeutic drugs (King et al., 2000). In our
study, Ugt2bl was downregulated, which demonstrated that
glucuronidation was disturbed, resulting in metabolic disorders of
bile acids. It led to cholestasis, which can cause liver damage.
Previous studies have shown that steroid hormones can inhibit
inflammation via Mekl and Erkl, which are members of the MAPK
pathway (Payne and Freishtat, 2012). Moreover, the results from Ibone
Labiano et al.’s study demonstrate that TREM-2 plays a protective role
in cholestasis by acting as a negative regulator of inflammation (Labiano
et al,, 2022). In other words, steroid hormones can suppress cholestasis
by inhibiting inflammation. The synthesis of steroid hormones involves
several enzymes, including cytochrome P450 enzymes. Cyp3a4la is a
cytochrome P450 enzyme in mice that is homologous to human
CYP3A4 and CYP3AS5. These enzymes play a crucial role in the
of
catalyzing the multi-step oxidative reactions that convert cholesterol

biosynthesis steroid hormones, primarily responsible for
into various steroid hormones (Hanuko and glu, 1992). Hsd3b3 is an
enzyme with both 3-beta-hydroxysteroid-delta5-dehydrogenase activity
and steroid delta-isomerase activity. It is involved in several processes,
including hippocampal development, response to corticosterone, and
steroid hormone Dbiosynthesis. Hsd3b3 is located in the inner
mitochondrial membrane and is expressed in the adrenal glands,
liver, and medullary region of the testes. Additionally, its human
homologs, HSD3B1 and HSD3B2, are associated with hypertension
and hypospadias, further highlighting the importance of Hsd3b3 and its
human counterparts in steroid hormone biosynthesis. Furthermore,
hydroxysteroid dehydrogenases (HSDs) catalyse the oxidation/
reduction of hydroxy (-OH)/oxo groups of steroids. This reaction
type contributes fundamental steps in the biosynthesis of vertebrate
steroid hormones (Shafqat et al., 2003). Hsd3b3 plays a central role in
steroid hormone biosynthesis, which shares cholesterol as a common
precursor with bile acid synthesis (Cai et al., 2022; Chiang, 2004).
Downregulation of Hsd3b3 may decrease the flux of cholesterol toward
steroid hormone formation and concomitantly enhance its conversion
into bile acids, thereby promoting bile acid accumulation and
cholestasis (Chiang and Ferrell, 2020; Song et al, 2025). Steroid
hormones, particularly glucocorticoids, have been reported to
alleviate cholestasis by suppressing inflammatory responses and
regulating bile acid transporters (Halilbasic et al, 2013; Trauner
et al, 2017). Hence, impaired steroidogenesis resulting from Hsd3b3
inhibition may further exacerbate bile acid-induced liver injury (Song
et al, 2025; Zeng et al,, 2023). Taken together, Hsd3b3 plays a critical
role in steroid hormone synthesis, particularly in catalyzing key steps in
the steroidogenesis pathway (Vagnerova et al., 2024). In our study, the
expression of Cyp3a4la and Hsd3b3 was downregulated. Therefore, we
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speculate that E. sonchifolia ethanol extract inhibits steroid hormone
biosynthesis, thereby suppressing bile secretion and ultimately leading
to cholestasis.

The accumulation of bile acids leads to cholestatic liver diseases,
which serve as markers for liver injury metabolites (Zeng et al., 2023). 7a-
Hydroxy-4-cholesten-3-one is a key intermediate in the cholesterol-to-
primary bile acid synthesis pathway (Synthesis of Cholesterol from 7a-
Hydroxy-4-cholesten-3-one in the Intestine) and plays a role in bile acid
synthesis (Galman et al., 2003). 7a,12a-Dihydroxycholest-4-en-3-one is
another crucial intermediate in the bile acid biosynthesis pathway and
serves as an important biomarker for assessing the levels of hepatic bile
acid synthesis (Ogawa et al., 2013). Taurine is an essential component in
bile acid metabolism. After primary bile acids are synthesized in the liver,
they conjugate with taurine or glycine to form bile acid conjugates. This
conjugation is crucial for the solubility and excretion of bile acids
(Miyazaki et al, 2023). Physiologically, taurine conjugation increases
bile acid solubility, lowers membranolytic toxicity, and promotes biliary
excretion - mechanisms that protect hepatocytes (Duszka, 2022;
Hofmann and Hagey, 2008). Following hepatotoxicity induced by E.
sonchifolia ethanol extract, taurine levels were significantly elevated.
Given that taurine conjugation enhances bile acid solubility and
facilitates  excretion, this increase in taurine likely reflects a
compensatory response of the organism aiming to promote bile acid
detoxification and protect against bile acid-induced liver injury.
However, under conditions of excessive bile acid synthesis or
impaired canalicular secretion, the observed elevation in free taurine
may represent an adaptive attempt to improve conjugation and excretion
that is insufficient to offset the accumulating load (Pablo et al., 2017).
Although taurine elevation appears to be a compensatory response
aiming to enhance bile acid conjugation and detoxification, the
persistent accumulation of bile acids despite this adaptation suggests
that such compensation is insufficient to prevent cholestasis. In our study,
the E. sonchifolia ethanol extract upregulated metabolites such as 7a-
Hydroxy-4-cholesten-3-one, 7a,12a-Dihydroxycholest-4-en-3-one, and
Taurine, leading to an increase in primary bile acids and consequently
resulting in cholestasis.

Taken together, phase II drug metabolism enzymes, steroid
hormones, and primary bile acids are all associated with cholestasis.
Total bilirubin, direct bilirubin, total bile acids, alkaline phosphatase,
and y-glutamyl transferase are important biomarkers for verifying
cholestasis (Ozgen et al., 2022; Tang et al,, 2024). We validated these
markers, and the results were consistent with our hypothesis. Oxidative
stress is a key factor that accompanies liver injury in cholestasis (Sha
etal, 2021; Yuan et al,, 2018). Meanwhile, oxidative stress can promote
lipid peroxidation, leading to an increase in malondialdehyde (a lipid
peroxidation byproduct) levels and a decrease in superoxide dismutase
and catalase (antioxidant enzymes) (Del et al., 2005; Frijhoff et al.,, 2015;
Wang et al,, 2024). Similar results were observed in our study, where E.
sonchifolia ethanol extract increased malondialdehyde levels and
decreased superoxide dismutase and catalase activity.

In summary, it can be concluded that the ethanol extract of E.
sonchifolia can upregulate the expression of Cyp2C29 in phase I drug
metabolism, thereby leading to an increase in toxic products and
inducing hepatotoxicity, which may represent the major pathway
responsible for the early hepatotoxicity caused by E. sonchifolia.
Secondly, the ethanol extract of E. sonchifolia can downregulate the
expression of Ugt2bl in phase IT drug metabolism, resulting in bile
acid metabolic disorders. At the same time, the extract acts on
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steroid hormone biosynthesis, downregulating the expression of
Cyp3a4la and Hsd3b3, which suppresses bile excretion and causes
cholestasis. In addition, the extract affects the primary bile acid
biosynthesis pathway, leading to increased expression of metabolites
such as 7a-Hydroxy-4-cholesten-3-one, 7a,12a-Dihydroxycholest-
4-en-3-one, and Taurine, which in turn promotes bile acid
production. Therefore, phase II drug metabolism, steroid
hormone biosynthesis, and primary bile acid biosynthesis serve
as secondary pathways through which the ethanol extract of E.
sonchifolia collectively contributes to cholestasis, while cholestasis
further induces oxidative stress, ultimately leading to hepatotoxicity.

In conclusion, the hepatotoxicity mechanisms of E. sonchifolia
ethanol extract involve two key aspects: (1) the extract increases the
production of toxic metabolites in the liver by enhancing phase I drug-
metabolizing enzymes, particularly CYP450, and (2) the extract induces
oxidative stress in the liver by promoting cholestasis. This study suggests
two potential strategies for addressing liver damage caused by E.
sonchifolia ethanol extract. First, drugs that decrease the activity of
phase I drug-metabolizing enzymes, particularly CYP450, could help
reduce the production of toxic metabolites. Second, future research
could focus on identifying drugs that regulate bile metabolism by
enhancing phase II drug metabolism enzymes, inhibiting steroid
hormone biosynthesis, and modulating primary bile acid synthesis
to reduce or eliminate the hepatotoxic effects. This study compensates
for the limitation of investigating only the hepatotoxicity mechanism of
the water extract of E. sonchifolia, and provides a more comprehensive
theoretical basis for the development, utilization, and safety evaluation

of E. sonchifolia.
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