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Curcumin, a natural polyphenolic compound from Curcuma longa, has been
extensively investigated for its potential role in colorectal cancer (CRC)
prevention and therapy. Preclinical studies suggest that curcumin can
modulate gut microbiota composition, influence immune cell subsets such as
M1/M2 macrophages, Treg/Th17 cells, and CD8+ T cells, and interfere with
oncogenic signaling cascades including NF-κB, PI3K/Akt, and Wnt/β-catenin.
These findings collectively highlight curcumin as a biologically active compound
with broad mechanistic relevance. However, most evidence derives from in vitro
assays at supra-physiological concentrations or high-dose animal models, raising
concerns about pharmacological validity and clinical translatability. Curcumin is
also recognized as a pan-assay interfering compound (PAINS), which may
account for part of its pleiotropic activity and complicates interpretation of
preclinical findings. Clinical trials to date have largely confirmed safety and
biomarker modulation but have not demonstrated clear improvements in
progression-free or overall survival. In this review, we critically appraise the
available preclinical and clinical evidence on curcumin in CRC, highlighting
both its mechanistic promise and the substantial limitations that constrain its
therapeutic relevance, while outlining priorities for future research.
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1 Introduction

Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive
system and continues to pose a major public health burden worldwide (Siegel et al., 2023).
Despite advances in screening, surgery, radiotherapy, and chemotherapy that have
improved overall survival, patients with advanced-stage disease still face poor outcomes,
characterized by recurrence, metastasis, and limited response to conventional treatments
(Nussbaum et al., 2022; Doxtater and Tripathi, 2023). Tumor heterogeneity, therapy
resistance, and immune escape remain significant barriers, highlighting the urgent need
for innovative and well-tolerated strategies (Lv et al., 2023). CRC pathogenesis extends far
beyond isolated genetic mutations or uncontrolled proliferation. Instead, it reflects a
complex interplay between gut microbiota, immune responses, and key oncogenic
signaling pathways. The gut microbiota, the largest microbial ecosystem in humans,
shapes host immunity and mucosal barrier function through metabolites such as short-
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chain fatty acids (SCFAs) and secondary bile acids (Dong et al.,
2023; Hays et al., 2024). Dysbiosis not only promotes chronic
inflammation but also reprograms immune surveillance, thereby
fueling tumor progression (Yang et al., 2023a). Meanwhile, aberrant
activation of signaling cascades such as NF-κB, Wnt/β-catenin, and
PI3K/Akt orchestrates malignant transformation, stemness
maintenance, and metastatic dissemination, often in close
interaction with microbiota–immune crosstalk.

In this context, polyphenolic compounds from natural products
have drawn increasing attention due to their multi-targeted actions
and favorable safety profiles. Curcumin, the principal bioactive
constituent of Curcuma longa, has long been used in traditional
medicine and is now extensively investigated as an anticancer agent
(Kunnumakkara et al., 2008; Wilken et al., 2011; Li et al., 2020).
Preclinical studies suggest that curcumin induces apoptosis, inhibits
invasion, remodels the tumor microenvironment, and modulates
both microbiota and immune populations. It has been reported to
promote beneficial bacteria (e.g., Lactobacillus and Bifidobacterium)
while suppressing pathogenic taxa such as Clostridium difficile and
Bacteroides fragilis, thereby indirectly influencing immune tone and
tumor progression (Lamichhane et al., 2024; Zhu and He, 2024).

However, enthusiasm must be tempered by recognition of
important limitations. Much of the mechanistic evidence derives
from in vitro studies employing supra-physiological concentrations,
often orders of magnitude above achievable plasma levels in
humans. Moreover, curcumin has been classified as a pan-assay
interfering compound (PAINS), raising the possibility that some
reported anticancer activities reflect non-specific or artifactual
effects rather than true pharmacological actions (Nelson et al.,
2017). Clinical trials to date confirm safety and modest
biomarker modulation but provide limited evidence for survival
benefit, largely due to small sample sizes, heterogeneous cohorts,
and underpowered study designs. Against this background, the
present review aims to provide a critical appraisal of curcumin’s
potential in CRC, integrating evidence across the
microbiota–immune–signaling axis. We emphasize both
mechanistic promise and pharmacological uncertainties, evaluate
preclinical and clinical evidence with attention to dose ranges,
models, and methodological rigor, and outline future directions
for improving bioavailability, refining study designs, and
strengthening translational relevance.

2 Mechanism of CRC development and
challenges in precision treatment

CRC is a heterogeneous malignancy that progresses through a
multistep adenoma–carcinoma sequence driven by genetic
mutations, epigenetic modifications, chronic inflammation, and
microbial dysbiosis (Okugawa et al., 2015; Seligmann et al., 2022;
Fakih et al., 2023; Storandt et al., 2023). High-throughput omics
technologies have revealed CRC to be far more complex than a linear
genetic model, highlighting its molecular heterogeneity and the
interplay of signaling, immune regulation, and gut microbiota
within the tumor microenvironment (TME). While this growing
knowledge has improved molecular classification, its direct impact
on treatment strategies remains constrained by variability in study
design and translational gaps.

2.1 Molecular mechanisms and precision
therapy challenges

CRC development is classically explained by chromosomal instability
(CIN), microsatellite instability (MSI), and CpG island methylator
phenotype (CIMP) (Figure 1). CIN accounts for approximately 85%
of sporadic CRC cases, involving APC and TP53 loss as well as KRAS or
PIK3CA activation, which drive aberrant Wnt/β-catenin and PI3K/Akt
signaling (Kudryavtseva et al., 2016; Hoevenaar et al., 2020; Al-Joufi et al.,
2022). MSI, resulting from mismatch repair deficiency, occurs in 10%–
15% of cases, and is associated with hypermutability and responsiveness
to immune checkpoint blockade (The Cancer Genome Atlas Network,
2012; Dienstmann et al., 2017; Le et al., 2017). CIMP is characterized by
widespread promoter methylation, frequently linked to BRAF mutations
(Ichimura et al., 2015). The Cancer Genome Atlas (TCGA) initially
provided a comprehensivemolecular characterization of colorectal cancer
(The Cancer Genome Atlas Network, 2012), and subsequent integrative
analyses proposed four consensus molecular subtypes (CMS1–4) with
distinct signaling, immune, and stromal profiles (The Cancer Genome
Atlas Network, 2012; Guinney et al., 2015).

Although these classifications are valuable for research and
biomarker discovery, their pharmacological relevance is still
limited. Many studies report associations between CMS subtypes
and treatment responses, yet most are retrospective and lack
prospective stratification in clinical trials. Consequently, while
molecular subtyping refines our understanding of CRC biology,
its direct utility in precision therapy is still under active validation.

2.2 Gut microbiota in CRC development

Gut microbiota exerts profound effects on CRC through both
protective and pathogenic species. Enrichment of Fusobacterium
nucleatum, Bacteroides fragilis, and colibactin-producing
Escherichia coli promotes tumorigenesis via TLR signaling,
bacterial toxins, and barrier disruption (Lopez et al., 2021).
Conversely, metabolites such as short-chain fatty acids (SCFAs)
enhance mucosal immunity, modulate Treg activity, and inhibit
HDACs, conferring anti-inflammatory and anti-tumor effects
(Fellows et al., 2018; Mann et al., 2024). Secondary bile acids
such as deoxycholic acid, however, can promote tumorigenesis by
inducing oxidative stress and activating Wnt signaling (Ocvirk and
O’Keefe, 2021).

Yet, most of these findings are derived from murine models or
correlative human studies, where confounding factors such as diet
and antibiotic use complicate interpretation. Moreover, metabolite
concentrations reported to inhibit cancer cell growth in vitro often
exceed physiological levels achievable in vivo. Therefore, while the
microbiota is increasingly recognized as a driver and modifier of
CRC, the causal mechanisms and pharmacological relevance in
humans require more rigorous validation.

2.3 Tumor microenvironment and
immune imbalance

The CRC tumor microenvironment (TME) integrates cancer
cells with stromal fibroblasts, endothelial cells, immune infiltrates,
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and soluble mediators. Early immune surveillance can suppress
tumor initiation, but tumors progressively achieve immune
escape by recruiting Tregs and MDSCs, polarizing macrophages
toward the M2 phenotype, and inducing T-cell exhaustion through
PD-L1 and other checkpoints (Lei et al., 2020; Jancewicz et al., 2021).
Effector populations such as CD8+ T cells and NK cells become
functionally suppressed, while the balance between Th1/Th17 cells
and Tregs strongly influences prognosis (Liu et al., 2021a; Calvo-
Barreiro et al., 2023).

Despite extensive mechanistic insights, much of the evidence
originates from murine models with limited comparability to
human TME complexity. Importantly, the minimal effective
concentrations of immunomodulatory factors or interventions are
seldom reported, making pharmacological translation uncertain.
Thus, while TME reshaping represents an attractive target, more
rigorous studies with standardized immune readouts and clinically
relevant dosing are needed.

2.4 Bottlenecks in precision medicine

Precision oncology has introduced immune checkpoint
inhibitors (ICIs) and targeted therapies that yield remarkable
benefits in defined CRC subgroups, such as MSI-high tumors (Le
et al., 2017). However, heterogeneity remains a major barrier:
CMS4 tumors, characterized by stromal activation and immune
exclusion, show poor response to ICIs (Becht et al., 2016;
Dienstmann et al., 2017), while accumulating evidence indicates
that variations in gut microbiota strongly influence immunotherapy

outcomes (Gopalakrishnan et al., 2018; Matson et al., 2018).
Predictive biomarkers such as CD8+ T-cell infiltration, MSI
status, or microbial composition are promising, but lack
standardized validation across trials. Moreover, clinical trial
evidence is often weakened by small sample sizes, heterogeneous
cohorts, short follow-up, and inconsistent formulations of
investigational agents such as curcumin. Microbiota profiling
methodologies also vary widely, limiting reproducibility. Finally,
immune escape mechanisms are highly redundant, suggesting that
multi-target approaches will be required. These limitations highlight
the gap between conceptual advances and clinical translation in CRC
precision medicine.

3 Basic characteristics of curcumin and
its anti-CRCmechanism: from signaling
pathways to microecological
remodeling

Curcumin has been extensively investigated for its anti-
inflammatory, antioxidant, anticancer, immunomodulatory, and
neuroprotective properties (Boroumand et al., 2018; Memarzia
et al., 2021). In the CRC, curcumin’s therapeutic potential is not
limited to direct inhibition of tumor proliferation or induction of
apoptosis; preclinical studies show it also remodels the tumor
microenvironment, modulates immune responses, and restores
gut microbiota composition and metabolite profiles (Deng et al.,
2024; Shakhpazyan et al., 2024; Zhou et al., 2025). This section
reviews the structural basis and pharmacological activities of

FIGURE 1
Colorectal cancer is a heterogeneous malignant tumor, originating from epithelial cells in the colon or rectum. Its development is a multistep
process that involves the transformation of adenomatous polyps into invasive cancer, accompanied by complex pathological processes, such as gene
mutations, epigenetic changes, inflammation, microenvironment shaping, and dysbiosis of gut microbiota. Created with BioGDP.com.
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FIGURE 2
Multi-target mechanism framework of curcumin’s antitumor effects. Curcumin promotes the proliferation of beneficial gut bacteria (such as
Lactobacilli and Bifidobacteria) while inhibiting pathogenic microorganisms (such as Escherichia coli and Fusobacterium). This effect is achieved by
regulating the Bax/Bcl-2 balance and inhibiting carcinogenic signaling pathways (NF-κB, PI3K/AKT, Wnt/β-catenin), thus inducing tumor cell apoptosis
and autophagy. Created with BioGDP.com.
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curcumin, focusing on its capacity to modulate oncogenic signaling
pathways, immune responses, and intestinal microecology.

3.1 Structural characteristics and
pharmacological activities of curcumin

Curcumin (C21H20O6) consists of two aromatic rings linked by
an α,β-unsaturated β-diketone moiety (Priyadarsini, 2014). This
conjugated structure underlies its strong resonance and free radical-
scavenging ability, conferring antioxidant and anti-inflammatory
effects. However, curcumin’s pharmacological utility is constrained
by poor water solubility, low oral bioavailability, and rapidmetabolic
clearance. To address these challenges, advanced
formulations—such as nano-emulsions, liposomes (Ternullo
et al., 2019), solid lipid nanoparticles (Mulik et al., 2012; Yeo
et al., 2022), cyclodextrin inclusion complexes, and phospholipid
complexes (Maleki Dizaj et al., 2022)—have been developed. These
systems significantly improve stability, absorption, and tissue
targeting, though their comparative efficacy across clinical
settings remains under evaluation. Importantly, pharmacological
conclusions about curcumin’s activity must always be interpreted in
light of formulation-dependent differences in bioavailability.

3.2 Regulatory roles in anti-tumor
signaling pathways

Aberrant signaling is a hallmark of CRC, and curcumin is
capable of intervening in several key pathways (Figure 2). The
PI3K/Akt/mTOR axis, frequently activated in CRC, drives
proliferation, survival, and therapy resistance (Stefani et al.,
2021). Curcumin suppresses this pathway by inhibiting PI3K
p110α and Akt phosphorylation, thereby downregulating mTOR
activity and sensitizing resistant cells to chemotherapy (Chen et al.,
2023; Deswal et al., 2024). While this suggests strong
chemosensitizing potential, most evidence derives from in vitro
studies at micromolar concentrations, which raises questions
about conversion correlations. The Wnt/β-catenin pathway,
central to stemness and metastasis in CRC, is another target.
Curcumin accelerates β-catenin degradation and reduces
downstream c-Myc and cyclin D1 expression, impairing
clonogenicity and tumor-initiating capacity (Le and Kim, 2019;
Liao et al., 2023). This mechanistic rationale is compelling, yet in
vivo evidence remains limited, and dose-response relationships are
not consistently defined.

The TLR4/MyD88/NF-κB pathway, which links microbial
dysbiosis to chronic inflammation and carcinogenesis, is also
suppressed by curcumin. It blocks TLR4 recognition of
pathogenic ligands, prevents NF-κB activation, and reduces pro-
inflammatory mediators such as IL-6, TNF-α, and COX-2 (Boozari
et al., 2019; Guo et al., 2021). Although these findings support the
concept of an “anti-inflammatory shield,” they often rely on
models with artificial stimulation or supraphysiological
curcumin exposure. Therefore, while curcumin’s multi-targeted
signaling modulation is well established, the pharmacological
strength of evidence varies depending on the model system and
achievable concentrations.

3.3 Tumor immune regulatory effects

Curcumin exerts multi-faceted immunomodulatory effects. It
enhances CD8+ T-cell proliferation and cytotoxic activity, increasing
perforin and granzyme B secretion (Liu et al., 2021b). Furthermore,
it rebalances CD4+ T-cell subsets by reducing Tregs and promoting
Th1/Th17 responses (Zou et al., 2018; Shafabakhsh et al., 2019; Fu
et al., 2021). Particularly noteworthy is the ability of curcumin to
convert Foxp3+ Tregs into Th1-like cells, thereby reinforcing anti-
tumor immunity (Zou et al., 2018). Macrophage polarization is
another critical target, CRC TMEs are enriched with pro-
tumorigenic M2 macrophages, while curcumin suppresses
M2 markers (IL-10, ARG1) and activates STAT6/MAO-A-related
switches, shifting toward an M1 phenotype (Jiang et al., 2022).

Nevertheless, immune regulation by curcumin is context- and
dose-dependent. In vitro, curcumin often suppresses dendritic cell
(DC) maturation, reducing co-stimulatory molecule expression and
T-cell priming capacity (Shirley et al., 2008). In contrast, in vivo
studies using high-bioavailability formulations demonstrate enhanced
DC antigen presentation via STAT3 inhibition (Hayakawa et al.,
2020). These conflicting results underscore the importance of
formulation, concentration, and biological context, and highlight
the need for dose-optimized strategies in clinical applications.

3.4 Gut microbiota remodeling and
immune-metabolic regulation

Curcumin also exerts its effects indirectly by remodeling gut
microbiota. It increases beneficial genera such as Bifidobacterium
and Lactobacillus while reducing pro-inflammatory taxa such as
Fusobacterium, Prevotella, and Enterobacteriaceae (Pluta et al., 2020;
Zhu and He, 2024). These changes shift microbial metabolism toward
greater short-chain fatty acid (SCFA) production, particularly butyrate,
which supports epithelial energy metabolism, reinforces barrier
function, and epigenetically regulates T-cell differentiation (Van
Deuren et al., 2022). Curcumin also strengthens barrier integrity by
upregulating tight junction proteins (ZO-1, occludin, claudin-1),
thereby limiting lipopolysaccharide (LPS) translocation and systemic
inflammation (Burge et al., 2019; Cao et al., 2020). This creates a
feedback loop in which microbiota restoration, metabolic regulation,
and immune modulation act synergistically to restrain tumorigenesis.

However, the majority of microbiota studies rely on rodent models,
with results influenced by diet, housing, and antibiotic exposure.
Human evidence is relatively sparse, and mechanistic links remain
associative rather than causal. Moreover, the concentrations of
curcumin required to shift microbial communities are not always
aligned with pharmacologically achievable levels. Therefore, while
gut microbiota remodeling is a promising dimension of curcumin’s
activity, its clinical translation requires rigorous validation through
standardized multi-omics studies and controlled interventions.

4 Progress in preclinical and
translational research on curcumin

Despite extensive research into the molecular mechanisms
underlying curcumin’s anti-CRC effects, its clinical translation
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ultimately depends on the robustness of preclinical evidence across
multiple experimental levels. Chemically induced CRCmodels, such
as the azoxymethane/dextran sulfate sodium (AOM/DSS)
inflammation-associated system, have consistently demonstrated
that oral or gavage administration of curcumin reduces tumor
number and volume, alleviates mucosal ulceration, and decreases
dysplastic gland formation (Deng et al., 2024). Mechanistic analyses
highlight suppression of the TLR4/MyD88–NF-κB pathway and
downregulation of inflammatory mediators, including IL-6, TNF-α,
and COX-2 (Buhrmann et al., 2019; Liu et al., 2020; Iglesias et al.,
2022; Yang et al., 2023b). These results provide strong biological
plausibility for curcumin as an inflammation-modulating agent.
However, it must be emphasized that the doses applied in
rodents (often >100 mg/kg/day) are much higher than typical
human exposures, and the curcumin formulations used are
heterogeneous, limiting extrapolation to human pharmacology
(Anand et al., 2007; Sharma et al., 2007).

In xenograft models using human CRC cells, curcumin has been
shown to suppress tumor growth and enhance sensitivity to 5-
fluorouracil (5-FU), oxaliplatin, and irinotecan (Howells et al., 2019;
Zhao et al., 2020; Zheng et al., 2021). Mechanistically, this effect is
associated with inhibition of PI3K/Akt signaling (Astinfeshan et al.,
2019; Jin et al., 2021; Liu et al., 2021b), suppression of cancer
stemness markers (SOX2, OCT4, CD44, CD133, LGR5), and
attenuation of IL-6/STAT3-and NF-κB-driven survival signaling
(Prud’homme, 2012; Hu et al., 2019; Brockmueller et al., 2023;
Kubatka et al., 2024). Furthermore, curcumin downregulates anti-
apoptotic proteins and modulates ATP-binding cassette (ABC)
transporters, such as P-glycoprotein (P-gp), thereby reducing
drug efflux and increasing intracellular concentrations of
chemotherapeutics (Fathy Abd-Ellatef et al., 2020). These
findings suggest a strong chemosensitizing role for curcumin.
Yet, most xenograft studies involve immunodeficient mice that
lack a functional adaptive immune system (Sharma et al., 2005;
Olive and Tuveson, 2006), preventing evaluation of immune-
dependent mechanisms that are central to human CRC biology.
Moreover, the curcumin concentrations applied in vitro (often
10–50 μM) far exceed clinically achievable plasma levels
(<1 μM), raising questions about translational pharmacological
relevance (Anand et al., 2007; Sharma et al., 2007; Wilken
et al., 2011).

Patient-derived tumor organoids (PDOs) represent an important
step toward bridging preclinical and clinical research. Studies have
shown that even relatively low micromolar concentrations of
curcumin can inhibit organoid proliferation, suppress ERK
phosphorylation, and reduce expression of stemness markers such
as CD44, CD133, and LGR5 (Elbadawy et al., 2021). Compared with
cell-line xenografts, organoids preserve inter-patient heterogeneity
and more closely mimic clinical tumor responses, making them
attractive platforms for personalized drug testing and screening of
combination regimens. However, PDO studies remain scarce, with
small sample sizes and variable culture conditions, limiting their
generalizability. In addition, most work has focused on acute
responses (≤72 h) rather than long-term resistance dynamics,
which may underestimate the challenges of clinical translation
(Elbadawy et al., 2021; Furbo et al., 2022).

Collectively, preclinical evidence consistently indicates that
curcumin exerts anti-CRC effects through multi-targeted

signaling suppression, immune modulation, and
chemosensitization. Nevertheless, the majority of findings are
constrained by supraphysiological dosing, variability in curcumin
formulations, limited immune-competent models, and small-scale
PDO studies. Thus, while curcumin emerges as a promising adjunct
or synergistic therapy, rigorous pharmacological
assessment—encompassing standardized dosing protocols,
bioavailability optimization, immune-competent animal studies,
and biomarker-guided patient stratification—is required before
reliable clinical translation can be achieved.

5 Limitations and pharmacological
appraisal of curcumin in CRC

Although curcumin has been widely studied for its potential in
CRC, a rigorous pharmacological appraisal reveals important
limitations that temper enthusiasm for its therapeutic translation
(Table 1). Without such critical analysis, there is a risk of
overestimating curcumin’s value based on preclinical findings
alone. A first concern relates to curcumin’s chemical nature as a
PAINS (Baker, 2017; Nelson et al., 2017; Padmanaban and Nagaraj,
2017). Such compounds are notorious for producing false-positive
results in diverse bioassays due to intrinsic properties such as redox
activity, fluorescence interference, nonspecific protein binding, or
covalent modification of nucleophilic residues. These features
complicate the interpretation of experiments that report
modulation of key signaling pathways, including NF-κB, PI3K/
Akt, Wnt/β-catenin, and STAT3. Many of the supposed “multi-
targeted” effects may reflect assay artifacts rather than genuine
pharmacological specificity. Unless confirmed through orthogonal
assays or validated in vivo, such mechanistic claims should be
regarded with caution.

The limitations become even more evident when examining
in vitro studies. Anti-proliferative or chemosensitizing effects of
curcumin in CRC cell lines such as HCT116, HT-29, or SW480 are
typically observed at concentrations between 5 and 50 μM, with
minimal active concentrations rarely below 5 μM (Link et al., 2013;
Li et al., 2021; Yang et al., 2022). Yet, pharmacokinetic studies
consistently show that even with oral administration of 8–12 g/day
in humans, plasma concentrations seldom exceed 1–2 μM, and
circulating curcumin largely exists in conjugated forms rather than
as free active compound (Vareed et al., 2008; Urošević et al., 2022).
This discrepancy underscores a key translational gap, many effects
reported in vitro are unlikely to occur in vivo at physiologically
achievable exposures. Furthermore, in vitro experiments often lack
rigorous pharmacological controls, with positive and negative
comparators inconsistently included and standardized
pharmacodynamic parameters such as IC50 or therapeutic index
rarely reported. The heterogeneity of exposure times—ranging from
short-term assays to long-term clonogenic models—further
complicates interpretation and limits extrapolation to
clinical contexts.

Animal models provide supportive but similarly constrained
evidence. Xenograft models using immunodeficient mice have
demonstrated that curcumin can inhibit tumor growth or
enhance the effects of chemotherapy, yet these studies often rely
on doses such as 100 mg/kg (Shaikh et al., 2021), which correspond
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to several grams per day in human equivalent dosing, levels not
feasible in clinical practice. In addition, many animal studies employ
formulations with artificially enhanced bioavailability, including
nanoparticles or curcumin–piperine combinations, which are not
consistently available or standardized for human use. A further
limitation is the lack of pharmacokinetic monitoring in tumor
tissues, making it unclear whether observed effects are

attributable to direct tumor exposure or to systemic anti-
inflammatory activity (Dhillon et al., 2008; Ozawa-Umeta et al.,
2020). The frequent reliance on immunodeficient hosts also omits
critical contributions of immune and microbiota pathways, both of
which are proposed to be central to curcumin’s mechanisms in CRC.

Clinical trials, though offering the most relevant data, remain
small, heterogeneous, and often underpowered. Early

TABLE 1 Critical pharmacological appraisal of curcumin studies in CRC.

Study type Dose/exposure
(reported)

HED
(mg/kg/day)

Key limitations Evidence strength Reference

In vitro — CRC cell lines
(mechanistic,
chemosensitization)

Curcumin 5–20 μM;
many reported effects
at ≥10 μM; exposures
typically 24–72 h

N/A Concentrations exceed
clinically achievable
plasma (<~1–2 μM after
oral dosing); MAC not
reported; IC50 partially
reported; PAINS/assay
interference possible

Weak — mechanistic only;
poor direct translational
relevance

Shakibaei et al. (2014),
Toden et al. (2015)

Ex vivo — patient-derived
explants (CRC liver
metastases)

Curcumin ≈5 μM± 5-FU
(5 μM) or oxaliplatin
(2 μM); 24–72 h

N/A Short-term culture (ex
vivo); no systemic
metabolism (ex vivo);
limited explant numbers;
heterogeneous responses;
Phase I trial small sample
size (n = 12), no efficacy
comparison with FOLFOX
alone

Moderate — mechanistic
chemosensitization evidence
(ex vivo) + clinical safety/
tolerability data, but lacks
systemic PK confirmation
and large-scale efficacy
validation

James et al. (2015)

PDOs — patient-derived
organoids

In vitro (PDOs):
Amorphous curcumin
(AC) 0.6–20 μg/mL
(not μM); exposures
24–72 h; combined with
oxaliplatin (0.1–100 μg/
mL), 5-FU (0.1–100 μg/
mL) or irinotecan
(0.1–100 μg/mL); In vivo
(xenografts): AC 20 mg/
mouse/day (oral gavage),
administered for 21 days

In vivo AC: ~56 mg/kg/
day; In vitro (PDOs): N/A

Limited PDO panels;
formulation-dependent
effects; short exposure
windows (in vitro); in vivo
anti-tumor effect
diminished after day 14
(possible due to short AC
half-life); no clinical data

Moderate — more
physiologically relevant than
cell lines, but translational
gap remains (no clinical
validation)

Elbadawy et al. (2021)

Animal models (xenograft) Curcumin (C3 complex):
1 g/kg/day (oral, once
daily); γ-radiation: 4 Gy,
twice weekly (given 1 h
after curcumin for
combination group);
treatment duration up to
30 days

HED ≈83.3 mg/kg/day Animal doses exceed
clinically feasible oral
regimens; many use
enhanced formulations;
xenografts in
immunodeficient hosts;
limited tumor/tissue PK

Moderate — reproducible
tumor suppression in
animals; limited human
translatability without
PK/PD

Kunnumakkara et al.
(2008)

Phase I PK/PD clinical
studies

Oral curcumin
0.45–3.6 g/day
(C3 extract)

≈7.5–60 mg/kg/day Very small cohorts; low
systemic free curcumin
(mostly conjugates);
surrogate endpoints (GST
activity, M1G adducts,
PGE2)

Moderate— confirms safety,
limited PD activity

Sharma et al. (2004),
Garcea et al. (2005)

Phase IIa biomarker/
chemoprevention trials
(ACF, FAP pilot)

Oral 2 or 4 g/day (ACF
trial); FAP pilot:
curcumin 480 mg +
quercetin 20 mg TID
(~1.44 g/day curcumin)

ACF trial:≈ 33–67 mg/kg/
day; FAP pilot:
≈24 mg/kg/day

Very small sample size;
surrogate endpoints (ACF
counts, polyp burden);
short follow-up

Moderate — biomarker
modulation observed but
clinical benefit unproven

Cruz–Correa et al.
(2006), Carroll et al.
(2011)

Randomized clinical trials Oral curcumin
(C3 Complex) 2 g/day;
FOLFOX chemotherapy
given every 2 weeks
for ≤12 cycles; treatment
duration until disease
progression, toxicity, or
withdrawal

≈33 mg/kg/day Underpowered trials;
heterogeneous
formulations/regimens;
variable endpoints; efficacy
neutral/negative

Moderate — safety
supported; OS improved in
CUFOX but limited by small
sample size and baseline
imbalances; no consistent
PFS benefit

Howells et al. (2019)
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pharmacokinetic and pharmacodynamic studies confirmed that
curcumin is safe at doses up to 3.6 g/day and demonstrated
reductions in biomarkers such as DNA adducts, but these were
limited to fewer than 20 patients and focused on surrogate endpoints
of uncertain predictive value (Sharma et al., 2004; Garcea et al.,
2005). Phase IIa studies, including those assessing aberrant crypt foci
(ACF) or familial adenomatous polyposis (FAP), suggested modest
benefits but were limited by small sample sizes and endpoints not
directly linked to long-term clinical outcomes (Carroll et al., 2011).
More recent studies combining curcumin with chemotherapy in
metastatic CRC have shown acceptable safety but no clear
improvements in progression-free or overall survival, while
randomized placebo-controlled trials in locally advanced rectal
cancer failed to demonstrate clinical benefit and in some cases
even suggested numerically worse complete response rates in
curcumin-treated groups (Gunther et al., 2022). These results
highlight a striking disconnect between preclinical promise and
clinical reality.

Taken together, the current body of evidence illustrates that
while curcumin is biologically active in CRC-related systems, its
translation into clinically meaningful efficacy remains unproven.
The PAINS nature of curcumin raises the possibility of false-positive
mechanistic findings, in vitro studies rely on supraphysiological
concentrations, animal models use doses or formulations not
applicable to patients, and clinical trials remain exploratory and
inconclusive. This evidence landscape underscores the need for a
more rigorous and standardized research framework. Future work
should emphasize dose–response characterization, tissue-level
pharmacokinetic–pharmacodynamic correlation, the use of
clinically relevant and immunocompetent models, and adequately
powered randomized trials with standardized formulations and hard
endpoints such as progression-free survival and overall survival.
Equally important is the incorporation of biomarker-driven patient
stratification, allowing identification of subgroups most likely to
benefit from curcumin-based interventions. In summary, curcumin
research in CRC offers both opportunities and cautionary lessons. It
demonstrates the potential of natural products to modulate complex
biological systems, but also illustrates the risks of overinterpreting
descriptive or artifact-prone data. Only by adopting
pharmacologically rigorous and clinically robust approaches can
the field determine with confidence whether curcumin holds
genuine therapeutic relevance for colorectal cancer.

6 Future directions

Although curcumin has long been celebrated as a natural product
with broad pharmacological potential, its clinical translation in CRC
continues to face major obstacles. The accumulated literature
demonstrates that curcumin can influence the
microbiota–immune–signaling axis and reshape the tumor
microenvironment, yet the strength of these findings remains
uncertain. A critical challenge arises from the recognition that
curcumin belongs to the class of PAINS, which are notorious for
producing assay artifacts and nonspecific signals in biochemical and
cellular experiments. This raises the risk that many of the reported
“anticancer” effects may reflect in vitro artifacts rather than
pharmacologically meaningful mechanisms. Future research must

therefore adopt a more rigorous and hypothesis-driven approach to
establish the true scope and relevance of curcumin’s biological activity.

One of the most pressing needs is to move beyond descriptive
evidence toward rigorous pharmacological standards. Current
reports often claim that curcumin inhibits NF-κB activation,
regulates CD8+ T cells, or alters gut microbiota composition, but
such conclusions are frequently unsupported by systematic
dose–response analyses or pharmacokinetic validation. The use of
concentrations far above clinically achievable levels undermines
translational credibility. It is essential that future studies define
minimal effective concentrations, establish concentration–effect
curves, and incorporate appropriate controls to exclude
nonspecific PAINS-related effects (Nelson et al., 2017). Moreover,
detailed reporting of formulation, purity, and delivery systems must
become standard to enable reproducibility and cross-study
comparison. Without this level of rigor, mechanistic claims risk
remaining anecdotal rather than clinically actionable. Equally
important is the need to bridge the persistent gap between
in vitro assays and in vivo relevance. Curcumin’s proposed
mechanisms of action, ranging from immune modulation to
microbiota reshaping, cannot be meaningfully assessed in
conventional tumor cell lines alone. More advanced models are
required, including patient-derived organoids co-cultured with
immune components, immune-competent mouse models, and
germ-free or microbiota-humanized systems that capture the
host–microbiota–immune interplay. These platforms will help
clarify whether curcumin’s observed effects reflect direct
cytotoxicity, immunomodulation, microbial reshaping, or artifacts
of simplified assay systems. Without this integration, the field risks
overinterpreting results from reductionist models. Another critical
issue lies in curcumin’s unfavorable pharmacokinetic profile. Poor
solubility, extensive metabolism, and rapid clearance limit systemic
exposure, raising the paradox of how curcumin exerts strong in vitro
activity at concentrations never attained in human plasma.
Although formulation strategies such as nanoparticles, liposomes,
and phytosomal complexes have improved bioavailability,
systematic pharmacokinetic/pharmacodynamic (PK/PD)
correlations remain rare. Future research should consistently
report plasma and tissue concentrations alongside
pharmacodynamic readouts, calculate human equivalent doses
when extrapolating from animal models, and explore localized
delivery systems that exploit curcumin’s potential activity in the
gut mucosa without requiring high systemic levels. Only through
this type of pharmacological discipline can the field resolve the
disconnect between laboratory efficacy and clinical plausibility.

Clinical evidence to date, while encouraging in isolated trials,
remains fragmented and underpowered. Small sample sizes,
heterogeneous formulations, and inconsistent endpoints have
limited the interpretability of curcumin trials in CRC. Future
studies must be designed as adequately powered, biomarker-
driven randomized controlled trials, ideally stratifying patients by
molecular subtype, immune contexture, or microbiota composition.
Integration of multi-omics biomarkers into trial design could
transform exploratory observations into precision-guided
interventions, identifying patient subgroups most likely to benefit.
Equally important is the use of standardized clinical endpoints such
as progression-free survival, overall survival, and validated
biomarker changes, rather than reliance on surrogate markers alone.
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Avoiding the PAINS trap also requires cultural change within
the field. Researchers must implement PAINS-aware assay design,
including aggregation counterscreens and orthogonal validation
methods. Furthermore, rather than continuing to portray
curcumin as a universal anticancer agent, future research should
focus on contexts where its effects are most reproducible and
mechanistically plausible, for example, in inflammation-associated
CRC where microbiota modulation and mucosal barrier protection
may be more relevant than direct tumor cytotoxicity.

Taken together, these considerations point to a research roadmap
that prioritizes standardization and reproducibility in the near term,
biomarker discovery and early-phase stratified trials in the medium
term, and large-scale precision-guided randomized trials in the long
term (Figure 3). Such a staged approach will allow the field to move
from descriptive enthusiasm toward rigorous evidence-based
evaluation. The ultimate goal is not merely to confirm whether
curcumin has anticancer activity, but to define under what
conditions, in which patient subgroups, and through which
validated mechanisms such activity can be reliably observed. In
conclusion, curcumin represents both a cautionary tale and a
continuing opportunity in natural product research. Its wide-
ranging mechanistic effects have attracted enormous scientific
attention, yet the translational significance of these findings
remains uncertain without stronger pharmacological foundations.
By adopting rigorous assay standards, bridging the in vitro–in vivo

gap, addressing pharmacokinetic limitations, and embedding
biomarker-guided design into clinical research, the field can move
beyond descriptive speculation and toward true precision medicine.
Only under such conditions can curcumin be repositioned from a
widely cited but weakly validated compound into a scientifically
credible candidate for colorectal cancer prevention or therapy.
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