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Toxicity has different meanings in traditional Chinese medicine (TCM) and modern
toxicology. Integrative toxicology, a novel discipline proposed by our team, offers a
robust solution for the scientific elucidation of toxicity in traditional Chinese
medicines. Aconitum carmichaelii Debx. (aconite), a classic herbal medicine with
a long-standing TCM clinical application history, demonstrates prominent effects in
rescuing yang to reverse critical conditions, warming meridians to dispel cold, and
tonifying yang to invigorate qi. It is widely used to treat yang deficiency, cold
syndromes, and related disorders. However, the dual toxicity-efficacy attribute of
aconite has substantially constrained the safety and breadth of its clinical application,
leading to its classification as a “high-risk herb.” Thus, this review introduces the
concept of integrative toxicology to comprehensively summarize the chemical
composition, pharmacological activity, and toxicity mechanisms of aconite.
Particular emphasis is placed on various strategies and mechanisms for toxicity
attenuation and efficacy enhancement within TCM formulae, including traditional
approaches, such as processing and compatibility, as well as potential detoxification
pathways identified in modern pharmacological studies. By systematically
integrating the framework of integrative toxicology, this work aims to provide a
more scientific and secure theoretical basis for the clinical application of aconite,
promoting its transformation from a “high-risk herb” to a “controllable therapeutic
agent” and thereby maximizing its potential value in modern medicine.

KEYWORDS

aconite, integrative toxicology, detoxification, compatibility, pharmacologic effects,
toxicology

1 Introduction

There is a significant difference between the understanding of toxicity in traditional
Chinese medicine (TCM) and modern toxicology. TCM regards toxicity as the “bias” of drugs,
emphasizes the therapeutic logic of “correcting bias with bias,” and considers toxicity to be a
dynamic property of drug effects that should be regulated through individualized
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administration and compounding (Zhao et al., 2024). In contrast,
modern toxicology focuses on the quantitative damage mechanism of
exogenous substances to organisms and defines the safety threshold
through standardized experimental models with their dose-response
relationship as the core. Based on the above differences, our team
innovatively proposes to integrate toxicology as an emerging
interdisciplinary discipline. Its objective is to analyze the
mechanism of toxicity and the law of toxicity reduction using
multidisciplinary tools, and to promote the safety evaluation of
TCM from “unclear” to “quantifiable and controllable” (Xu
et al., 2024).

The processed product of Aconitum carmichaelii Debx.
(prepared aconite root, the processed lateral root commonly used
in TCM) has the effect of warming yang and dispersing cold and
returning yang to save the reverse. Clinical applications of Aconitum
carmichaelii Debx. are seen throughout the history of TCM,
especially for yang deficiency and cold condensation and other
syndromes, with the best therapeutic effects. It has been listed as
the first “emergency medicine” of past generations. However, the
Chinese Pharmacopoeia has clearly labeled it as “highly toxic,” and
the bis-ester-ype alkaloids in aconite are not only the source of
cardiotonic and anti-inflammatory pharmacological activity, but
also the core causative agents of cardiotoxicity and liver injury
(Luo et al., 2018; Gao T. X. et al., 2022). The Pharmacopoeia
explicitly stipulates that aconite must be decocted before use,
with a dosage range of 3–15 g. The total of diester-diterpenoid
alkaloid content must not exceed 0.010% to control the toxicity risk.
The lethal dose of pure aconite alkaloid in Homo sapiens is 2 mg,
5 mL for aconite tincture, and 1 g for wild plants. This
pharmacopeial positioning of “toxicity and efficacy sharing the
same origin” makes it difficult to balance toxicity control and
efficacy optimization. Traditional research has predominantly
focused on single components or isolated mechanisms, making it
challenging to systematically elucidate the molecular basis of the
dynamic equilibrium between toxicity and efficacy. This highlights
the necessity of conducting integrated toxicological research to
achieve controllable toxicity (Luo et al., 2018; Ch, 2020;
Gao T. X. et al., 2022; Zhang D. X. et al., 2022).

This review is guided by the concept of integrated toxicology and
comprehensively synthesizes the chemical composition,
pharmacological effects, and toxicity mechanisms of aconite. It
focuses on various methods and mechanisms of toxicity
reduction and potency enhancement within TCM formulae, such
as traditional methods of concoctions and combinations, as well as
potential detoxification pathways identified in modern
pharmacological studies. By integrating a systematic investigation
of toxicology, the aim is to provide a more scientific and safer
theoretical basis for the clinical application of aconite, and to
promote its transformation from a high-risk herb to a
controllable therapeutic agent. This will enable better utilization
of its potential value in modern medicine.

2 Materials and methods

The present review was conducted using a standardized
literature search and screening process to obtain the core data to
systematize the toxicity-pharmacological characteristics of aconite

(Aconitum carmichaelii Debx.) and integrate the progress of
toxicological studies.

2.1 Search principles

The literature was searched using the “combination of subject
words + free words” search principle, and a parallel search of
Chinese and English literature was conducted. We used the
subject words to identify core research on the toxicology and
pharmacology of aconite and the free words to expand related
terms (e.g., “concocting to reduce toxicity” and “compounding to
reduce toxicity”), while also considering both traditional medical
records and current research advancements.

2.2 Databases used

The databases, which included PubMed, Web of Science, CNKI,
Wanfang Data, Chinese Pharmacopoeia 2025 Edition, and others,
were divided into Chinese databases, English databases, and books.

2.3 Timeframe for searching the literature

Although the majority of the cited material was centered
between 2017 and 2025, the reference publication dates ranged
from 1990 to 2025. Early published literature was searched because
the classical theory, the conventional concoction method, etc., are
the main subjects of some early research, and have some
reference value.

2.4 Keywords

The following keywords were searched: “pharmacological
effects,” “toxicological effects,” “compounding to reduce toxicity,”
“concocting to minimize toxicity,” “aconite,” and some related terms
like “Fuzi.”

3 Chemical composition studies

Over more than half a century of systematic research, the
chemical substance basis of aconite and its processed forms has
been fully analyzed. This medicinal plant mainly contains alkaloids,
steroids, lipids, organic acids, and trace elements. Among them,
some C19-type diesters, such as aconitine, are regarded as the main
active ingredients and possess the core pharmacological effects, such
as cardiotonic and antitumor effects (Li S. et al., 2019; He et al.,
2023). The aconite alkaloids can be categorized into the following
four types based on structural characteristics: the diester type (e.g.,
aconitine, hypaconitine, neoaconitine), the monoester type (e.g.,
benzoylaconitine), the aminol type (e.g., aconine), and other types
(containing structural units such as flavonoids and saponins). The
diester-type alkaloids have significant cardiotoxicity, which can be
converted to less toxic intermediates through stepwise hydrolysis
and metabolism, ultimately resulting in the nearly nontoxic aminol
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type (Li S. et al., 2019; Hu et al., 2025). In addition, according to the
principle of similarity solubility, alkaloids with different alkalinity
strengths can be extracted under different pH conditions, such as
C19-type diterpene alkaloids are mostly extracted from fat-soluble
and weakly alkaline alkaloids, while extracts from strongly alkaline
sites are mostly C20-type diterpene alkaloids. The formation of
water-soluble alkaloids in aconite is mainly achieved from the
alkaline hydrolysis pathways of fat-soluble alkaloids (Xu et al.,
2021). The diversity and complexity of these chemical
constituents provide a rich material basis for pharmacological
studies and clinical applications of aconite.

In addition to alkaloids, flavonoids and polysaccharides in
aconite are also involved in its multidimensional pharmacological
effects, and their toxicity is significantly less than that of alkaloids.
The polysaccharide fraction of aconite is characterized by low
toxicity and mild action, with bioactivities mainly including
immunomodulation, antitumor, anti-inflammatory, and
hypoglycemic effects (Tang et al., 2023; Zhang et al., 2025).
Although the flavonoids in aconite are limited in variety, existing
pharmacological studies have shown that they have antioxidant and
anti-inflammatory activity. However, their specific molecular
mechanisms have not been fully elucidated and need to be
further investigated (Tang et al., 2017; Fu et al., 2022). The
molecular and structural formulas of the alkaloids and their
derivatives involved in the aconite are shown in the following table.

4 Overview of
pharmacological research

Chinese medicine plays a leading role in the treatment of many
clinical diseases. “Justice of the Materia Medica” recorded aconite
“to restore the Yang to save the first product medicine, its power can
rise and fall, can reach the internal, can be dispersed.” It can be seen
that the aconite can be through the mechanism of bi-directional
regulation, to achieve a dynamic balance of the body’s functions, and
both the internal internal organs, the external penetration of the
surface of the medicinal properties, so that the physiological
function of the body systemic regulation and holistic
improvement, the chemical components of aconite are the main
bearer of multiple pharmacological effects. The following sections
summarize the pharmacological effects of aconite and the
mechanism of action, as illustrated in Figure 1.

4.1 Cardiotonic effects

In Chinese medicine theory, heart failure is attributed to “qi
deficiency and yang deficiency,” and aconite, as a TCM that benefits
yang, replenishes qi, and restores yang, is still widely used in modern
clinical practice for cardiovascular diseases, such as heart failure,
with a recommended clinical dosage of 1.5–3 g (Chan et al., 1994;
Chan, 2009; Xing et al., 2023). The cardiotonic activity of aconite is
mainly attributed to its chemical constituents, including alkaloids,
such as demethyl coclaurine and aconitine; glycosides, such as
cardiac glycosides; aconite glycosides, and the polysaccharide
fraction (Xu et al., 2021; Wang Q. et al., 2023). The mechanism
by which aconite exerts its cardiotonic effects can be summarized

into the following aspects: (1) Disrupts ion concentrations within
myocardial cells: Myocardial cells contain various ions and their
corresponding enzymes, which affect cardiac contraction and
relaxation. Water-soluble alkaloids increase intracellular Na+

concentrations by activating voltage-gated sodium channels,
which, in turn, activate the Na+/Ca2+ exchanger retrograde
transport mode and promote Ca2+ inward flow to enhance
myocardial contractility, while inhibiting calcium-ion overload
and apoptosis by regulating Na+/K+-ATPase activity. In vitro
investigations showed that the water-soluble alkaloids of aconite
at concentrations of 0.02 and 0.04 g/L could decrease the activity of
Na+-K+-ATPase while increasing the activity of Ca2+-Mg2+-ATPase
and Ca2+-ATPase on the cell membrane. The myocardial cells of the
heart failure model in the treated groups (water-soluble alkaloids)
showed noticeably improved cell viability and beating after 1.5 h.
When aconitine, an aconite alkaloid, acts on potassium ion
channels, it inhibits potassium ion efflux, prolongs the duration
of the action potential, and enhances myocardial contractility (He
et al., 2014; Xu et al., 2021; ZhouW. et al., 2021). (2) Acts on cardiac
receptors: Aconite produces a positive inotropic action by exciting
adrenergic receptors, including cardiac β1 and α receptors. The heart
rate, cardiac output, and myocardial contractility of rats were all
markedly elevated by a 30 g/kg dose of diluted aconite alcohol
extract. Additionally, cardiac cell damage was decreased, and the
TCM had a cardiotonic impact by inhibiting the overexpression of
cytokines, such as nitric oxide (NO), tumor necrosis factor (TNF-α),
and serum interleukin-6 (IL-6) (Zhao et al., 2012; Xing et al., 2022;
Yang Y. et al., 2022). (3) Interferes with signaling pathways: The
active ingredients in aconite can also regulate related proteins and
signaling pathways, such as modulating apoptosis-associated
proteins, protecting myocardial cells, and inhibiting cell
apoptosis. Animal experimental results demonstrated that aconite
decoction administered at doses of 5 g/kg, 2.5 g/kg, and 1.25 g/kg
could significantly upregulate the PI3K/Akt signaling pathway
(Wang et al., 2019; Liu et al., 2025).

The polysaccharide fraction of aconite also shows significant
pharmacological activity in improving cardiac function, which can
scavenge reactive oxygen species (ROS) and reduce mitochondrial
damage, thus slowing cardiomyocyte apoptosis and minimizing
cardiomyocyte damage. It also regulates the autonomic nervous
system, enhances sympathetic nerve activity, and produces positive
inotropic effects to further enhance myocardial contractility (Zhang
J. et al., 2022).

4.2 Anti-inflammatory and
immunomodulatory effects

Aconite has remarkable anti-inflammatory and
immunomodulatory activity, which is mainly mediated by its
diverse chemical components, especially the fat-soluble alkaloids.
The anti-inflammatory mechanism of aconite (Aconitum
tanguticum (Maxim.) Stapf, a related species of Aconitum
carmichaelii Debx.) is primarily related to effects to inhibit pro-
inflammatory signaling pathways and reduce cytokine release, such
as alleviating inflammatory damage by blocking the nuclear factor
(NF)-κB andMAPK signaling pathways and acting on macrophages
(Ye et al., 2021; Ye et al., 2023). Among them, the mechanisms
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involving alkaloids primarily encompass the following aspects: (1)
Benzoylaconine (BAC) exerts its effects by inhibiting the expression
of Toll-like receptor 4 (TLR-4), reducing the phosphorylation of
upstream TAK1, and subsequently blocking the activation of
downstream NF-κB and MAPK pathways. For example, in cell
experiments, RAW 264.7 macrophages activated by
lipopolysaccharide (LPS) were treated with BAC at
concentrations of 1 μM, 10 μM, and 100 μM. At all three
concentrations, BAC inhibited the production of pro-
inflammatory cytokines (IL-6, TNF-α, and IL-1β) and
inflammatory mediators (NO), while downregulating the
expression of iNOS and COX-2, thereby exerting anti-
inflammatory effects (Zhou C. et al., 2021). (2) In contrast, the
water-soluble component demethyl coclaurine exerts its effects by
inhibiting the NF-κB pathway and activating the Nrf2/HO-
1 signaling axis. For example, when 0.5 μmol/L of demethyl

Lindera aggregata alkaloid was applied to BV2 cells under
inflammatory conditions (LPS activation) for 1 day, it
significantly downregulated the expression of inflammatory
markers, such as TNF-α, IL-6, NO, and prostaglandin E2 (Yang
et al., 2020; Xu et al., 2021). (3) Aconite can also exert anti-
inflammatory effects by downregulating costimulatory molecules,
such as CD80, to inhibit dendritic cell maturation, while balancing
Th1/Th2 differentiation and blocking the inflammatory cascade
response. At a concentration of 2 mg/mL, formulations
containing Aconitum carmichaelii significantly decreased the
overexpression of IL-1β, IL-12, interferon (IFN)-γ, and IL-6 (Ji
et al., 2017).

In addition to alkaloids, the polysaccharide fraction of aconite
also plays a key role in immune regulation, with effects characterized
by low toxicity and mild bioactivity. Its immune regulatory effects
are manifested in multiple aspects: (1) Studies have shown that the

FIGURE 1
Summary of the main pharmacological effects of aconite.
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polysaccharide fraction of aconite can enhance the organ coefficients
of the spleen and thymus, promote the proliferation of splenic
lymphocytes and abdominal macrophages, and increase the
serum concentrations of NO and IFN-γ in mice. (2) The
polysaccharides in Heshun tablets can antagonize
cyclophosphamide-induced immunosuppression by activating
immune effector cells, such as macrophages, and regulate
immune homeostasis through both intrinsic and adaptive
immunity. The polysaccharide fraction of aconite extract can also
inhibit the differentiation of macrophages to pro-inflammatory
phenotypes and alleviate excessive inflammatory responses (Hu
Q. et al., 2023; Li et al., 2023). (3) Aconite polysaccharides can
also improve immune function by regulating the composition of
intestinal flora, elevating short-chain fatty acid levels and reversing
decreases in the immune organ index and the abnormal expression
of inflammatory factors in immunosuppressed mice (Ran T.
et al., 2023).

4.3 Antitumor effects

In the basic theory of TCM, the pathogenesis of cancer can be
summarized as “deficiency of yang qi, deficiency of the positive and
the negative, and deficiency of the basic and the standard.” Aconite,
as a representative herb for warming the yang and dispersing the
cold, with its unique mechanism of “supporting the positive and
consolidating the basic and warming the yang qi,” has demonstrated
important value as an adjuvant treatment for tumors (He et al.,
2024). Pharmacological studies have shown that the antitumor
effects of aconite itself and its compound preparations are related
to the alkaloidal components it contains and work well. Its
anticancer mechanisms primarily include regulating signaling
pathways, activating pro-apoptotic factors, modulating gene-
protein pathways, and enhancing immune functions. These
effects are synergistically achieved through the following four
dimensions: (1) Diester alkaloids from aconite can inhibit tumor
cell proliferation by regulating multiple signaling pathways and
suppressing the expression of cell cycle-related proteins. For
example, in melanoma, aconitine exerts antitumor effects by
downregulating the MAPK/ERK1/2 and PI3K/AKT signaling
pathways, thereby reducing the expression of the cell cycle-
related protein proliferating cell nuclear antigen. Additionally,
when liver cancer cells were treated with aconitine at
concentrations below 20 μg/mL, alkaloids significantly inhibited
the activation of the P38/MAPK signaling pathway, thereby
suppressing liver cancer cell proliferation (Du et al., 2013; Xiong
et al., 2018; Gao Y. B. et al., 2022; Zhang W. et al., 2022). (2)The
various alkaloids in aconite also exhibit varying degrees of regulatory
effects on pro-apoptotic factors, manifested as inducing cancer cell
apoptosis, reducing tumor volume, activating the mitochondrial-
dependent apoptotic pathway, and exerting antitumor effects by
enhancing autophagy. For example, aconitine at concentrations of
15–60 μM can significantly upregulate the pro-apoptotic factor Bax,
inhibit the proliferation of pancreatic carcinoma cells, and induce
apoptosis. In animal experiments, a dose of 100 mg/kg of aconitine
significantly suppressed tumor growth and induced apoptosis (Ji
et al., 2016; Zhang W. et al., 2022). (3) Network pharmacological
studies have shown that the antitumor effects of aconite are also

related to its regulation of the adenosine phosphorylase gene and
related protein pathways (Lu et al., 2021). (4) Aconite water extract
can also serve as an immune adjuvant by activating c-Jun
N-terminal kinase to enhance the infiltration level of natural
killer cells, thereby strengthening immune function and achieving
antitumor effects (Yang et al., 2023).

In addition to alkaloids, phenolic compounds and the
polysaccharide fraction in aconite also exhibit significant antitumor
activity. Their mechanism of action involves upregulating the
expression levels of pro-apoptotic proteins, such as Bax, regulating
apoptotic pathways, mediating the process of apoptosis in tumor cells,
inhibiting the abnormal proliferation of tumor cells, and blocking the
key pathway of tumor angiogenesis (Zhang W. et al., 2022).

4.4 Analgesic effects

Pharmacological studies have confirmed that the alkaloids
contained in aconite are of great value in treating mild-to-
moderate pain, such as neuropathic pain, osteoarthralgia, and
cancer pain, by modulating the nerve conduction pathway and
inhibiting the release of inflammatory mediators (Luo et al.,
2020; Li L. et al., 2022). In four classic mouse pain models, the
hot plate model, the acetic acid-induced writhing phantom model,
and the administration of aconitine at concentrations of 0.3 mg/kg
and 0.9 mg/kg demonstrated significant antinociceptive activity,
exhibiting marked therapeutic effects on acute thermal stimulation
pain, visceral pain, and inflammatory pain (Deng et al., 2021). The
mechanism of its analgesic effect can be summarized into the
following aspects: (1) Overall analgesic mechanism: Diterpenoid
alkaloids of aconite (Aconitum nagarum Stapf, a related species of
Aconitum carmichaelii Debx.), as the central components of the
analgesic mechanism, act mainly through a voltage-gated sodium
channel blockade mechanism (Hu J. et al., 2023; Zhang W. et al.,
2024). (2) Central analgesic mechanism: Aconite can activate spinal
microglial cells and stimulate β-adrenergic receptors to exert
analgesic effects. A microinjection (5–100 ng/rat) of Aconitum
carmichaelii alkaloids into specific intracranial nuclei increased
central norepinephrine levels within 30 min of administration,
and accelerated norepinephrine turnover rates in the brainstem
and spinal cord (Sun et al., 2020; Li S. L. et al., 2022). (3) Peripheral
analgesic mechanism: Aconitine acts directly on dorsal root
ganglion neurons in the non-central nervous system to reduce
the generation and conduction of pain. The active component
neoline extracted from the processed aconitum polysaccharide
fraction was reported to significantly inhibit peripheral neural
pain, such as cold sensation, pain sensation, and mechanical
pain, in mice when subcutaneously injected at a concentration of
10 mg/kg for 4 days (Suzuki et al., 2016; Xu et al., 2021). In addition,
analgesic effects are also achieved by activating the G protein/PI3K/
PIP2 signaling pathway and shutting down TRPV1 channels (Xiao
et al., 2019; Xu et al., 2021; Gao Y. B. et al., 2022).

4.5 Other pharmacological effects

In addition to the aforementioned pharmacological activities,
aconite also exhibits various biological activities, such as antioxidant,
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hypoglycemic, and anti-arrhythmia effects. Research on the active
components and their mechanisms of action provides experimental
evidence for expanding clinical applications.

4.5.1 Antioxidant effects
Studies have shown that the antioxidant effects of C19-type

diterpenoid alkaloids contained in aconite (Aconitum
handelianuma, a related species of Aconitum carmichaelii Debx.)
mainly depend on active groups, such as phenolic hydroxyl and
ammonia groups, in the molecular structure of Broussonetia
papyrifera. These effects are achieved through a dual mechanism
involving direct scavenging of free radicals (e.g., ROS/RNS) and the
formation of ligand chelates with transition metal ions (Yin
et al., 2016).

4.5.2 Hypoglycemic effects
The polysaccharides from aconite (Aconitum carmichaelii

Debx. and Aconitum coreanum) exhibit significant activity in
glucose metabolism regulation, particularly in improving insulin
resistance and glycemic homeostasis. This is achieved by
promoting peripheral tissue glucose utilization, enhancing
insulin sensitivity, and regulating lipid metabolism, ultimately
leading to glycemic homeostasis regulation. The anti-
inflammatory RG-II-type polysaccharide (KMPS) purified from
Aconitum coreanum decreases the serine phosphorylation of
insulin receptor substrates in the liver, alleviates inflammation
in serum and insulin target tissues, and improves glucose
metabolic disorders. After 4 weeks of KMPS treatment at
400 mg/kg, serum insulin and C-peptide levels were reduced in
diet-induced obese mice, along with significant decreases in free-
fatty acid and triglyceride levels (Su et al., 2020; Fu et al., 2022;
Zhang et al., 2025).

4.5.3 Anti-arrhythmia effects
Unlike the single active component-dominant mode observed

to produce antioxidant and hypoglycemic effects, the anti-
arrhythmia action of aconite exhibits multi-target synergistic
characteristics. Both its alcohol extract and water extract
demonstrate significant inhibitory effects on ventricular
fibrillation, primarily mediated by characteristic C18- and C19-
type diterpenoid alkaloids. The specific mechanisms include C18-
type diterpenoid alkaloids (e.g., lappaconitine), targeting the
regulation of cardiomyocyte Na+ channels. At doses of
0.05–0.15 mg/kg, these diterpenoid alkaloids can suppress the
occurrence of premature ventricular beats and ventricular
tachycardia. C19-type diterpenoid alkaloids regulate the
pathological process of arrhythmia by inhibiting myocardial
oxidative stress, modulating mitochondrial energy metabolism
homeostasis, and interacting with key biomolecules such as
Parazacco spilurus subsp. spilurus. The intravenous
administration of norlinderaline at a dose of 2.5 mg was
reported to accelerate the heart rate of bradycardia patients (Liu
et al., 2023).

Although the mechanisms of the above three pharmacological
effects are different, they jointly reflect the diversity of the chemical
components of aconite and their ability to systematically regulate the
physiological functions of the body, providing more possibilities for
its application in the treatment of complex diseases.

5 Overview of toxicological studies

5.1 Cardiotoxicity

The cardiotoxicity of aconite (Aconitum leucostomumWorosch,
a related species of Aconitum carmichaeliiDebx.) possesses the most
prominent toxicological characteristic, with the primary toxic
components being diester C19-diterpenoid alkaloids. In vitro
toxicity experiments in the rat H9c2 cardiomyocyte cell line
showed a half-maximal inhibitory concentration (IC50) of
aconitine of 562.06 μg/mL and significant dose-dependency.
Other C19-type alkaloid components, such as delvestidine and
anthranoyllycoctonine, exhibited markedly higher toxicity
compared to aconitine (Nie et al., 2017). The mechanisms of
cardiotoxicity induced by aconite can be roughly summarized as
follows: (1) Electrophysiological mechanisms: Aconitine triggers
persistent sodium inward flow by inhibiting the inactivation of
cardiomyocyte voltage-gated sodium channels (Nav1.5), leading
to the abnormal depolarization of cardiomyocyte membrane
potentials (Coulson et al., 2017; Zhang X. C. et al., 2020). (2)
Calcium homeostasis mechanism: The sustained opening of Na+

channels leads to the persistent opening of L-type calcium channels
in Parazacco spilurus subsp. spilurus, thereby further triggering
intracellular Ca2+ homeostasis imbalance manifested as
tachyarrhythmia. Animal experiments demonstrated that 1 μmol/
LAconitum carmichaelii alkaloid promoted Ca2+ influx in rats, while
5 and 10 μmol/L induced ventricular arrhythmia in rat
cardiomyocytes (Zhou et al., 2013; Jiang et al., 2021). (3)
Molecular targets: Mechanistic studies have demonstrated that
alkaloids from Aconitum carmichaelii disrupt myocardial calcium
signaling and electrophysiological balance, ultimately inducing
arrhythmia through pathways including interfering with
sarcoplasmic reticulum ryanodine receptor (RyR2) function,
upregulating RyR2 expression, enhancing sarcoplasmic reticulum
calcium release, and inhibiting L-type calcium channels (Fu et al.,
2008; Chen R. C. et al., 2013). (4) Mitochondrial dysfunction:
Mitochondrial dysfunction plays a significant role in the
cardiotoxicity of Aconitum carmichaelii alkaloids. These alkaloids
can induce mitochondrial oxidative stress and impair ATP
synthesis, mediating cardiomyocyte apoptosis and lipid
peroxidation. H9c2 cardiomyocytes treated with 25 g/L of aconite
water extract for 1 day showed increased mitochondrial ROS levels,
decreased mitochondrial membrane potential, and evident
mitochondrial damage (Zhao et al., 2015; Jiang et al., 2021). (5)
Clinical manifestations: In clinical practice, aconite poisoning often
presents as multiple coexisting features caused by intersecting
mechanisms. Symptoms can manifest in as little as 10 min and
include palpitation, chest distress, tachycardia, and, in severe cases,
the effects may even progress to heart failure (Lin et al., 2004; Sun
et al., 2018; Hao et al., 2020).

5.2 Hepatotoxicity

Although the heart is the main target organ of aconite toxicity,
its hepatotoxic effects have gradually attracted academic attention.
Toxicokinetic analysis revealed that the active ingredient of aconite
showed multi-organ distribution after absorption, in which the
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concentration of liver tissue distribution was significantly higher
than that of other organs (Hao et al., 2020). Hepatotoxicity can be
identified by the following: (1) Animal toxicology experiments: Male
Wistar rats were continuously gavaged with the water extract of Hei
shunpian (HSP, processed aconite root) for 20 days. Serum
transaminase levels were significantly elevated in both the low-
dose HSP group (20 g/kg) and the high-dose HSP group (40 g/kg),
with an accumulation of lipid peroxidation products in liver tissues
(Zhang K. et al., 2020). (2) Histopathological observation:
Mesaconine can cause histopathological changes in rat liver tissue
at specific dose thresholds. After a single oral mesaconine gavage
dose of 10 mL/kg to Sprague-Dawley (SD) rats, followed by 4 h of
fasting and continuous observation for 2 weeks, the liver of rats in
each administration group exhibited fatty utetheisa kong vacuoles or
degeneration, along with hepatocyte necrosis (Chen et al., 2023). (3)
Molecular mechanisms: The regulation of targets, such as RAC-
alpha serine/threonine-protein kinase 1 (AKT1), interleukin-2
(IL2), coagulation factor II (F2, also known as prothrombin),
glutathione reductase (GSR), and epidermal growth factor
receptor (EGFR), affects pathways including T-helper 17 cell
(Th17 cell) differentiation, the Janus kinase-signal transducer and
activator of transcription (Jak-STAT) signaling pathway, and
glutathione metabolism, inducing oxidative stress, metabolic
disorders, cell apoptosis, immune responses, and the excessive
release of inflammatory factors, ultimately leading to liver injury.
HepG2 cells treated with aconitine demonstrated that the uptake of
multiple diester-type alkaloids may rely on organic cation/proton
antiport transporters, thereby achieving distribution in the liver
(Cong et al., 2019; Zhang K. et al., 2020).

5.3 Acute toxicity

(1) Clinical and pathological characteristics: The acute toxicity
of aconite is characterized by multi-organ dysfunction syndrome,
with clinical symptoms including behavioral inhibition (idleness
and prone stillness), gastrointestinal reactions (nausea), motor nerve
disorders (limb paralysis), and central nervous system excitation-
inhibition imbalance (paroxysmal muscle tonus and convulsions),
with significant dose-dependent pathological changes. In an
aconitine toxicity experiment in SD rats, the low-dose
administration groups (1.00 and 2.15 mg/kg) exhibited toxic
characteristic responses, such as lethargy and spasms, within
1 day, but returned to normal after 1 day. In contrast, the
medium- and high-dose administration groups (4.64 and
10.0 mg/kg) showed toxic characteristics within 2 h and died
successively within 4 h (Li et al., 2013; Chen et al., 2023). (2)
Core toxicological mechanisms: Aconitine inhibits voltage-gated
sodium channel inactivation, triggering the persistent sodium
current-mediated depolarization of neuronal and myocardial cell
membrane potentials, leading to fatal ventricular arrhythmia. This
mechanism can also induce a series of toxic reactions, such as
neuromuscular transmission blockade (reduced acetylcholine
release). One patient ingested approximately 120 g of steamed
aconite slices and developed palpitations and generalized
numbness within 1 h, subsequently falling into a coma.
Additionally, three patients died from severe systemic damage
after consuming over 50 g of aconite (Yang X. et al., 2017; Chen

et al., 2023). (3) Factors affecting toxicity: It is noteworthy that the
toxicokinetic differences of Aconitum carmichaelii after
administration may be closely related to cytochrome
P450 enzyme polymorphism and processing parameters. Rat
microsomes were selected for the in vitro analysis of aconitine
metabolism measured by high-performance liquid
chromatography (HPLC). The results indicated that CYP3A4 was
responsible for the primary metabolism of aconitine. Moreover, rats
of different sexes exhibited varying tolerance levels to the acute oral
toxicity of aconitine (Ye et al., 2011; Chen et al., 2023). (4)
Prevention strategies: Traditional water decoction and high-
pressure moist heat processing techniques can effectively degrade
the toxic components of diterpenoid alkaloids, significantly reducing
the probability of acute poisoning. For example, the water extract of
processed black aconite slices (a derivative of raw aconite) at doses of
0.8 g/kg, 1.6 g/kg, and 3.2 g/kg showed no effects on rat body weight
compared to the raw aconite water extract group, while
cardiovascular indicators, such as cardiac index exhibited a
decrease (Chen P. et al., 2013; Li et al., 2024).

5.4 Other toxicity

In addition to the aforementioned toxic reactions, the toxic
effects of aconitine also involve multi-organ damage to the nervous
system, digestive system, and other organs.

5.4.1 Neurotoxicity
(1) Clinical manifestations: Based on multiple adverse clinical

cases of aconitum, the clinical manifestations of neurotoxicity
mainly include paresthesia, tremors, and the disturbance of
consciousness, which can be summarized by four key
characteristics: ① Numbness (manifested as limb numbness,
tongue numbness, and other features); ② Tremors (manifested
as convulsions, muscle rigidity); ③ Confusion (manifested as
speech disorders, dizziness, and blurred consciousness); ④

Exhaustion (manifested as dyspnea and weakness) (Yang X.
et al., 2017). (2) Toxicity mechanisms: ① Aconitine was shown
to persistently activate voltage-gated sodium channels and inhibit
Na+-K+-ATPase activity, leading to abnormal intracellular Na+-
ATPase activity in P. spilurus subsp. spilurus, which triggers an
imbalance in the homeostasis of intracellular ions, such as Na+, K+,
and Ca2+. This process progresses to disrupt both the central and
peripheral nervous systems, resulting in symptoms like numbness
and tremors. Aconitum carmichaelii alkaloids induced the lipid
peroxidation of the cell membrane of interstitial cells of Cajal
(ICC), damaging nerve cells (Peng et al., 2009). ② Aconitum
carmichaelii alkaloids blocked signal transmission at the
neuromuscular junction and inhibited neurotransmitter release
from the presynaptic membrane in mice. The dose-dependent
inhibition of neurally evoked twitch tension in the diaphragm at
concentrations of 0.3–2 μM, while no effect was seen on contractions
induced by direct muscle stimulation. This experimental
background validates the aforementioned mechanism (Muroi
et al., 1990). ③ Directly damages neuronal cells to exert
neurotoxicity: Extracts from three different species of Aconitum
carmichaelii (Radix aconiti, Radix Aconiti Kusnezoffii, Radix Aconiti
Lateralis Praeparata) all exhibit toxic effects on hippocampal
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neuronal cells, inhibiting their growth and survival (Han
et al., 2007).

5.4.2 Digestive system toxicity
(1) Clinical manifestations of digestive system toxicity: The

digestive system toxicity manifestations based on the clinical
characteristics of multiple cases of aconite adverse reactions
include nausea and vomiting and abdominal pain (Yang X. et al.,
2017). (2) Toxicological mechanism: It is speculated that the
mechanism may be related to the regulation of intestinal nerve
ion channels (e.g., Ca+) and interference with the contraction
rhythm of gastrointestinal smooth muscle cells by aconitine. In
guinea pig experiments, aconitine stimulated the release of
acetylcholine from postganglionic cholinergic nerves, inducing
strong ileal contractions and thereby causing diarrhea, abdominal
pain, and other symptoms (Lin et al., 2004; Chan, 2009).

6 Overview of detoxification research

6.1 Processes reducing toxicity

As the earliest surviving heirloom text that systematically
records the concoction technology of aconite, Jin Gui Yu Han
Jing laid the theoretical foundation for the control of toxic
components in TCM. In TCM, the concoction process of aconite
is of key significance in reducing its inherent toxicity and enhancing
the safety of clinical use. The mechanism of aconite preparations to
reduce toxicity has experienced a systematic historical evolution and
technological innovation from traditional pretreatment processes to
the classical method to modern innovative technology (Chen R. C.
et al., 2013; Hu et al., 2025). The aconite pretreatment methods
include peeling, breaking, and raw use. The peeling of Chinese
medicine is aimed at purifying the drug and facilitating concoctions
and clinical use of the drug. After aconite has been peeled to remove
its root skin, its toxic components are significantly reduced, and
alkaloids can be easily solubilized. “Breaking open” refers to
increasing the heat area of the herbs through physical division
and destroying toxic substances, such as biester alkaloids, after
prolonged high-temperature decoction, thus realizing the purpose
of reducing toxicity and increasing efficacy. Although raw aconite
retains its inherent toxicity, it has the unique effect of quickly
breaking yin and dispersing cold (Hou et al., 2024). The
concoctions of aconite include fire, brine, steam, and boiling
methods. The diversified concoctions of aconite provide multiple
paths for its safe clinical application and the optimization of
medicinal efficacy (Dong et al., 2020).

The Chinese Pharmacopoeia records five types of processed
Radix Aconiti Lateralis Praeparata (processed forms of Aconitum
carmichaelii Debx., commonly referred to as prepared aconite root),
whose detoxification mechanisms are all directly related to the
chemical degradation of diester-diterpenoid alkaloids (e.g.,
aconitine and hypaconitine) into monoester-diterpenoid alkaloids
(e.g., benzoylaconine and benzoylhypaconine). The degradation
pathways include the cleavage of the C-8 ester bond of diester-
diterpenoid alkaloids under high-temperature steam to form
monoester-diterpenoid alkaloids, whose toxicity is 1/200 to 1/
500 that of diester diterpenoid alkaloids. As hydrolysis conditions

intensify, the C-14 ester bond breaks, forming amino alcohol-type
aconitine, whose toxicity is 1/2000 to 1/4000 that of diester-type
aconitine (HE, 2022): (1) Black shunpian: Mud aconite is washed
and dipped in gall bladder water for a few days, boiled until it is
heated through the heart, water-bleached and sliced, dipped and
bleached to adjust the color, baked to half-dry after steaming, and
then finally, dried in the sun or dried. After processing, the structure
of biester-type alkaloids in aconite is destroyed and hydrolyzed into
the low-toxicity mono-ester-type alkaloids. After processing by
boiling for 8 min, water soaking and rinsing four times within
24 h, steaming for 3 h, and drying at 60 °C for 7.5 h, the hypaconitine
and aconitine content in processed Aconitum carmichaelii slices fell
below the detection limit. Additionally, the total content of diester-
diterpenoid alkaloids significantly decreased after steaming, while
the content of monoester-diterpenoid alkaloids notably increased,
likely due to the conversion of diester-diterpenoid alkaloids during
the steaming process (Ch, 2020; Gong et al., 2022). (2) Salt-
processed aconite: Large and uniform aconite is washed,
immersed in gall bladder water overnight and then soaked in salt
and sun-dried daily until there is a large amount of salt cream on the
surface and the texture becomes hard. This concocting process
decreases the total alkaloid content in aconite to achieve the
purpose of reducing the toxicity; however, the efficacy of aconite
is also decreased after salt processing (Ch, 2020; Peng et al., 2022).
(3) White sliced aconite: Uniform-sized mud aconites are soaked in
brine for several days, boiled until thoroughly cooked, then peeled
and longitudinally sliced. After water soaking, steaming, and sun-
drying processes, HPLC testing showed that although the diester-
type alkaloid content in the peeled aconite was reduced to
approximately one-eighth the amount in raw aconite, it remained
significantly higher than in other processed products. The white
sliced aconite processing method involves removing the epidermis
and high-temperature boiling, which decreases the diester-type
alkaloid content and increases monoester-type alkaloid levels.
Additionally, 5-hydroxymethylfurfural, a distinctive component
not found in other processed forms, emerges, likely due to the
high-temperature hydrolysis of Vitis vinifera sugars or fructose after
epidermal removal (Zhu et al., 2011; Ch, 2020; Zhang C. et al., 2024).
(4) Prepared aconite lateral root slices (with glycyrrhiza and black
beans): Salt-processed aconite is soaked in clean water to remove
salt, then boiled with Glycyrrhiza uralensis (common name: licorice
root) and black beans until numbing sensations and bitterness
disappear. Glycyrrhiza uralensis and the black beans are removed,
then the aconite is sliced thinly and sun-dried. High-temperature
steaming destroys the toxic components of Broussonetia papyrifera,
while excipients help adsorb and promote the dissolution of toxic
constituents. After processing with black beans and Glycyrrhiza
uralensis, HPLC analysis shows increased monoester-diterpenoid
alkaloid content and decreased diester-diterpenoid alkaloid levels
(Guo et al., 2015; Ch, 2020; Yu et al., 2023). (5) Processed aconite
lateral root slices: Black or white aconite lateral root slices are used as
raw materials and sand-fried until puffed and slightly discolored.
High-temperature processing reduces the diester-diterpenoid
alkaloid content due to the destruction of B. papyrifera starch,
thereby decreasing the leaching of toxic components. No diester-
diterpenoid alkaloids (e.g., aconitine and neoaconitine) were
detected in the processed slices. However, the monoester-
diterpenoid alkaloid content decreased to 47.2, 58.1, and 67.1%
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of that in black aconite lateral root slices, respectively, with the total
amount of the three monoester-diterpenoid alkaloids reduced to
54.9% of the raw product (Peng et al., 2019; Ch, 2020). The five
detoxification mechanisms of processed aconite are summarized
in Figure 2.

In recent years, significant research progress has been made on
the detoxification mechanism of aconite by integrating traditional
processing techniques and modern technologies. In contemporary
aconite processing methods, the pressurized steaming technique
effectively degrades diester-type alkaloids while preserving the
cardiotonic activity of monoester-type alkaloids by applying high
pressure at approximately 120 °C, achieving a detoxification rate
exceeding 90%. When processed under moist heat and pressure at
120 °C for 1–1.5 h, the diester-type alkaloids in aconite fall below the
detection limit, while the average detected content of monoester-
type alkaloids was 1.567 mg/g (Tang et al., 2013). Microwave
processing accelerates the decomposition of toxic components by
regulating water molecule movement. Under the combined action of
magnetic fields and microwaves, water molecules generate
substantial heat, hydrolyzing diester-type alkaloids in raw aconite
slices, thereby achieving efficient and rapid detoxification
(He, 2022).

6.2 Detoxification by compatibility

Junchen Zuoshi is the core theory of Chinese medicine
prescriptions. In compound formulae, the king’s medicine
dominates the therapeutic effect, and the adjuvants assist the

king and minister’s efficacy through synergistic enhancement,
toxicity control, slowing, and reporting mechanisms (Chen and
Tan, 2020). As an important part of the diagnosis and treatment
system of TCM, scientific compounding can effectively reduce the
toxic side effects and produce synergistic effects. As a representative
toxic herb, aconite holds significant value in classical formula
research. Its detoxification mechanisms acting through
compatibility include forming complexes by precipitating
aconitine, interfering with aconitine metabolism, regulating ion
channels, and modulating physiological microenvironments. This
section will systematically review classic compatibility combinations
of aconite (such as Glycyrrhiza uralensis-aconite), analyze their
compatibility mechanisms, and summarize classical formulas
containing aconite along with their clinical applications.

6.2.1 Glycyrrhiza uralensis combined with aconite
The combination of Glycyrrhiza uralensis and Aconite is

commonly used in an herbal pair with classic formulations such
as Gancao Fuzi Decoction and Sini Decoction. Glycyrrhiza uralensis
contains triterpenoid saponins, like glycyrrhizic acid, and flavonoid
active components, such as liquiritin, which mitigate the toxicity of
aconite through various physical or chemical mechanisms (Wang X.
X. et al., 2023; Dang et al., 2024). The common compatibility
detoxification mechanisms are as follows: (1) Formation of
complexes: Triterpenoid saponin components from Glycyrrhiza
uralensis can reduce the content of diester-type alkaloids such as
aconitine. The hydrolysis product, glucuronic acid from Vitis
vinifera, combines with aconitine to form nontoxic complexes
that are excreted through urine (Chen and Xu, 2006). The

FIGURE 2
The five types of aconite concoctions are summarized according to the mechanism of toxicity reduction.
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flavonoids in Glycyrrhiza uralensis (e.g., glycyrrhizin and liquiritin)
can precipitate with the diester-diterpenoid alkaloids in aconite,
reducing the leaching of toxic components and slowing the
absorption of alkaloids in the intestines. After decocting
Glycyrrhiza uralensis with aconite, the dissolution rate of
Glycyrrhiza uralensis flavonoids decreases, likely due to the
binding of hydroxyl groups in the flavonoids with the diester-
diterpenoid alkaloids in Broussonetia papyrifera (Yang et al.,
2003; Li Q. P. et al., 2018; Li W. et al., 2018). (2) Metabolic
interference: The components of Glycyrrhiza uralensis induce the
hepatic drug-metabolizing enzyme CYP3A4, elevate the expression
levels of CYP3A4-related proteins, enhance enzymatic activity, and
accelerate metabolism, thereby reducing peak plasma drug
concentrations to achieve detoxification. When the cocktail probe
drug method was employed to analyze the metabolism of aconitine
in liver microsomes, the results demonstrated a significant
acceleration in the metabolic rate of diester-type alkaloids, such
as aconitine (Miao et al., 2014; Feng et al., 2024). (3) Regulation of
ion channels: Aconitine exhibits significant cardiotoxicity by
disrupting intracellular ion homeostasis, causing the sustained
influx of Na+ and Ca2+. In contrast, the glycyrrhizin compounds
in Glycyrrhiza uralensis can counteract the cardiotoxicity of aconite
by acting on Na+ channels. For example, glycyrrhetinic acid at

concentrations of 0.1, 1.0, and 10.0 μmol L-1 can act on L-type
calcium channels in myocardial cells, inhibiting Ca2+ influx to exert
detoxification effects (Xie et al., 2005). Moreover, when 2 mg/kg of
glycyrrhiza uralensis flavonoids was administered to rats, they could
antagonize the ventricular arrhythmia induced by aconitine (Ma
et al., 2019).

6.2.2 Panax ginseng combined with aconite
Panax ginseng C.A. Mey. (common name: ginseng) is commonly

used in TCM to restore yang and boost qi. The most representative
formulas in the combined application of aconite and ginseng include
Shenfu Decoction and Huiyang Jiuji Decoction. The common
detoxification mechanisms are as follows: (1) Regulation of ion
channels: P. ginseng saponin Rg1 inhibits the influx of Na+, K+,
and Ca + by acting on the ion channels of myocardial cells, thereby
reducing their content in myocardial cells. This mechanism
antagonizes cardiotoxicity, such as arrhythmia induced by
Aconitum carmichaelii and mitigates myocardial cell damage (Xu
et al., 2022). (2)Metabolic Interference: The combination of P. ginseng
and aconite can also act on hepatic CYP450 enzymes to achieve
detoxification effects. It accelerates the hydroxylation response during
the metabolic process of aconite by upregulating the expression of
CYP1A2 and CYP3A1 mRNA, thereby reducing cumulative toxicity.

FIGURE 3
Pharmacokinetic mechanisms of aconitine combined with other herbs for reducing the toxicity of aconite (Created in BioRender (2025) https://
BioRender.com/kvhhz6q).
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After the continuous intragastric administration of aconite water
extract alone for 8 days, pathological sections of rat liver tissue
showed significant congestion, hepatocyte necrosis, and
inflammation. In contrast, pathological sections of liver tissue from
rats administered with a 1:1 water extract of P. ginseng and aconite
appeared normal, with significantly higher expression of CYP1A2 and
CYP3A1 mRNA and protein compared to the group treated with
aconite alone (Li H. et al., 2019). (3) Chemical degradation:
The combination of P. ginseng and aconite can also promote the
hydrolysis of diester alkaloids in aconite into monoester alkaloids,
reducing the content of toxic components. Fatty acids in P. ginseng
undergo nucleophilic substitution reactions to convert diester-type
alkaloids (e.g., aconitine) into monoester-type alkaloids (e.g.,
benzoylaconine). After the co-decoction of P. ginseng and aconite,
the content of aconitine decreased by 45% compared to aconite
decoction alone, while the content of monoester-type alkaloids
increased significantly (Ma et al., 2011; Bao et al., 2022; Qiu
et al., 2022).

6.2.3 Compatibility of aconite with other Chinese
herbal medicines

In addition to ginseng and licorice, the combination of aconite
with other herbs can significantly reduce toxicity. The common
formulas include Ganjiang Fuzi Decoction (combining Zingiber
officinale Rosc. (common name: dried ginger) with aconite),
Zhenwu Decoction (Paeonia lactiflora Pall. (common name:
white peony root), Atractylodes macrocephala Koidz. (common
name: large-head atractylodes rhizome), Poria cocos (Schw.) Wolf
(common name: poria), and aconite) and Dahuang Fuzi decoction
(comprising Rheum palmatum L. (common name: rhubarb),
Asarum sieboldii Miq. (common name: fine-leaf as arum), and
aconite). The detoxification mechanisms can be summarized as
follows: (1) Chemical degradation: The carboxyl-containing acidic
components in dried ginger undergo acid-base neutralization with
aconitine, promoting the hydrolysis of diester-type alkaloids into
lipid-formaldehyde-type alkaloids. This process reduces the diester-
type alkaloid content and consequently decreases toxicity (Yue et al.,

TABLE 1 Chemical structures and molecular formula of the alkaloids in the aconite and its derivatives.

Formula name Molecular formula Chemical structure

Aconitine C34H47NO11

Benzoylaconitine C32H45NO10

Aconine C25H41NO9

Hypaconitine C33H45NO10

Neoaconitine C33H45NO11
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2007; Liu et al., 2024). (2) Formation of complexes: White peony
root paeonol in glycosides has weak acid properties and forms ionic
pairs with diester alkaloids, which promotes the distribution of
monoester alkaloids (such as benzoyl aconitine) and reduces toxicity
(Yang H. S. et al., 2017). The tannins in rhubarb combined with
aconite form an insoluble complex, which hinders the absorption of
diester alkaloids in the digestive system, delaying its intestinal
absorption and decreasing the peak blood drug concentration,
playing a detoxifying role (Chen et al., 2022).

The combinations of other Chinese medicinal materials and
aconite are summarized in Table 2 below. The combination of
aconite and Chinese medicinal materials can interfere with the
absorption, distribution, metabolism, and excretion of toxic
aconitine components in the body to achieve the effect of
reducing toxicity (Figure 3).

7 Conclusion

Aconite (Aconitum carmichaelii Debx.) is a cornerstone herb in
TCM used for restoring yang energy and dispelling cold. It
demonstrates multifunctional benefits, including cardiotonic effects,
anti-inflammatory properties, and anticancer activity. Clinically, it is
used to treat conditions such as heart failure, rheumatoid arthritis, and
myocardial infarction. However, the C19 diester alkaloid compound,

its pharmacologically active component, also serves as the root cause
of its toxicity. Aconite primarily exhibits cardiac toxicity,
hepatotoxicity, and acute toxicity. This stark contradiction between
efficacy and toxicity has made reducing its harmful effects while
preserving therapeutic benefits a central challenge in advancing its
clinical application. Current research indicates that aconite’s toxicity
management has evolved through a traditional-modern collaborative
approach from ancient processingmethods like skin removal and fire-
breaking in the Treatise on Cold Pathogenic Diseases, to modern
microwave detoxification techniques.

Integrated toxicology, leveraging its multidimensional and
multi-omics technological advantages, provides a novel approach
for systematically deciphering the correlation between aconite’s
toxic effects and efficacy while establishing scientific frameworks
for toxicity control and functional optimization. Guided by this
concept, this study systematically reviewed the chemical
composition (Table 1), pharmacological actions (Figure 1), toxic
effects, and detoxification mechanisms of aconite (Figure 2; Table 2).
This review reveals a persistent core challenge in current research:
although the toxicity mechanisms of aconite were validated through
various experimental methods, including animal studies, cell
experiments, and microsomal system analyses, the transition
between the pharmacodynamic effects and toxicological
properties of diester alkaloids remains unclear, making it difficult
to establish precise dose-response relationships.

TABLE 2 Summary of the compositions and modern clinical applications of aconites in aconite-containing formulae.

Formula name Compounded herbs Modern clinical application References

Fuzi Decoction Panax ginseng, Atractylodes macrocephala, Poria cocos, Paeonia
lactiflora

Rheumatoid arthritis Qin et al. (2022)

Sini Decoction Zingiber officinale
Glycyrrhiza uralensis

Myocardial infarction, chronic heart
failure

Li and Yu (2012), Hong et al.
(2020)

Mahuang Fuzi Xixin
Decoction

Ephedra sinica, Asarum sieboldii Viral influenza, asthma, allergic rhinitis Li and Yu (2012), Zhang
et al. (2023)

Huiyang Emergency
Decoction

Zingiber officinale, Cinnamomum cassia, Panax ginseng Acute gastroenteritis, chronic heart failure Li and Yu (2012), Zhang
et al. (2024b)

Shenfu Decoction Panax ginseng Chronic heart failure, myocardial
infarction, cerebral ischemia

Li and Yu (2012), Lu et al.
(2025)

Fuzi Lizhong Decoction Codonopsis pilosula (Franch.)
Atractylodes macrocephala, Zingiber officinale, Glycyrrhiza uralensis

Chronic gastritis Hong et al. (2020), Ran et al.
(2023a)

Gancao Fuzi Decoction Glycyrrhiza uralensis Rheumatoid arthritis, osteoarthritis (Zhang et al., 2022a)

Dahuang Fuzi
Decoction

Rheum palmatum, Asarum sieboldii Appendicitis, acute pancreatitis, intestinal
obstruction

Hong et al. (2020), Yang
et al. (2022a)

Yiyi Fuzi Baijiang
Powder

Coix lacryma-jobi L.var. mayuen (Roman.)
Patrinia scabiosaefolia Fisch. ex Trev

Pelvic inflammation, ulcerative colitis Wei et al. (2024)

Guizhi Fuzi Decoction Cinnamomum cassia Rheumatoid arthritis, gouty arthritis Jiang et al. (2024)

Ganjiang Fuzi
Decoction

Zingiber officinale Chronic renal failure Mu and Yu (2024)

Fuzi Xiexin Decoction Rheum palmatum, Coptis chinensis, Scutellaria baicalensis Chronic atrophic gastritis, chronic renal
failure

Shi et al. (2025)

Zhen Wu Decoction Atractylodes macrocephala, Poria cocos, Zingiber officinale, Paeonia
lactiflora

Nephrotic syndrome, chronic
glomerulonephritis

Chen et al. (2025)

Wen Pi Decoction Rheum palmatum, Angelica sinensis (Oliv.), Zingiber officinale, Natrii
sulfas, Panax ginseng, Glycyrrhiza uralensis

Acute and chronic renal insufficiency,
chronic renal failure

Zhang and Liu (2010)
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In future research, we will build on the concept of integrated
toxicology to further clarify the “efficotoxic boundary” between the
active and toxic components in aconite. This will help establish
regulatory mechanisms for other aconite constituents in modulating
their therapeutic effects. By integrating traditional detoxification
expertise with modern technologies, we aim to advance similar dual-
toxicity Chinese herbs like Pinellia ternata, Polygonum multiflorum,
and Asarum. These efforts will enable the maximization of TCM’s
clinical value while ensuring enhanced safety and controllability.
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