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Background: Pulmonary fibrosis (PF) is a chronic lung disease characterized by
ongoing interstitial scarring. Current treatments can only slow the progression of
the disease. Resveratrol (RES), a natural polyphenolic compound, has become a
potential therapy for PF because of its multiple biological effects, including anti-
fibrotic, anti-inflammatory, and antioxidant properties.

Objectives: To clarify RES's efficacy, safety, and mechanism of action in treating
PF through a preclinical systematic review.

Methods: A computerized search of eight databases (up to 6 March 2025) was
conducted to identify in vivo animal experiments on RES treatment for PF. The
SYRCLE tool was used to assess the risk of bias, and meta-analysis was performed
using RevMan 5.4 and Stata 17.0. The outcome measures included two main
aspects: core pathological processes and molecular mechanisms. Heterogeneity
was assessed with the /? test, and publication bias was evaluated using funnel
plots and Egger’s test.

Results: A total of 25 studies were included, involving 628 animals in the
experimental groups and 357 animals in the control groups. Meta-analysis of
selected outcome measures showed: 1. Improved fibrosis: significant reduction
in pulmonary fibrosis score (SMD = -2.30, 95% CI [-2.80, —1.79], p < 0.00001, I? =
76%) and decreased Hyp content (SMD = -2.16, 95% Cl [-2.69, -1.63], p <
0.00001, # = 85%); 2. Inhibited inflammation: reduced TNF-a content
(SMD = -1.58, 95% CI [-2.18, -0.99], p < 0.00001, ¥ = 70%) and decreased
IL-6 content (SMD = —2.16, 95% Cl [-2.74, -1.59], p = 0.007, I? = 57%); 3. Restored
oxidative balance: decreased MDA content (SMD = -2.22, 95% CI [-3.09, -1.35],
p = 0.06, I = 55%) and increased SOD content (SMD = 1.67, 95% CI [1.05, 2.30],
p < 0.0001, 7 = 76%).

Conclusion: RES significantly enhances the pathological process in PF animal
models by regulating the TGF-p/Smad and NF-kB pathways. Future efforts should
focus on optimizing preclinical study designs to decrease heterogeneity and
improve clinical translation.
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1 Introduction

Pulmonary fibrosis (PF) is a chronic lung disease characterized
by progressive scarring of the lung interstitium (Koudstaal et al.,
2023). Its pathological features mainly include abnormal activation
of fibroblasts and excessive extracellular matrix (ECM) deposition,
which lead to decreased lung compliance and impaired diffusion
(Raghu et al., 2018), ultimately causing respiratory failure and even
death. PF shows a significant age-related correlation and is more
common in middle-aged and older men (Mortimer et al., 2020); the
incidence rate in men is 1.5-2 times higher than in women
(Hutchinson et al., 2015). Clinical data indicate that the median
survival time for untreated PF patients is only 3-5 years, with a 5-
year mortality rate exceeding 80% (Hutchinson et al., 2015; Raghu
etal,, 2016; Jo et al., 2017; Wijsenbeek and Cottin, 2020; Raghu et al.,
2022; Gupta et al., 2024). Its prognosis is even worse than that of
many malignant tumors.

The pathogenesis of PF involves the synergistic action of
multiple factors, primarily including alveolar epithelial cell
damage, abnormal repair responses, and excessive activation of
fibroblasts (Cannito et al., 2010; Lebel et al, 2022; Jannini-Sa
et al, 2024). Research has shown that repeated damage to
alveolar epithelial cells is the initiating step in PF. Following
damage, epithelial cells display abnormal activation of the TGF-
B/Smad and Wnt/B-catenin signaling pathways (Inui et al., 2021;
Wu J. et al,, 2022), leading to dysregulated epithelial-mesenchymal
transition (EMT) and promoting the transformation of fibroblasts
2020).
sequencing technology further revealed that lung tissue from PF

into myofibroblasts (Selman and Pardo, Single-cell
patients contains a unique subpopulation of pro-fibrotic epithelial
cells that highly express pro-fibrotic factors and directly drive
pathological ECM deposition (Adams et al., 2020). Additionally,
oxidative stress imbalance is critical in PF progression (Otoupalova
2020). Mitochondrial

accumulation of reactive oxygen species (ROS) damages alveolar

et al, dysfunction-induced excessive
epithelial cells, causes abnormal repair, and activates the TGF-p1
signaling pathway to accelerate fibrosis (Allen et al., 2017; Mora
etal,, 2017). The chronic inflammatory microenvironment and Th2-
type fibroblast

proliferation, with activated macrophages forming a pro-fibrotic

immune response synergistically promote
network by secreting inflammatory factors such as IL-13, TNF-aq,
and IL-6 (Bringardner et al., 2008; Henderson et al., 2020).

Currently, PF cannot be reversed or completely cured
(Karampitsakos et al., 2023). Although lung transplantation is a
primary treatment method, it is limited by donor shortages and
transplant rejection reactions, so only a small number of patients
benefit from it, and the average survival period after surgery is only
4 years (Glass et al., 2022). Although the frontline drugs pirfenidone
and nintedanib can slow disease progression (Mei et al., 2021;
Podolanczuk et al., 2023), there are serious side effects (Galli
et al.,, 2017; Liu et al., 2017). Therefore, it is crucial to find new
treatment methods to prevent and treat PF.
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In recent years, substantial progress has been made in research on
the prevention and treatment of PF using traditional Chinese medicine
(Huang et al., 2022). Resveratrol (RES), whose chemical name is 3,5,4'-
trihydroxy-trans-dibenzyl, is a non-flavonoid polyphenol found widely
in plants such as grapes, giant knotweed, and peanuts (Tian and Liu,
2020). It has multiple biological effects, including anti-fibrotic, anti-
inflammatory, and antioxidant properties (Koushki et al., 2020; Meng
etal, 2021; Bao et al,, 2022). Experimental studies indicate that RES can
inhibit the progression of pulmonary fibrosis through multiple
pathways: it targets and inhibits the core pro-fibrotic factor TGF-1,
blocking its mediation of abnormal a-SMA expression and ECM
deposition (Willis and Borok, 2007); additionally, it directly inhibits
fibroblast proliferation and their transformation into myofibroblasts
(Chulia-Peris et al., 2022). Notably, RES can also regulate mitochondrial
function to reduce oxidative stress damage, thereby intervening in the
fibrosis process at its source (Ramli et al,, 2023). Although animal
experiments have systematically validated RES’s efficacy, gaps remain in
clinical translation, and reports of specific efficacy indicators across
studies show heterogeneity. Preclinical research is fundamental to
translational medicine, allowing for systematic assessment of drug
mechanisms and helping shape clinical trial design (Zordoky et al.,
2015). Specifically, animal models can mimic the disease’s progression
in pulmonary fibrosis, offering essential evidence for target validation
(Dludla et al, 2020). Therefore, systematically evaluating RES’s
protective effects in PF animal models and its mechanisms will
provide reliable evidence-based support for clinical application. A
research roadmap is shown in Figure 1.

2 Materials and methods

This study was conducted per the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page
et al,, 2021). The protocol was pre-registered on the PROSPERO
platform on 12 March 2025 (CRD 420251009847). This study
strictly followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. The protocol
was pre-registered on the PROSPERO platform on 12 March 2025.
The pre-registered protocol specified Hyp content as the primary
outcome measure, with secondary outcomes including TGF-f
content, MPO content, TNF-a content, and MDA content. The
study added additional outcome measures such as pulmonary
fibrosis score, further
clarifying the core pathological processes and molecular
mechanisms underlying RES therapy for PF (CRD 420251009847).

Col 1 content, and alveolitis score,

2.1 Inclusion and exclusion criteria

This study’s inclusion and exclusion criteria follow the
population, intervention, comparison, outcome, and study design
(PICOS) framework (Table 1).
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FIGURE 1
Research roadmap.

2.2 Information source and search strategy

Embase, Web of Science, Cochrane Library, China National
Knowledge Infrastructure (CNKI), Wanfang Data (Wanfang),
Two researchers conducted computer searches of eight = VIP Database (VIP), and SinoMed. The main search
databases from their inception to 6 March 2025: PubMed,

terms included Resveratrol, 3,5,4' -Trihydroxystilbene, trans
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TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria

10.3389/fphar.2025.1666698

Exclusion criteria

Population (P)

Intervention (I)

Comparison (C)

Outcome (O)

There are no restrictions on the species, weight, age or sex of the animals
selected.
Any animal model of pulmonary fibrosis (PF) will be included.

The experimental and control groups of the PF animal model were
established using bleomycin, lipopolysaccharide, environmental particulate
matter, radiation or silica.

The route of administration, dosage, timing, source of the drug, and the
purity of the drug are not restricted.

The experimental group received resveratrol treatment.
The control group was administered saline, deionised water or no treatment
measures.

1. Core pathological processes: 1) Fibrosis-related: pulmonary fibrosis score,
Hydroxyproline (Hyp) content, Collagen 1 (Col 1) content; 2) Inflammation-
related: alveolitis score.

2. Key molecular mechanisms: 1) Pro-fibrotic factor (PKF): Transforming
growth factor-B(TGF-f) content, Nuclear factor kappa-B(NF-kB) content; 2)

Exclude non-PF animal models and other disease-related PF animal
experiments.

No use of bleomycin, lipopolysaccharide, environmental particulate matter,
radiation or silica.
Treatment with resveratrol analogues or in combination with other drugs.

No control group design.

Did not achieve the expected outcome measures.
Outcome measures are non-quantitative data.

Pro-inflammatory cytokine: Tumor necrosis factor-a(TNF-a) content,
Interleukin-1B(IL-1p) content, Interleukin-6(IL-6) content; 3) Oxidative
stress factor: Malondialdehyde (MDA) content, Myeloperoxidase (MPO)

content, Superoxide Dismutase (SOD) content.

Study design (S)

Resveratrol; Pulmonary Fibrosis, Fibrosing Alveolitis, Idiopathic
Pulmonary Fibrosis, Acute Lung Injury, Respiratory Distress
Syndrome; Animals, Models, Animal, Animals, Laboratory,
Animal Experimentation. A combination of subject terms
and free-text keywords was used for systematic retrieval,
with different
database’s

search strategies applied based on each
Additionally,

included studies were traced to supplement the retrieval of

characteristics. the references of
relevant literature, with the search limited to Chinese and
English. A detailed search strategy for each database is
provided in Supplementary Table S1.

2.3 Study selection

Two researchers independently conducted literature
screening and data extraction. First, the retrieved literature
titles were imported into EndNote 20 software for initial
screening and deduplication. Further screening was conducted
based on inclusion and exclusion criteria after reading the titles
and abstracts of the literature. Finally, the RCTs included in the
quantitative analysis were determined by reading the full texts. If
there were differences in opinion between the two researchers, a

third researcher was consulted to resolve the issue.

2.4 Extraction and analysis

extracted  detailed
studies

Two  researchers independently

information from the included using  Excel

Frontiers in Pharmacology

Randomized controlled animal experiments (in vivo studies) are required

The study type is a non-randomized controlled experiment, such as case
reports, clinical trial studies, editorials, reviews, meta-analyses, and
incomplete texts.

The study type is a randomized controlled experiment (in vitro study).
Literature for which the full text is unavailable or has been duplicated.

2019 software. This included basic literature details (first
author’s name, publication year, country of the first author’s
affiliation), basic animal information (species, weight, age,
gender, sample size), treatment details (modeling method,
intervention measures, dosage, route of administration,
administration time, drug source, drug purity), and outcome
measures. Experimental data were recorded uniformly using
mean values and standard deviation (SD). If only the standard
error of the mean (SEM) was provided, the original data were
converted to SD based on statistical principles. Data were
the
experimental results were presented graphically. If data were

missing or reports were unclear, the first author of this paper

extracted from images using Origin 2021 when

attempted to contact the study’s corresponding author. If data
could not be obtained or the original data were unavailable, the
first author of this paper excluded the study. After completing all
data extraction, two researchers cross-checked the results. If
discrepancies arose, a third researcher mediated to resolve them.

2.5 Risk-of-bias assessment

Two researchers independently assessed the quality of the
literature using the SYRCLE animal experiment bias risk
assessment tool (Hooijmans et al., 2014) in Review Manager
5.4 software, evaluating 10 items, Selection bias: Sequence
Baseline and  Allocation

generation, characteristics,

concealment, Performance bias: Random housing, and

Blinding, Detection bias: Random outcome assessment, and
Blinding, Attrition bias: Incomplete outcome data, Reporting
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bias: Selective outcome reporting, and other sources of bias. Each
item was assessed as low risk (low risk, method applied correctly),
unclear risk (unclear risk, method application unclear) or high
risk (high risk, method applied incorrectly or not used). This
process was conducted independently by two researchers and
cross-checked. In case of disagreement, the two researchers
discussed and decided; if no consensus was reached, a third
researcher assisted in making the decision.

2.6 Data synthesis and analysis

Data included in the study were analyzed and summarized
using Review Manager 5.4 and Stata 17.0. The study designers
had already set the sample sizes to be equal between the
experimental groups with different doses and the control
group with a fixed dose during the experimental design. For
example, the RES intervention group in the included studies had
three doses (Res 10/20/40 mg/kg/day, n = 32 for each dose). In
contrast, the control group received physiological saline (NS
1 mL/kg/day, n = 32). Therefore, this study only needs to
consider that the experimental group includes multiple time-
based subgroups, which are treated as independent studies in this
analysis. The sample size of the control group for these subgroups
is equal to the total control group sample size divided by the
number of subgroups in the experimental group (Wu X. et al,,
2022), thus avoiding artificial inflation of the sample size and
improving the study’s accuracy. For example, in the
abovementioned study, the RES intervention group included
three doses (Res 10/20/40 mg/kg/d, with n = 32 for each
dose), while the control group received physiological saline
(NS 1 mL/kg/d, n = 32). The experimenters divided the
periods for both the RES experimental group and the control
group into four segments (3, 7, 14, and 28 days). The control
group (n = 32) was evenly distributed across each time segment
as a sub-control group (n = 8), and each RES experimental group
with the same dose (n = 32) was also evenly distributed across
each time segment as a sub-experimental group (n = 8).
Consequently, this study comprises 12 subgroups, with equal
sample size in each experimental (n = 8) and control (n =
8) subgroup.

All results are continuous variables. If the effect size units or
measurement methods are consistent across studies, the overall
effect size is compared using the mean difference (MD) and 95%
confidence interval (CI). The standardized mean difference
(SMD) and 95% CI are used if the effect size units or
measurement methods differ across studies. Effect sizes are
deemed statistically significant if p < 0.05. The I’ or Q test
assesses study heterogeneity. If I < 50% or p > 0.1,
heterogeneity is considered small, and a fixed-effect model is
used; if I > 50% or p < 0.1, heterogeneity is considered
significant, and a random-effects model is employed, along
with subgroup
heterogeneity sources. When more than 10

sensitivity and analyses to explore
studies are
included for each outcome measure, funnel plots are generated
and analyzed using Stata 17.0, with an Egger test performed. If
the funnel plot shows asymmetry and the Egger’s test p < 0.05, the

difference is regarded as significant, indicating publication bias.
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3 Results
3.1 Literature selection

An initial search using the retrieval strategy vyielded
670 articles, including 103 from PubMed, 354 from Embase,
32 from Web of Science, 1 from the Cochrane Library, 69 from
CNKI, 28 from Wanfang, 20 from VIP, and 63 from SinoMed.
After excluding 226 duplicate articles, 444 were retained. After
excluding editorials, reviews, and theses, 378 articles remained.
32 articles were unavailable for full-text retrieval, 9 did not report
outcome measures, and 312 were found to be inconsistent with
the outcome measures after reviewing the titles, abstracts, and
full texts. Ultimately, 25 articles were included, comprising
25 studies and 90 groups. Eleven studies included multiple
dose groups, with six studies having three dose groups (Wang
et al., 2011b; a; Zhang et al., 2011; He et al., 2012; Wang et al,,
2021; Wang L. et al., 2022), and five studies having two dose
groups. Eleven studies included multiple experimental time
groups, with two studies including four experimental time
groups (Zhang et al, 2011; Liu et al, 2013), seven studies
including three experimental time groups (Cao and Mao,
2008; Wang et al., 2011b; a; He et al.,, 2012; Li et al.,, 2012; Li
et al,, 2015; Jin et al.,, 2016; Wang et al., 2021; Wang L. et al,,
2022), and two studies including two experimental time groups
(Jin et al.,, 2016; Wang L. et al., 2022). A flow chart of literature
selection is shown in Figure 2.

3.2 Study characteristics

This meta-analysis included 628 experimental animals and
357 control animals, all rodents. In terms of animal species, all
25 studies reported on the species used. Among these, 16 studies
used rats, including two types: SD and Wistar albino. Nine studies
used mice, including six types: BALB/C, C57BL/6], CD-1, ICR,
Kunming, and NMRI. Regarding animal gender, 22 studies
reported on gender, with 16 studies using male animals,
3 studies using female animals, and 3 studies using both male
and female animals. Regarding animal age, 11 studies provided
detailed reports, and 1 study reported that adult animals
were selected.

The studies included in this review employed five different
modeling methods. Twenty studies used bleomycin injection,
three involving intraperitoneal bleomycin injection and seventeen
involving tracheal bleomycin injection. In addition to bleomycin,
two studies used radiation therapy, one used lipopolysaccharide
tracheal injection, one used silica particle tracheal injection, and one
involved exposure to fine environmental particles. Most of the RES
treatment durations included in this study were within 4 weeks;
however, three experimental groups exceeded this duration, with
56 days, 100 days, and 140 days. The RES used in the included
studies came from 11 different manufacturers, including Xi’an
Tianyi Biotechnology Co., China (n = 8), Sigma-Aldrich,
United States of America (n = 4), NanoKimia Company, Iraq
(n = 2), Mikrogen Pharmaceutical, Istanbul, Turkey, Shaanxi
Saide  Gaoke China,
Pharmaceutical, London, England, PoliNat SL, Spain, Baoji

Biotechnology  Co., Terraternal
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PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only
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FIGURE 2

Flow diagram of the study-search process.

Guokang Biotechnology Co., Ltd., China, Guangzhou Honsea
Sunshine Biotech Co., Ltd., China, Chengdu Must Bio-
Technology Co., Ltd., China, and Shanghai Aladdin Co., China
(I each). Three studies did not specify the manufacturers of
the drugs used.

Drug dosage and administration route influence therapeutic
efficacy (Wu et al, 2025). In the included studies, the RES
dosage was <100 mg/kg/day. The 100 mg/kg/day dose was
divided into three groups: low dose (0-30 mg/kg/day), medium
dose (31-60 mg/kg/day), and high dose (61-100 mg/kg/day). There
were four methods of RES administration: gavage (n = 16),
intraperitoneal injection (n = 4), oral administration (n = 2), and
tracheal injection (n = 1). The characteristics of all the included
studies are summarized in Supplementary Table S2.
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3.3 Risk of bias

Assess the risk of bias and quality of all studies included
based on SYRCLE’s risk of bias assessment (Figure 3).
Regarding sequence generation, nine studies used random
number tables to generate sequences and were rated as “low
risk”; the reported using
randomization without specifying the randomization method

remaining 16 studies only
or reporting on sequence generation and were rated as “unclear
risk”. Regarding baseline characteristics, 21 studies had
identical baseline characteristics between the experimental
and control groups and were rated as “low risk”; the
remaining four studies did not describe the characteristics of

the animals included in the study and were rated as “unclear
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Risk of bias assessment table. Assessment of literature quality results obtained through the risk of bias by SYRCLE based on Cochrane tools. (A) Risk
of bias summary diagram; review of authors’ judgments for each risk of bias item for each included study. (B) Risk of bias graph diagram; overview of
authors’ judgments for each risk of bias item, expressed as a percentage of all included studies.

risk”. Regarding allocation concealment, 25 studies provided
insufficient information, making it impossible to determine the
risk, and were rated as “unclear risk”. Regarding animal
placement randomization, 15 studies had identical housing
conditions and environments for animals in the
experimental and control groups, rated as “low risk”;
10 studies did not describe this, rated as “unclear risk”.
Regarding blinding and randomization for animal
caretakers, researchers, and outcome evaluators, 25 studies
provided insufficient information to judge, rated as “unclear
risk”. Regarding incomplete data reporting and selective
reporting, none of the 25 studies had data loss or selective
reporting, so both aspects were rated as “low risk”. In addition
to the above bias risk assessments, it is unclear whether other
biases exist, so all 25 studies were rated as “unclear risk” in

terms of different biases.
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3.4 Core outcome measures for reversing
the fibrosis process

3.4.1 Block the core pathological process
3.4.1.1 Reversing the pathology of fibrosis

3.4.1.1.1 Reduction of pulmonary fibrosis score. A meta-
analysis was conducted on the effect sizes of pulmonary fibrosis
histological scores in 31 studies from 16 literature sources. The study
samples were obtained from bronchoalveolar lavage fluid, lung
tissue or serum. Compared with the control group, RES
significantly reduced the histological score of pulmonary fibrosis.
There was significant heterogeneity among the included studies, and
a random-effects model was used (SMD = -2.30, 95% CI
[-2.80, —1.79], p < 0.00001, I’ = 76%) (Figure 4A). Sensitivity
analysis indicated that the results were stable (Figure 4B). Further
subgroup analysis revealed that animal species (p = 0.86), RES
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dosage (p = 0.83), and RES intervention duration (p = 0.61) were not
sources of heterogeneity. However, animal strain (p < 0.0002, I* =
79%) (Supplementary Figure S1A), RES drug source (p < 0.0001, I* =
86%) (Supplementary Figure S2B), pulmonary fibrosis modeling
method (p < 0.009, I? = 79%) (Supplementary Figure S1C), and RES
administration route (p < 0.004, I = 77.8%) (Supplementary Figure
S3D) were sources of heterogeneity in this study. Additionally,
funnel plots (Figure 4C) and Egger's test (p < 0.0001)
(Figure 4D) indicated the presence of publication bias.

3.4.1.1.2 Reduciton of hydroxyproline (hyp) deposition. A
meta-analysis was conducted on the effect sizes of Hyp content in
53 studies from 15 literature sources, the study samples were
obtained from bronchoalveolar lavage fluid, lung tissue or
serum. Compared with the control group, RES significantly
reduced Hyp content. There was significant heterogeneity
among the included studies, and a random-effects model was
used (SMD = -2.16, 95% CI [-2.69, -1.63], p < 0.00001, I =
85%) (Figure 5A). Sensitivity analysis indicated that the results
were stable (Figure 5B). Further subgroup analysis revealed that
animal species (p = 0.22), animal strain (p = 0.29), lung fibrosis
modeling method (p = 0.31), and RES administration route (p =
0.11) were not sources of heterogeneity. However, RES drug source
(p < 0.0001, I? = 78.9%) (Supplementary Figure S2A), RES dosage
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(p < 0.0001, I? = 90.1%) (Supplementary Figure S2B), and RES
intervention duration (p = 0.01, I? = 76.3%) (Supplementary Figure
S2C) were the sources of heterogeneity in this study. Additionally,
funnel plots (Figure 5C) and Egger’s test (p < 0.0001) (Figure 5D)
indicated the presence of publication bias.

3.4.1.1.3 Inhibition of type I collagen (col 1) accumulation. A
meta-analysis was conducted on the effect sizes of Col 1 content in
11 studies from 6 literature sources, the study samples were obtained
from lung tissue or serum. Compared with the control group, RES
significantly reduced the content of Col 1. There was significant
heterogeneity among the included studies, and a random-effects
model was used (SMD = -2.70, 95% CI [-4.71, —=0.70], p < 0.00001,
P =96%) (Supplementary Figure S3A). Sensitivity analysis indicated
that the results were stable (Supplementary Figure S3B). Further
subgroup analysis showed that animal species (p = 0.39), animal
strain (p = 0.39), RES dosage (p = 0.55), RES intervention time (p =
0.13), pulmonary fibrosis modeling method (p = 0.66), and RES
administration route (p = 0.37) were not sources of heterogeneity.
RES drug source (p = 0.03, I = 67.9%) (Supplementary Figure S4)
was the source of heterogeneity in this study. Additionally, funnel
plots (Supplementary Figure S3C) and Egger’s test (p = 0.003)
(Supplementary  Figure S3D) the
publication bias.

indicated presence  of
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Effect of RES on Hyp content in lung tissues of PF animals. (A) Forest plot of Hyp content. (B) Sensitivity analysis of Hyp content. (C) Funnel plot of Hyp

content. (D) Egger test for Hyp content.

3.4.1.2 Inhibition of inflammatory damage
3.4.1.2.1 Alleviate alveolitis score. A meta-analysis was
conducted on the effect sizes of alveolitis scores in 16 studies
from 8 literature sources, the study samples were obtained from
lung tissue or serum. Compared with the control group, RES
significantly reduced alveolitis scores. There was significant
heterogeneity among the included studies, and a random-effects
model was used (SMD = —1.30, 95% CI [-1.72, —0.89], p = 0.002, I’ =
58%) (Figure 6A). Sensitivity analysis indicated that the results were
stable (Figure 6B). Further subgroup analysis revealed that animal
species (p = 0.97), RES dosage (p = 0.65), and RES intervention
duration (p = 0.18) were not sources of heterogeneity. However,
animal strain (p = 0.03, I’ = 66.2%) (Supplementary Figure S5A),
RES drug source (p = 0.002, I = 79.7%) (Supplementary Figure S5B),
pulmonary fibrosis modeling method (p = 0.03, F = 72.7%)
(Supplementary Figure S5C), and RES administration route (p =
0.006, I’ = 86.8%) (Supplementary Figure S5D) were sources of
heterogeneity in this study. Additionally, the funnel plot (Figure 6C)
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symmetry was high, and the Egger’s test (p = 0.468) (Figure 6D)
indicated no publication bias.

3.4.2 Target key molecular mechanisms
3.4.2.1 Inhibition of pro-fibrotic factors

3.4.2.1.1 Blocking the TGF-p signaling pathway.
analysis was conducted on the effect sizes of TGF-f content in

A meta-

38 studies from 11 literature sources, the study samples were
obtained from bronchoalveolar lavage fluid, lung tissue or serum.
Compared with the control group, RES significantly reduced TGF-3
content. There was significant heterogeneity among the included
studies, and a random-effects model was used (SMD = —1.77, 95%
CI [-2.15, -1.38], p < 0.00001, I* = 69%) (Figure 7A). Sensitivity
analysis indicated that the results were stable (Figure 7B). Further
subgroup analysis revealed that animal species (p = 0.07), RES drug
source (p = 0.13), RES dosage (p = 0.05), RES intervention duration
(p =0.74), and RES administration route (p = 0.38) were not sources
of heterogeneity. Animal strain (p = 0.0002, P = 84.7%)

frontiersin.org


mailto:Image of FPHAR_fphar-2025-1666698_wc_f5|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1666698

Yin et al.

10.3389/fphar.2025.1666698

A

Cao Guowen2008-(14d,100)
Cao Guowen2008-(284,100)

Cao Guowen2008-(7d,100)

Jiang Yunfei2024-(28d,100)

Liu Lijing2013-(14d,100)

Liu Lijing2013-(284,100)

Liu Lijing2013-(564,100)

Liu Lijing2013-(7d,100)

Li Yingchun2015-(14d,50)

Li Yingchun2015-(21d,50)

Li Yingchun2015-(7d,50)

Quan Yifan2023-(28d,100)

Quan Yifan2023-(264,50)

Rasoul Azmoonfar2019-(100d,100)
Wang Jing2018-(284,60)

Xu Bo2017-(7d,50)

Total (95% CI)

Experimental

258
291 03
333 0.
0.26
1.02

10
10
10
10
10
10
10
10

cooe~-~

Control

17 048
16 052
23 048
32 074
214 043
142 032
046 0.08
247 051

2 06
22 11
18 05
367 0.41
367 0.41
325 043
274 046
32 186

Heterogeneity: Tau? = 0.38; Chi = 35.44, df = 15 (P = 0.002); I = 58%
Test for overall effect: Z = 6.17 (P < 0.00001)

Std. Mean Difference.

Std. Mean Difference

10 72%  -1.06[201,-0.11] ==
10 68%  -155[-258,-052] =
10 68%  -1.52[-254,-049] =
10 58%  -248(370,-1.25] =
10 7.0% -1.33[-2.32,-0.34] -y
10 59%  -232[351,-1.13 =
10 7.3%  -1.02[-1.96,-0.07) ]
10 70%  -1.27(225-029] =
7 66%  -0.47(1.54,060) =2
7 6.5% -0.63 [-1.72, 0.45] -
7 66%  031(0.75,136] T
6 44%  -223(-380,-0.66] -
6 47%  -1.95[343,-047] =
5 57%  0.16[-1.08,1.40] -,
6 20%  -492[7.58,-2.27] —_—
36 9.8% -1.55 [-2.08, -1.02] -
160 100.0%  -1.30 [-1.72, -0.89] *

Meta—analysis estimates, given named study is omitted
Lower CI Limit ~ OEstimate Upper CI Limit
Cao G 2008—(7d,100)
Cao Guowen2008—(14d,100)
Cao Guowen2008-(28d,100)
Liu Lijing2013-(7d,100)
Liu Lijing2013-(14d,100)
Liu Lijing2013—(28d,100)
Liu Lijing2013-(56d,100)
Li Yingchun2015-(7d,50)
Li Yingchun2015-(14d,50)
Li Yingchun2015-(21d,50)
Xu Bo2017-(7d,50)

Wang Jing2018—(28d,60)

- 5 5
Favours [experimental] Favours [control]

Rasoul Azmoonfar2019-(100d,100)

Funnel plot with pseudo 95% confidence limits
o
71N
7N
/ \
’ \
A z
’ \
/ \
’ "
" /
: / 0T o\ o
O
a A \®
2 gt . \
hed / L4 \
@? / \
/ \
] ’ N
/ \
’ \
’ \
’ \
/ \
/ \
° ’ \
M
= T T T T T
-6 -4 -2 0 2
SMD
FIGURE 6

Quan Yifan2023(284,50)
Quan Yifan2023-(284,100)
Jiang Yunfei2024-(284,100)

-1.791.72 -1.30 —0.89-0.81

D

Egger’s publication bias plot

standardized effect
N

-4

-6

0 1 2 3 4
precision

Effect of RES on Alveolitis score in lung tissues of PF animals. (A) Forest plot of the Alveolitis score. (B) Sensitivity analysis of the Alveolitis score. (C)

Funnel plot of the Alveolitis score. (D) Egger test for the Alveolitis score.

(Supplementary Figure S6A) and pulmonary fibrosis modeling
method (p = 0.006, = 76.1%) (Supplementary Figure S6B)
contributed to the heterogeneity in this study. Additionally,
funnel plots (Figure 7C) and Egger’s test (p < 0.0001)
(Figure 7D) indicated the presence of publication bias.

3.4.2.1.2 Inhibition of NF-kB activation. A meta-analysis was
conducted on the effect sizes of NF-«kB content in 35 studies from
5 literature sources, all study samples were obtained from lung
tissue. Compared with the control group, RES significantly
reduced NF-kB content. There was significant heterogeneity
among the included studies, and a random-effects model was
used (SMD = -2.89, 95% CI [-3.67, —-2.11], p < 0.00001, I* =
80%) (Figure 8A). Sensitivity analysis indicated that the results
were stable (Figure 8B). Further subgroup analysis revealed that
the animal species, strains, and lung fibrosis modeling methods
studies. The duration of RES
intervention (p = 0.34) and route of RES administration (p =
0.08) were not sources of heterogeneity. The source of RES drug
source (p = 0.09, I = 64.9%) (Supplementary Figure S7A) and RES
dosage (p < 0.00001, I” = 93.5%) (Supplementary Figure S7B) were
sources of heterogeneity in this study. Additionally, funnel plots
(Figure 8C) and Egger’s test (p < 0.0001) (Figure 8D) indicated
publication bias.

were consistent across 35
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3.4.2.2 Neutralize pro-inflammatory cytokines

3.4.2.2.1 Reduction of TNF-a levels. A meta-analysis was
conducted on the effect sizes of TNF-a content in 14 studies
from 7 literature sources, the study samples were obtained from
bronchoalveolar lavage fluid, lung tissue or serum. Compared with
the control group, RES significantly reduced TNF-a content. There
was significant heterogeneity among the included studies, and a
random-effects model was used (SMD = -1.58, 95% CI
[-2.18, —0.99], p < 0.00001, > = 70%) (Figure 9A). Sensitivity
analysis indicated that the results were stable (Figure 9B). Further
subgroup analysis revealed no significant differences based on
animal species (p = 0.57), animal strain (p = 0.59), RES drug
source (p = 0.11), RES dosage (p = 0.08), RES intervention
duration (p = 0.84), pulmonary fibrosis modeling method (p =
0.13), and RES administration route (p = 0.13) were not sources of
heterogeneity, and the cause of this study remains unclear.
Additionally, funnel plots (Figure 9C) and Egger’s test (p = 0.03)
(Figure 9D) indicated the presence of publication bias.

3.4.2.2.2 Inhibition of IL-1p release. A meta-analysis was
conducted on the effect sizes of IL-1p content in 12 studies from
5 literature sources (Sener et al., 2007; Impellizzeri et al., 2015; Wang
L.etal, 2022; Quan et al., 2023; Jiang et al., 2024), the study samples
were obtained from bronchoalveolar lavage fluid or lung tissue.
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Compared with the control group, RES reduced IL-13 content.
There was significant heterogeneity among the included studies,
and a random-effects model was still used (SMD = -2.55, 95% CI
[-3.18,-1.91], p = 0.03, I = 49%) (Figure 10A). Sensitivity analysis
indicated that the results were stable (Figure 10B). Further subgroup
analysis showed that animal species (p = 0.38), animal strain (p =
0.39), RES drug source (p = 0.10), RES intervention duration (p =
0.36), and RES administration route (p = 0.22) were not sources of
heterogeneity. RES dosage (p = 0.006, I = 80.5%) (Supplementary
Figure S8A) and pulmonary fibrosis modeling method (p = 0.04, =
69.7%) (Supplementary Figure S8B) contributed the
heterogeneity in this study. Additionally, funnel plots
(Figure 10C) and the Egger’s test (p = 0.002) (Figure 10D)
indicated the presence of publication bias.

to

3.4.2.2.3 Downregulation of IL-6 expression. A meta-analysis
was conducted on the effect sizes of IL-6 content in 12 studies from
6 literature sources, the study samples were obtained from
bronchoalveolar lavage fluid, lung tissue or serum. Compared
with the control group, RES significantly reduced IL-6 content.
Significant heterogeneity was among the included studies, and a

random-effects model was used (SMD = -2.16, 95% CI
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[-2.74, -1.59], p = 0.007, I° = 57%) (Figure 11A). Sensitivity
analysis indicated that the results were stable (Figure 11B).
Further subgroup analysis revealed that animal species (p = 0.19),
animal strain (p = 0.24), RES dosage (p = 0.12), RES intervention
duration (p = 0.66), and pulmonary fibrosis modeling method (p =
0.65) were not sources of heterogeneity. RES drug source (p = 0.03,
P = 62.3%) (Supplementary Figure S9A) and RES administration
route (p = 0.004, I’ = 81.7%) (Supplementary Figure S9B)
contributed to the heterogeneity in this study. Additionally, the
funnel plot (Figure 11C) symmetry was high, and the Egger’s test
(p = 0.966) (Figure 11D) indicated no publication bias.

3.4.2.3 Regulation of oxidative stress factor
3.4.2.3.1 Reduction of MDA lipid peroxidation.
analysis was conducted on the effect sizes of MDA content in

A meta-

11 studies from 8 literature sources, the study samples were
obtained from bronchoalveolar lavage fluid, lung tissue or serum.
Compared with the control group, RES significantly reduced MDA
content. There was significant heterogeneity among the included
studies, and a random-effects model was used (SMD = -2.20, 95%
CI [-2.87, -1.53], p < 0.0001, ¥ = 57%) (Supplementary Figure
SI10A). Sensitivity analysis indicated that the results were stable
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(Supplementary Figure S10B). Further subgroup analysis showed no
significant differences in animal species (p = 0.28), animal strain (p =
0.31), RES drug source (p = 0.38), RES dosage (p = 0.35), RES
intervention duration (p = 0.80), pulmonary fibrosis modeling
method (p = 0.10), and RES administration route (p = 0.57) were
not sources of heterogeneity, so the cause of this study remains
unclear. Additionally, funnel plots (Supplementary Figure S10C)
and Egger’s test (p < 0.0001) (Supplementary Figure S10D) indicated
the presence of publication bias.

3.4.2.3.2 Inhibition of MPO activity.
conducted on the effect sizes of MPO content in 5 studies from
4 literature sources, the study samples were obtained from

A meta-analysis was

bronchoalveolar lavage fluid, lung tissue or serum. Compared
with the control group, RES significantly reduced MPO content.
There was significant heterogeneity among the included studies, and
a random-effects model was used (SMD -2.22, 95% CI
[-3.09, -1.35], p = 0.06, I’ = 55%) (Supplementary Figure S11A).
Sensitivity analysis indicated that the stable
(Supplementary Figure S11B). Further subgroup analysis revealed

results were

that the lung fibrosis modeling methods were consistent across five
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studies. There were no significant differences in animal species (p =
0.44), animal strain (p = 0.16), RES drug source (p = 0.16), RES
dosage (p = 0.05), RES intervention duration (p = 0.44), and RES
administration route (p = 0.30) were not sources of heterogeneity.
Therefore, the cause of this study remains unclear. Additionally, the
number of studies was <10, so no publication bias test
was conducted.

3.4.2.3.3 Enhance SOD antioxidant capacity.
was conducted on the effect sizes of SOD content in 15 studies from

A meta-analysis

7 literature sources, the study samples were obtained from lung
tissue or serum. Compared with the control group, RES significantly
increased SOD content. There was significant heterogeneity among
the included studies, and a random-effects model was used (SMD =
1.67, 95% CI [1.05, 2.30], p < 0.0001, I = 76%) (Figure 12A).
Sensitivity analysis indicated that the results stable
(Figure 12B). Further subgroup analysis revealed that animal
species (p = 0.08), animal strain (p = 0.05), RES intervention
duration (p = 0.69), and lung fibrosis modeling method (p =
0.43) were not sources of heterogeneity. However, RES drug
source (p < 0.001, P = 86.4%) (Supplementary Figure SI2A),

were
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RES dosage (p = 0.002, I’ = 84.4%) (Supplementary Figure S12B),
and RES administration route (p < 0.001, I’ 91.1%)
(Supplementary Figure S12C) were the sources of heterogeneity

in this study. Additionally, the funnel plot (Figure 12C) symmetry
was high, and the Egger test (p = 0.631) (Figure 12D) indicated no
publication bias.

4 Discussion

PF is a chronic, progressive, fibrotic interstitial lung disease
characterized by increasing scarring of the lung interstitium
(Somogyi et al, 2019). Recently, there have been significant
advances in treating PF. Pirfenidone and nintedanib are
commonly used in clinical practice as antifibrotic therapies
(Karimi-Shah and Chowdhury, 2015). While these medications
effectively slow lung function decline and disease progression
(Biondini
gastrointestinal reactions and liver damage (Kou et al, 2024).

et al, 2020), long-term use can cause severe
Therefore, it is essential to explore new treatment options for PF.
Preclinical systematic reviews and meta-analyses of animal studies
are valuable tools for assessing clinical efficacy. By analyzing the
safety and effectiveness of animal study results, these findings can be
further applied to human clinical trials (de Vries et al, 2014).
Although numerous preclinical studies have investigated RES in
animal models of PF, comprehensive summaries of these studies are

limited or incomplete. Additionally, some published articles on the
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mechanisms of RES treatment for PF lack extensive experimental
evidence. A systematic review grounded in evidence-based medicine
can help improve animal research quality and facilitate RES therapy
translation for PF from preclinical studies to clinical applications.

4.1 Summary of results

To our knowledge, no previous meta-analysis has quantitatively
evaluated the efficacy of RES therapy for pulmonary fibrosis (PF).
This meta-analysis included 25 studies, 90 experimental groups,
with 628 experimental animals and 357 control animals. RES
significantly improved pulmonary fibrosis, reduced inflammation,
and decreased oxidative levels. The results suggest that RES exerts its
anti-fibrotic effects through multiple mechanisms, providing
scientific support for the clinical use of RES in treating
pulmonary fibrosis (Table 2).

4.2 Heterogeneity analysis

Differences in animal species, strains, RES drug sources, RES
dosage, RES intervention duration, pulmonary fibrosis modeling
methods, and RES administration routes may cause clinical
heterogeneity. Before formal analysis, we addressed potential
clinical heterogeneity from two perspectives. First, regarding RES
dosage, the range in this experiment was 0-100 mg/kg/day. Based on
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low, medium, and high dosage groups, the dosage was categorized as
follows: 0-30 mg/kg/day for low dose, 31-60 mg/kg/day for medium
dose, and 61-100 mg/kg/day for high dose; second, regarding the
intervention duration, the categories were: <7 days (short-term),
8-28 days (medium-term), and >28 days (long-term). The study
found that heterogeneity was generally high across all outcome
measures. Therefore, sensitivity analysis was first performed to
confirm the stability of the results, followed by subgroup analysis
to identify sources of heterogeneity, which mainly originated from
RES
administration routes, and RES dosage. Although this study

RES drug sources, lung fibrosis modeling methods,
included many subgroups, the sources of heterogeneity for TNF-
a, MDA, and MPO remain unclear. We think that inconsistent
testing methods, varied sampling times, and different drug sources
may all add to this heterogeneity. However, because of the limited
number of studies included, we cannot perform a more detailed
analysis with the current data. Future research should adopt a
standardized set of core outcome measures (such as those from
the COMET Initiative) to unify testing procedures and require
detailed reporting of drug purity, assay kit numbers, and
sampling times. Doing so will help clarify differences between
studies in future research, improving the reliability and clinical
relevance of the findings.
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4.3 Interpretation and discussion of the
study results

4.3.1 Selection of animal models

Since PF is difficult to replicate, various animals have been used to
develop PF animal models. These models from different species can
better reflect PF patients (Tashiro et al., 2017). The animals used in
this study were the most common models for PF—male and female
rodents (rats and mice). Research shows that mice are most frequently
used (Moore and Hogaboam, 2008), but rats were more common in
this study. The average age of the animals was 9.5 weeks. PF is an
aging-related disease, but most animal models are between 8 and
12 weeks old (Izbicki et al., 2002). Spontaneous fibrosis regression
often occurs in young mice after a single bleomycin dose, but this does
not happen in older mice. Multiple doses in young mice better mimic
human pulmonary fibrosis (Tashiro et al., 2017). Regarding gender,
the proportion of male animals in this study was significantly higher
than that of females. The study shows that, regardless of age, male
rodents exhibit a stronger response than females when bleomycin
induces lung fibrosis (Redente et al., 2011). Based on these results and
related reports, future research should focus on using older or young
male mice with multiple doses to optimize models and better replicate
PF features seen in humans (Stout-Delgado et al., 2016).
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Effect of RES on IL-6 content in lung tissues of PF animals. (A) Forest plot of IL-6 content. (B) Sensitivity analysis of IL-6 content. (C) Funnel plot of IL-

6 content. (D) Egger test for IL-6 content.

4.3.2 Establishment of pulmonary fibrosis models

This meta-analysis did not restrict modeling methods before
inclusion to better represent PF development’s various states and
etiologies. Bleomycin was used for modeling in 80% of the included
studies (n = 20). Bleomycin-induced pulmonary fibrosis modeling is
the most common among currently applied experimentally induced
pulmonary fibrosis animal models (Degryse and Lawson, 2011;
Moore et al, 2013). The pathological features induced by
bleomycin closely mimic those of end-stage pulmonary fibrosis in
humans. They can dynamically demonstrate the progression of
pulmonary fibrosis from acute injury to chronic fibrosis (Ayilya
et al., 2023). Bleomycin is administered via multiple routes during
modeling, with intratracheal administration being the most
common and closest to the normal pulmonary fibrosis
morphology in humans (Degryse and Lawson, 2011). Most of the
studies in this review also used intratracheal administration for
modeling. In addition, this study also included modeling using silica
(n = 1), radiation (n = 2), delicate particulate matter (n = 1), and
lipopolysaccharide (n = 1). Silica molding is similar to silicosis
nodular fibrosis. It is related to occupational exposure (Arras et al.,
2001). PF caused by this molding method often has a long course
and stable condition (Barbarin et al., 2004). Radiation modeling can
better demonstrate clinical pathological processes, and clinical
experimental process parameters can be controlled, inducing
(Jin 2020). The
environmentally delicate particulate matter is greater than silicon

more accurate results et al, range of

dioxide, directly reflecting the impact of air pollution on the
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formation of pulmonary fibrosis, which has chronic and
persistent characteristics (Li et al., 2024). The lipopolysaccharide-
induced pulmonary fibrosis model has the core advantages of a
precise inflammation-driven mechanism and well-defined immune
regulatory targets, enabling it to simulate the progression of
pulmonary fibrosis in the context of infection or inflammation
(Nguyen et al, 2022). Bleomycin-induced pulmonary fibrosis
models often present with acute lung tissue damage, and acute
modeling results in high mortality rates in animal models (Gul et al.,
2023). This study included five modeling methods, compensating
for the shortcomings of a single modeling method.

4.3.3 Administration routes for RES

This study included three administration methods: gavage (n =
17), intraperitoneal injection (n = 4), and oral administration (n =
2). Both gavage and oral administration simulate the human oral
administration route. However, due to poor compliance with self-
administration in experimental animals, such as factors affecting
drug palatability and feeding rhythms, artificial gavage intervention
is often used to ensure dose accuracy (Turner et al., 2011). Intestinal
administration (including gavage and oral administration) requires
absorption through the gastrointestinal tract before entering the
systemic circulation. During this process, it undergoes metabolism
by the gastrointestinal mucosa and the first-pass effect of the liver,
resulting in a significant reduction in the bioavailability of RES
(Doherty and Pang, 1997). Therefore, parenteral administration
routes should be included when analyzing the impact of RES
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Effect of RES on SOD content in lung tissues of PF animals. (A) Forest plot of SOD content. (B) Sensitivity analysis of SOD content. (C) Funnel plot of

SOD content. (D) Egger test for SOD content.

administration routes on PF efficacy. Intraperitoneal injection, as
the most commonly used parenteral administration method, can
effectively avoid the first-pass effect on drug activity (Lukas et al.,
1971)and provide more comprehensive data support for the optimal
RES administration strategy.

4.4 The effects and mechanisms of
resveratrol on animal models of
pulmonary fibrosis

4.4.1 Core pathological processes
4.4.1.1 Delaying the progression of fibrosis

The results of this meta-analysis, including pulmonary fibrosis
histological scores, hydroxyproline (Hyp) content, and type I
collagen (Col 1) content, can systematically assess fibrosis
First,
pulmonary fibrosis histology scoring is considered the “gold
standard” for diagnosing fibrosis (Hiibner et al, 2008). It
objectively reflects the morphological progression of fibrosis by

progression from a multidimensional perspective.

directly observing histopathological features such as collagen
deposition and alveolar structural damage. Secondly, as a
collagen-specific amino acid, the tissue content of Hyp can not
only be used to assess total collagen content quantitatively, but is
also widely used in the efficacy evaluation system for anti-fibrotic
drugs (Nakagome et al,, 2006; Tang et al., 2022). In addition,
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abnormal deposition in Col 1 is not only a characteristic marker of
fibrosis, but also constitutes the core pathological mechanism of
lung tissue structural remodeling and functional decline by
altering the mechanical properties of the extracellular matrix
and triggering a cascade of pro-fibrotic signals (Shoda et al,
2007). The outcome measures of this meta-analysis showed that
the RES experimental group had significantly lower fibrosis
histology scores, hyp content, and Col 1 content in lung tissue
compared to the control group, suggesting that RES not only
inhibits key steps in collagen synthesis but also blocks the
vicious cycle of fibrosis, ultimately achieving multiple protective
effects such as slowing disease progression and maintaining
alveolar gas exchange function.

4.4.1.2 Reducing lung tissue inflammation

Alveolitis is a key initiating step in pulmonary fibrosis,
characterized pathologically by inflammatory reactions in alveolar
walls and  interstitum. A  persistent  inflammatory
microenvironment can activate fibroblasts, promote the release of
pro-fibrotic factors, and induce excessive deposition of extracellular
matrix, ultimately leading to irreversible structural damage to lung
tissue and irreversible fibrotic scar formation (Song et al., 2016; Han
etal,, 2021). One of the outcome measures in this meta-analysis, the
alveolitis score, showed that the alveolitis score in the RES
experimental group was significantly lower than that in the

control group, indicating that RES may effectively delay or even
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TABLE 2 Summary of results.
Outcome

Core pathological Fibrosis-related

process

Pulmonary
fibrosis score

Hyp content

Col 1 content

Result

SMD = -2.30, 95% CI [-2.80, -1.79],
p < 0.00001, I’ = 76%

SMD = -2.16, 95% CI [-2.69, -1.63],
p < 0.00001, I’ = 85%

SMD = —2.70, 95% CI [-4.71, —0.70],
p < 0.00001, I> = 96%
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block the pathological transformation of inflammation to fibrosis,
providing sufficient time for clinical intervention.

4.4.2 Key molecular mechanisms
4.4.2.1 Reducing the levels of pro-fibrotic factors

In the progression of pulmonary fibrosis, TGF-f acts as a classic
pro-fibrotic factor, driving the pathological process through a dual
mechanism: on one hand, it activates fibroblasts to differentiate into
myofibroblasts, leading to excessive secretion of ECM proteins
dominated by Col 1, thereby forming irreversible pulmonary
tissue scarring (Peng et al., 2022); on the other hand, TGF-p can
induce epithelial-mesenchymal transition (EMT) in alveolar
epithelial cells, conferring migratory and invasive capabilities and
a pro-fibrotic phenotype, thereby further exacerbating the formation
of a fibrotic microenvironment (Inui et al., 2021). NF-kB, as a pro-
fibrotic inflammatory regulatory factor, indirectly enhances the
fibrotic process by mediating the cascade release of inflammatory
factors such as IL-6 and TNF-a (Lawrence, 2009). These two key
pathways do not act completely independently; there is a significant
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(2018), Liu et al. (2020), Wang et al. (2022a), Jiang et al. (2024)

positive synergistic effect between TGF-f and NF-«B: the TGF-f/
Smad signaling pathway enhances the transcriptional activity of NF-
kB, while activated NF-kB promotes the synthesis and activation of
TGEF-B through a positive feedback loop (Wu W. et al, 2022),
forming a continuously amplified pro-fibrotic signaling network.
Data from this meta-analysis showed that TGF- and NF-«xB
expression levels were significantly reduced in the lung tissue of
animals in the RES experimental group. This suggests that it may
effectively inhibit the cascade reaction of pro-fibrotic factors by
simultaneously targeting these two key signaling nodes.

4.4.2.2 Reducing the levels of inflammatory factors in
lung tissue

TNF-a, IL-1p, and IL-6 are key factors mediating inflammatory
responses, regulating the initiation, cascade amplification, and
chronic progression of inflammation through multiple pathways
(Tylutka et al., 2024). Regarding their mechanisms of action, the
three agents exhibit synergistic effects. TNF-a, as a key regulator of
early inflammation, is primarily secreted by activated macrophages
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and T lymphocytes. It activates the NF-kB signaling pathway,
significantly upregulating the expression of other inflammatory
the
inflammatory cascade reaction (El-Tahan et al, 2016). IL-1p is

factors and serving as initial trigger point for the
produced through the activation of the NLRP3 inflammasome
and forms a positive feedback regulatory loop with TNF-q,
synergistically promoting the infiltration of neutrophils and
(Bent 2018).

confirmed that its specific antagonist can effectively delay fibrosis

monocytes et al, Animal experiments have
progression (Nan et al.,, 2021). IL-6 plays a dual role in pulmonary
fibrosis: on the one hand, it acts as a typical inflammatory factor,
exacerbating tissue inflammatory damage by regulating neutrophil
recruitment and macrophage polarization (Rose-John, 2012); on the
other hand, it acts as a direct driver of the fibrotic process,
significantly enhancing pro-fibrotic effects by increasing the
sensitivity of TGF-B receptor signaling (Wang Y. et al, 2022).
The data from this meta-analysis showed that the expression
levels of TNF-a, IL-1B, and IL-6 in the bronchoalveolar lavage
fluid and plasma of animals in the RES experimental group were
significantly reduced, suggesting that RES can improve the alveolar
inflammatory microenvironment by inhibiting key inflammatory

factor networks through multiple targets.

4.4.2.3 Reducing oxidative stress factor levels

Oxidative stress, as one of the core mechanisms underlying the
development and progression of PF, primarily manifests through the
dynamic imbalance between reactive oxygen species (ROS) and the
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antioxidant system. This imbalanced state drives pulmonary tissue
inflammatory cascades and fibrotic repair processes through dual
pathways: direct cellular damage and indirect activation of signaling
pathways (Luo et al., 2024). The factors related to oxidative stress in
this outcome indicator are MDA, MPO, and SOD, which participate
in the fibrotic pathological process from different dimensions. As the
end product of lipid peroxidation, MDA damages alveolar epithelial
cells, activates pro-fibrotic pathways such as TGF-B1, and
accelerates the process of pulmonary fibrosis (Cordiano et al,
2023). As a neutrophil activation marker, MPO directly attacks
the alveolar basement membrane structure by catalyzing strong
oxidizing substances such as hypochlorous acid. It also promotes the
release of inflammatory factors such as IL-6 and TNF-aq, creating a
persistent inflammatory microenvironment and forming a positive
feedback loop of oxidative stress and inflammatory response (Lin
et al., 2024). SOD, as a key enzyme in the endogenous antioxidant
system, maintains redox homeostasis by specifically scavenging
superoxide anions (O2-). Enhanced SOD activity helps protect
and blocks ROS-induced
alveolar epithelial cell apoptosis pathways (Younus, 2018). In this

mitochondrial function integrity
meta-analysis, the RES experimental group showed reduced levels of
MDA and MPO in bronchoalveolar lavage fluid and plasma, while
SOD activity was significantly increased. This suggests that RES may
exert its effects through a multi-target regulatory mechanism,
including reactions,

inhibiting lipid peroxidation reducing

neutrophil infiltration, and enhancing antioxidant enzyme

activity, thereby synergistically improving pulmonary tissue
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oxidative stress and delaying the fibrotic process characterized by
alveolar structural remodeling and abnormal extracellular matrix
deposition (Figure 13).

4.5 Security

The results of this study indicate that even when the
experimental group animals were administered RES at a dose of
100 mg/kg/day, no adverse reactions related to RES treatment for PF
were observed in the study. However, the current data are
insufficient to assess the safety profile of RES fully. Therefore,
future studies should focus on the following aspects: first,
should establish standardized
monitoring and reporting mechanisms to record any potential

researchers adverse reaction
toxic reactions and avoid selective reporting objectively; second,
the relationship between adverse reactions and factors such as
dosage, route of administration, and treatment duration should
be closely examined, combined with pharmacokinetic-related

indicators for correlation analysis.

4.6 Limitation

The main challenge comes from the difference between animal
models and real clinical cases. Current animal models, like the
commonly used bleomycin-induced model, can’t fully mimic the
complex features of human pulmonary fibrosis (Perel et al., 2007). A
key issue is that rodents have much greater natural repair abilities
than humans (Moeller et al., 2008), creating uncertainties when
applying these models’ research results to human treatment. Also,
most studies do not report the age of the animals well, but age is a
crucial factor that affects how well the model works. This makes it
challenging to ensure that all animals develop stable and reliable
pulmonary fibrosis models, potentially affecting the accuracy of RES
effectiveness evaluations due to the model’s reliability.

The
methodological limitations pose another significant constraint.

considerable  heterogeneity among studies and

There are notable differences between studies in detection
methods and measurement units, such as histological scoring
criteria and biochemical indicator detection techniques. Although
standardized mean differences (SMD) were used to combine results,
this method’s inherent limitations mean it cannot entirely eliminate
systematic errors, and the indirect standardization process of the
original data may also introduce calculation errors.

Even more concerning is the potential risk of publication bias.
The analysis indicates that publication bias might exist for specific
outcome measures. Specifically, studies showing positive results that
demonstrate the efficacy of RES are more likely to be published. In
contrast, studies with harmful or ineffective results may not be
reported appropriately or published. This bias probably leads to an
overestimation of the true efficacy of RES, thus impacting the
objective assessment of its clinical value (Lin and Chu, 2018).

Finally, differences in resveratrol formulations and quality
present another major obstacle. The RES used in the study varied
significantly in source, purity, formulation, and administration
route. Because RES itself has issues like low bioavailability and
rapid metabolism (Ma et al., 2025), the pharmacokinetic properties
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of different formulations and methods vary widely. However, these
crucial pharmaceutical factors were neither standardized nor
adequately reported in the studies, making it difficult to compare
results directly across studies and significantly impeding the
determination of effective doses and optimal administration
strategies for RES (Nyambuya et al, 2020). This undoubtedly
poses a significant challenge for clinical translation.

In summary, despite the limitations mentioned -earlier,
resveratrol has shown promising potential for clinical use in
treating pulmonary fibrosis (Berman et al., 2017). To advance the
clinical application of RES, the following key issues need to be
addressed: first, develop high-quality animal models that better
resemble the pathophysiology of human pulmonary fibrosis to

improve the models’ predictive accuracy; second, strictly
standardize experimental reporting standards, adopt uniform
assessment methods and guidelines to enhance result

comparability across different studies; and finally, conduct
detailed studies on the pharmacokinetics and pharmacodynamics
of RES, optimize delivery systems to increase bioavailability, and
establish future
clinical trials.

a strong pharmaceutical foundation for

4.7 Contribution to the 4Rs in
ethnopharmacology

This systematic review and meta-analysis of preclinical studies
on resveratrol for pulmonary fibrosis was conducted with a strong
commitment to the ethical principles of the 4Rs framework (Reduce,
Refine, Replace, Responsibility) in animal research.

4.7.1 Reduce

By synthesizing data from 25 existing animal studies (totaling
985 animals), this review provides a comprehensive evidence base
that can guide future research and potentially lessen the need for
additional animal experiments. The detection of significant
heterogeneity (e.g., in animal strains, drug sources, and modeling
methods) underscores the importance of well-designed studies with
adequate sample sizes. Our findings can help researchers optimize
experimental designs, thereby reducing the number of animals
required without compromising scientific validity.

4.7.2 Refine

We used the SYRCLE risk of bias tool to evaluate the
methodological quality of the included studies, identifying areas
for improvement, such as randomization, blinding, and allocation
concealment. Our review of modeling methods (e.g., bleomycin,
radiation, silica) and their effects on outcomes provides insights into
refining models to simulate human disease more accurately while
minimizing animal distress. Additionally, our finding that male and
older animals may be more suitable for pulmonary fibrosis research
suggests that choosing these models could enhance animal welfare
and improve data relevance.

4.7.3 Replace

Although this review consolidates data from animal studies, it
emphasizes the molecular mechanisms (e.g., TGF-p/Smad and NF-
kB pathways) that could be further explored using alternative
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methods such as in vitro cell cultures or computational models.
Additionally, the strong preclinical evidence presented here
supports the transition of resveratrol into human clinical trials,
which may ultimately reduce dependence on animal models.

4.7.4 Responsibility
We highlight the ethical duty of researchers to report detailed

purity,
characteristics, and adverse events, to ensure reproducibility and

methodologies, including drug sources, animal
transparency. Our review also advocates for the use of standardized
core outcome measures and safety monitoring in future studies,
which are crucial for responsible research practice. By critically
evaluating the limitations of current animal models and supporting
improved study designs, we aim to promote responsible animal use
in ethnopharmacological research.

Overall, this review improves the understanding of resveratrol’s
therapeutic potential for pulmonary fibrosis and promotes the
ethical development of animal research by adhering to the 4Rs

principles.

5 Conclusion

This study is the first systematic review and meta-analysis of the
effects and mechanisms of resveratrol (RES) in animal pulmonary
fibrosis (PF) models. The results show that RES has significant anti-
PF potential in animal models, mainly by slowing fibrosis
progression, reducing inflammatory responses, and combating
oxidative stress. However, because of limitations in the included
studies, the interpretation and application of these findings should
be cautiously approached. Still, the evidence from this research
strongly supports RES as a highly promising anti-PF candidate drug,
deserving further detailed investigation and progress toward clinical
use. To address current limitations and advance RES’s clinical
application, future preclinical studies must adopt strict
standardization in design, including unified model validation
standards, standardized specifications, detailed administration
protocols for RES, and consistent detection methods and
reporting metrics. This will help reduce heterogeneity and

improve the comparability and reliability of results.
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