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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is
characterised by the following: amyloid-β (Aβ) deposition, tau
hyperphosphorylation, neuroinflammation and oxidative stress. Unfortunately,
there is no curative treatment available. Recently, natural products have attracted
growing interest as potential therapeutic agents for AD, thanks to their multi-
target actions and favourable safety profiles. This review highlights recent
advances in the use of various natural compounds, including flavonoids,
phenolic compounds, saponins, terpenoids, alkaloids and coumarins, with a
particular focus on how they modulate the mitogen-activated protein kinase
(MAPK) signaling pathway. Representative agents such as myricetin, nobiletin,
resveratrol, gallic acid, paeoniflorin, ganoderic acid A, huperzine A, triptolide,
berberine, crocin, and ginsenosides have been shown to regulate MAPK
subpathways (ERK, JNK, p38), thereby attenuating oxidative stress,
neuroinflammation, synaptic dysfunction, and neuronal apoptosis. Preclinical
studies suggest that these compounds improve cognitive function and
ameliorate AD-related pathology, thereby supporting the idea that MAPK
signaling is a critical therapeutic target. Nevertheless, current evidence is
limited by short-term animal experiments, insufficient toxicological
evaluations, and challenges related to bioavailability and blood–brain barrier
penetration. Future studies should emphasize long-term efficacy, safety
assessments, optimized drug delivery systems, and high-quality clinical trials.
Overall, natural products represent a valuable source for AD drug discovery, and
targeting MAPK signaling offers promising opportunities for novel therapeutic
development.
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1 Introduction

Since Alois Alzheimer first described it in 1907 (Alzheimer, 1907), Alzheimer’s disease
(AD) has become the most prevalent form of dementia, accounting for 60 to 80 percent of
cases. The World Health Organization has recognized AD as a key disease for global public
health. It currently affects approximately 47.5 million people (Vos et al., 2017),
predominantly those aged 65 years and older. The latest epidemiological data shows
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that there are currently approximately 44 million people with
dementia worldwide. Due to the accelerating global ageing trend,
the number of dementia patients is expected to continue increasing,
doubling approximately every 5 years (D’Cruz and Banerjee, 2021),
and potentially reaching 152 million by 2050. This upward trend
exhibits marked regional disparities, with the most substantial
increases expected in low- and middle-income countries
(Patterson, 2018). When adopting the biological definition of AD,
the actual prevalence may be up to three times higher than that based
on clinical diagnosis, thereby further compounding the associated
social and economic burden (Prince et al., 2014; Ganguli et al., 2005).

Despite over a century of research since its discovery, the
underlying pathogenesis of AD remains poorly understood.
Although some treatments can temporarily alleviate symptoms
(Yiannopoulou and Papageorgiou, 2020; Livingston et al., 2017),
no curative therapy is currently available. The pathological
hallmarks of AD include extracellular amyloid-β (Aβ) plaques
(Haass and Selkoe, 2007) and intracellular neurofibrillary tangles
(NFTs) (Guan et al., 2021; Sebastián-Serrano et al., 2018).
Additionally, neuroinflammation (Leng and Edison, 2021),
oxidative stress (Bai et al., 2022), cholinergic dysfunction (Francis
et al., 1999), genetic predispositions (Latimer et al., 2021),
mitochondrial impairment (Song et al., 2021), gut microbiota
dysbiosis (Cryan et al., 2019; Angelucci et al., 2019), and
compromised blood–brain barrier (BBB) integrity (Sweeney et al.,
2018) have also been implicated in the neurodegenerative processes
of AD. Against this backdrop, elucidating the pathological
mechanisms of AD and developing effective therapeutic strategies
have become urgent priorities in geriatric research.

In recent years, significant progress has been made in the
investigation of natural compounds for the treatment of AD. A
plethora of studies have reported the potential therapeutic effects of
individual herbal medicines or their extracts, such as baicalein
(Siddiqui et al., 2024a), punicalagin (Siddiqui et al., 2024b),
ginsenosides (She et al., 2024), quercetin (Khan et al., 2019),
salidroside (Zhang N. et al., 2023), naringin (Singh and Kumar
Singh, 2024), and astragalosides (Ding et al., 2022), in AD
management. These studies primarily focus on the regulation of
multiple signaling pathways by natural compounds, including PI3K/
Akt (Fakhri et al., 2021; Long et al., 2021), autophagy (Zhang Z. et al.,
2021), Nrf2 (George et al., 2022), the cholinergic system (Hampel
et al., 2018), the gut–brain axis (Zhang T. et al., 2023), glutamate
signaling (Puranik and Song, 2024), and STAT3 (Wen and Hu,
2024). These compounds interfere with the core pathological
mechanisms of AD, thereby demonstrating multi-target and
integrative therapeutic potential. However, despite the critical
role of the MAPK inflammatory signaling pathway in the
pathogenesis and progression of AD, systematic reviews
addressing its regulation by natural compounds remain scarce.
Therefore, a comprehensive summary of the mechanisms by
which natural compounds modulate the MAPK pathway in the
treatment of AD is of substantial research significance.

2 Neuroinflammation and AD

Neuroinflammation, a significant mechanism underlying
NDDs, has become a major focus of AD research in recent years.

In AD, neuroinflammation plays a critical role in disease initiation,
pathological progression, and clinical deterioration (Kinney et al.,
2018; Kwon and Koh, 2020; Newcombe et al., 2018), primarily
characterized by excessive activation of microglia and astrocytes,
along with the involvement of multiple pro-inflammatory mediators
(Uddin et al., 2020). In the early stages of AD, glial cells recognize
pathological Aβ and tau proteins via pattern recognition receptors
(e.g., TLRs, TREM2), which then mediate their clearance and exert
neuroprotective effects (Temviriyanukul et al., 2023; Liu J. et al.,
2020). However, as the disease progresses, sustained abnormal glial
activation triggers the overactivation of signaling pathways such as
NF-κB and p38 MAPK, leading to the excessive release of pro-
inflammatory cytokines (e.g., IL-1β, TNF-α, IL-6) (Newcombe et al.,
2018; Liao et al., 2021) and reactive oxygen/nitrogen species (ROS/
RNS) (Temviriyanukul et al., 2023), thereby establishing a chronic
neuroinflammatory microenvironment (Walters et al., 2016).

This persistent inflammatory state interacts with Aβ deposition
and tau hyperphosphorylation, forming a vicious cycle. On one
hand, inflammatory mediators promote the pathological changes in
tau protein by activating kinases such as GSK-3β (Laurent et al.,
2018). Furthermore, aggravation of these pathological changes in tau
protein has been demonstrated to further amplify glial activation
(Leng and Edison, 2021; Song et al., 2021; Laurent et al., 2018;
Hickman et al., 2008). Notably, neuroinflammation exhibits dual
regulatory roles: acute inflammation has a certain neuroprotective
effect, while chronic inflammation can accelerate the decline of
cognitive function by inducing synaptic damage and neuronal death.

The process is influenced by a variety of endogenous and
exogenous factors. The endogenous factors encompass sex (e.g.,
estrogen deficiency) (Moser and Pike, 2016; Maioli et al., 2021; Cui
et al., 2013; Lee et al., 2014; Chakrabarti et al., 2014; Tecalco-Cruz
et al., 2021; Yun et al., 2018), aging (Hoozemans et al., 2011), and
genetic mutations such as TREM2 R47H (Fuller et al., 2010) and
ApoE4 (Kloske and Wilcock, 2020). In addition, exogenous factors
include chronic stress-induced activation of the
hypothalamic–pituitary–adrenal (HPA) axis (Justice, 2018; Lesuis
et al., 2018; Carroll et al., 2011), heavy metal exposure (Teleanu et al.,
2022; Bondy, 2021; Harischandra et al., 2019), metabolic disorders
(e.g., obesity and diabetes) (Nuzzo et al., 2015), and Western diet-
induced gut microbiota dysbiosis (Cavaliere et al., 2019; McGrattan
et al., 2019; Chen et al., 2022; Wang X. et al., 2019; Colombo et al.,
2021; Lin et al., 2022; Vogt et al., 2017). Gut dysbiosis has been
demonstrated to promote central neuroinflammation and Aβ
accumulation through mechanisms such as abnormal short-chain
fatty acid metabolism, inflammatory signaling activation, and
disruption of BBB integrity.

In summary, neuroinflammation serves not only as a key bridge
between the two pathological mechanisms of Aβ and tau, but also as
an important target for the early diagnosis and therapeutic
intervention of AD.

3 MAPK signaling pathway and AD

Microglia and astrocytes in the central nervous system (CNS)
are activated via multiple molecular signaling pathways, leading to
the release of various inflammatory mediators, including nuclear
factor-κB (NF-κB), p38 MAPK, mammalian target of rapamycin
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(mTOR), cyclooxygenase (COX), peroxisome proliferator-activated
receptor-γ (PPAR-γ), and the NLRP3 inflammasome. This
activation process has been shown to trigger neuronal and
synaptic damage as well as neuronal apoptosis, thereby
accelerating the pathological progression of AD.

The MAPK signaling pathway family plays a pivotal regulatory
role in AD pathogenesis. The three primary subpathways are all
significantly activated in the damaged neurons of AD patients,
which are named extracellular signal-regulated kinase (ERK),
c-Jun N-terminal kinase (JNK), and p38 MAPK. This activation
indicates the involvement of the MAPK pathway in the
pathophysiological processes and pathogenesis of AD. The
MAPK pathway is extensively implicated in key pathological
processes of AD, including neuroinflammation, tau
hyperphosphorylation, synaptic dysfunction, neuronal apoptosis,
and oxidative stress.

ERK is predominantly activated by growth factors, which play
critical roles in cell differentiation, proliferation, and development.
Conversely, JNK and p38 MAPK are known to be activated by
mitogens, cytokines, cell death receptors, and various stress stimuli,
including oxidative stress, heat shock, hypoxia, and
ultraviolet radiation.

The pathogenesis of AD is intricate, and in recent years, the
p38MAPK signaling pathway has emerged as a research hotspot (Jia
et al., 2012). p38 MAPK, a key protein that is abundantly expressed
in multiple brain regions associated with cognitive function, can be
activated by various inflammatory mediators, including cytokines,
chemokines, and bacterial lipopolysaccharides (LPS).

In the process of glial cell-mediated neuroinflammation,
activated microglia generate substantial amounts of neurotoxic
mediators, including IL-1β, TNF-α, COX-2, and inducible nitric
oxide synthase (iNOS), via the p38 MAPK signaling pathway. These
inflammatory factors further activate the p38 MAPK pathway in
astrocytes, thereby promoting the formation of an inflammatory
cycle that is difficult to halt.

Mechanistic studies suggest that p38MAPK exerts a detrimental
effect on neurons by inducing abnormal tau phosphorylation,
mitochondrial dysfunction, and apoptosis but also disrupts
glutamate homeostasis and synaptic plasticity through activation
of the NF-κB signaling pathway (Singh, 2022). Furthermore,
evidence suggests a direct correlation between aberrant microglia
activation during the initial stages of AD and the subsequent
development of synaptic dysfunction and neuronal death (Leng
and Edison, 2021).

Clinical studies have demonstrated that p38 MAPK activity in
the brain tissue of AD patients is significantly elevated compared to
healthy controls (Lee and Kim, 2017; Kheiri et al., 2018). These
findings provide a critical theoretical basis for targeted regulation of
the MAPK pathway in the treatment of AD.

Research has demonstrated that the inhibition of Aβ toxicity and
tau protein hyperphosphorylation, with the objective of protecting
neurons, as well as the reduction of neuroinflammation by inhibiting
the p38 MAPK pathway, are the key mechanisms by which this
signaling pathway exerts therapeutic effects. Excessive Aβ deposition
has been demonstrated to result in neuronal damage, induce a
cytotoxic reaction, activates inflammatory signaling pathways,
induces neuroinflammation and oxidative stress responses, and
simultaneously damages the long-term enhancement (LTP)

function of the synapses in the hippocampal region.
Furthermore, excessive deposition of Aβ induces cellular stress,
leading to the occurrence of neuroinflammation, which
stimulates astrocytes to release inflammatory cytokines (e.g.,
TNF-α, IL-1β), thereby activating the p38 MAPK signaling
pathway. Consequently, the activity of its downstream nuclear
factor -κB (NF-κB) also increases accordingly, further promoting
the release of pro-inflammatory factors and thereby exacerbating the
neuroinflammatory response.

In addition, the inhibition of this pathway has been shown to reduce
levels of reactive oxygen species (ROS) and superoxide (O2

−), and
downregulates the expression of nsy-1, sek-1, and pmk-1 mRNA (Li
et al., 2018). This, in turn, has been demonstrated to mitigate oxidative
stress and reduce Aβ plaque formation, ultimately exerting anti-AD
effects. Another hallmark of AD pathology is the formation of
neurofibrillary tangles, primarily composed of hyperphosphorylated
tau protein. Under normal conditions, tau proteins are predominantly
localized in neuronal axons, and participate in maintaining the stability
of microtubules. The process of hyperphosphorylation of tau results in
the impairment of its microtubule-binding capacity. This, in turn, leads
to the destabilization of the cytoskeleton and the disruption of axonal
transport. These phenomena contribute to themanifestation of synaptic
dysfunction.

Synapses serve as the fundamental structures that regulate
neural functions and directly participate in the transmission of
neural signals. Among them, LTP plays a key role in the
formation of learning and memory and is an important
physiological basis for both. Studies have revealed that activation
of p38 MAPK can inhibit LTP and reduce synaptic plasticity in the
hippocampus, thereby directly affecting the process of memory
formation. Therefore, inhibiting the activation of the p38 MAPK
signaling pathway helps improve synaptic dysfunction and restore
synaptic plasticity, which is a potentially effective strategy for
intervening in AD (Yu et al., 2018; Figure 1).

4 Traditional Chinese medicine (TCM)
compounds treat AD through theMAPK
signaling pathway

A substantial body of research has demonstrated that plant-
derived natural compounds—such as flavonoids, alkaloids,
saponins, and phenolic acids—modulate neurotransmitter levels
through multiple signaling pathways and cascade reactions,
thereby improving behavioral performance and memory function,
reducing Aβ protein deposition, inhibiting acetylcholinesterase
(AChE) activity, preventing neuronal apoptosis, and enhancing
cerebral antioxidant capacity. Moreover, accumulating evidence
indicates that these compounds can specifically modulate the
MAPK signaling pathway, demonstrating considerable
therapeutic potential in the treatment of AD (Table 1, 2).

4.1 Flavonoids

4.1.1 Myricetin (ME)
ME is a naturally occurring flavonoid with diverse biological

activities. It is predominantly found in plant species belonging to the
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Myricaceae and Euphorbiaceae families, and the main sources
include plant extracts such as berries and tea leaves (Taheri et al.,
2020). Studies have demonstrated that ME exerts a broad range of
pharmacological effects, including anti-inflammatory activity (by
modulating the NLRP3 inflammasome, the NF-κB pathway, and
various pro-inflammatory cytokines), antioxidant properties,
improvement of mitochondrial dysfunction, and regulation
of autophagy.

Liu. et al. (Liu et al., 2023) employed the 3×Tg-ADmouse model
and integrated network pharmacology with molecular docking
analysis to predict that ME can regulate the MAPK signaling
pathway through multiple targets. The experimental findings
revealed that ME significantly inhibited activation of the
p38 MAPK pathway, thereby alleviating Aβ25-35-induced

mitochondrial dysfunction, suppressing overactivation of the
NLRP3 inflammasome, and improving cognitive and memory
deficits in AD model mice.

Furthermore, Kyoung et al. (Kang et al., 2010; Ramezani et al.,
2016; Wang et al., 2017) also found that ME has a neuroprotective
effect on oxidative stress-induced mitochondrial-dependent and
caspase-dependent apoptosis processes by regulating the
p38 MAPK and JNK signaling pathways, suggesting that it may
exert an anti-AD effect by regulating the MAPK signaling pathway.

4.1.2 Nobiletin (NOB)
NOB is a naturally occurring flavonoid that is predominantly

found in the peel of citrus fruits belonging to the Rutaceae family
(Chen et al., 1997; Nogata et al., 2006). Studies have demonstrated

FIGURE 1
Mechanism diagram of β-amyloid-induced activation of the MAPK signaling pathway and neuroinflammatory response in BV2 microglia
(300 dpi.Thanks for Figdraw).
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TABLE 1 Plant-derived natural compounds modulating the MAPK signaling pathway in clinical studies for the prevention and treatment of Alzheimer’s
disease.

Class Active ingredients Study subjects Impact on Refs

Flavonoids Myricetin (ME) 3×Tg-AD triple transgenic mice
Aβ25-35 was used to induce BV2 cells

↓: IL-1β, TNF-α, IL-6
↑: IL-4, IL-10, NLRP3, ASC, caspase-1, IL-18,
TFAM, NRF1

Liu et al. (2023)

Chinese hamster lung fibroblasts (V79-
4) cells

↑: Bcl-2, Akt
↓: Bax, p38 MAPK, JNK

Ramezani et al. (2016),
Wang et al. (2017), Chen
et al. (1997)

Nobiletin (NOB) C57BL/6J mice ↑: (Vamp1), Snap-25, Psd-95
↓: iNOS, COX-2, TLR-4, IL-1β, TNF-α, IL-6, IL-1β,
TNF-α mRNA, ROS, H2O2, AKT, JNK, ERK, p38

Qi et al. (2019)

Terpenoids Paeoniflorin (Pae) Transgenic mice ↑: Bcl-2/Bax, p-Akt
↓: NF-κB p65, TNF-α, IL-1β, IL-6, Caspase-3, p-p38
MAPK

Gu et al. (2016)

Ganoderic Acid A (GAA) HT22 cells ↑: SOD, T-AOC ↓: p-ERK, p-JNK, p-p38, MDA,
ROS, caspase-3, p-Tau, Aβ

Shao et al. (2025)

Huperzine A (Hup A) SHSY5Y neuroblastoma cells ↑: NGF, P75NTR, TrkA mRNA, MAP/ERK Tang et al. (2005)

Triptolide (TP) APP/PS1 mice ↓: MAPK, p38, ERK, JNK Cui et al. (2016)

HT22 cells ↓: MKP-1, siRNA, MAPKs, ERK-1/2, p38 MAPK,
JNK-1/2

Koo et al. (2009)

Phenols Gallic acid (GA) C57BL/6 mice, HUVEC, PC12, SH-
SY5Y, HT22

↑: GSH, CAT
↓: ROS, Ca2+, Gadd45b, Gadd45g, p38/MAPK

Wan et al. (2025)

Resveratrol (RSV) Male mice aged from 7 to 9 weeks ↑: SIRT1 ↓: P-p38 MAPK Zhao et al. (2022)

Other
classes

P. Ginseng (BGE) 5xFAD mice ↓: TNF-α, IL-6, COX-2, iNOS, p38 MAPK, NF-κB,
STAT3, NLRP3, Nrf2, HO-1, TLR-2, TLR-4

Ha et al. (2025)

WT; C57BL/6J mice5xFAD mice ↑: Nrf2, HO-1 ↓: Aβ, p-tau, IL-6, TNF-α, COX-2,
iNOS, p-p38 MAPK, p-NF-κB p65, p-STAT3,
NLRP4, NLRP3, ASC, IL-1β, caspase-1, TLR2, TLR4

Ha et al. (2025)

Schisandrin a (SCH A) LPS-induced inflammation and
oxidative stress in RAW
264.7 macrophages

↑: Nrf2, HO-1 ↓: Keap1, NO, PGE2, TNF-α, IL-1β,
iNOS, COX-2 mRNA, IκB-α, NF-κB p65(JNK),
p38 MAPK, ERK, PI3K, Akt, ROS

Kwon et al. (2018)

SH-SY5Y and SK-N-SH cells ↑: SOD, p-ERK1/2, ERK1/2, GSH ↓: MDA, ROS, IL-
6, IL-1, TNF

Jia et al. (2024)

Crocin SH-SY5Y PC12 cell ↑: GSK3β ↓: BACE, APP-C99, tau, pThr231,
pSer199/Ser202, GSK3β, ERK2, pERK1, pERK2

Chalatsa et al. (2019)

Ginsenosides (Re, Rg1, Rg2) Male C57BL/6 mice ↓: TNF-α, NO, iNOS, IκB, NFκB, p38, ERK1/2, JNK Hu et al. (2011)

LPS-induced BV2 cell ↓: iNOS, COX-2, TNF-α, IL-1β, NF-κB, IκB-α,
CREB, ERK1/2, JNK, p38 MAPK

Zong et al. (2012)

Adult female Wistar rats LPS ↑: GR ↓: TNF-α, IL-1β, IκB-α, NFκB, ERK1/2, JNK,
p38 MAPK

Sun et al. (2016)

Male 7-month-old B6-Tg (APPSwe,
tauP301L) Ps1tm1 (3xTg-AD) mice

↑: CD31, p-ERK/ERK, p-MAPK/MAPK ↓: Aβ25-35,
TNF-α, IL-1β, IL-6, GFAP, ICAM-1, VCAM-1
mRNA, Aβ, p-Tau/Tau

Ye et al. (2023)

Sesame oil (SO) BV-2 cell ↓: iNOS mRNA, p38 MAPK, NO, ROS Hou et al. (2003)

RAW 264.7 cell ↑: Nrf2, HO-1, AMPK
↓: E2 (PGE2), NO, iNOS, COX-2, NF-κB, MAPK

Wu et al. (2015)

AlCl3-induced AD mice ↑: BDNF, PPAR-γ
↓: NF-κB, p38MAPK, Aβ, TNF-α, IL-1β, AChE

Mohamed et al. (2021)

1,6-O,
O-diacetylbritannilactone
(OABL)

5xFAD mice ↑: GSH
↓: NO, PGE2, TNF-α, iNOS, COX-2, NF-κB, MDA,
T-SOD

Tang et al. (2022)

(Continued on following page)
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that NOB exhibits multiple pharmacological activities, including
anti-inflammatory, antioxidant, anticancer, antidiabetic,
antiatherosclerotic, neuroprotective, and anti-obesity effects
(Tanaka et al., 2004; Choi et al., 2007; Hirata et al., 2008; Cui
et al., 2010; Lee et al., 2010; Yoshim et al., 2004; Miyamoto et al.,
2008; Lam et al., 2011; Lee et al., 2011; Mulvihill et al., 2011; Choi
et al., 2011; Kanda et al., 2012). According to extant research, NOB
has been demonstrated to ameliorate AD-related cognitive
impairments, such as decline in learning and memory, by
inhibiting apoptosis, alleviating oxidative stress, and reducing
cerebral Aβ protein levels.

Neuroinflammation has been identified as a significant
mechanism contributing to the progression of NDDs. In the
mouse microglial BV-2 cell line, NOB exhibits potent anti-
neuroinflammatory effects, significantly inhibiting the production
and release of LPS-induced pro-inflammatory mediators, including
NO, TNF-α, IL-1β, and IL-6 (Cui et al., 2010; Ho and Kuo, 2014;
Wang Y. et al., 2019). A recent study demonstrated that mice
administered 100 mg/kg of nobiletin daily for 6 weeks exhibited
effective alleviation of LPS-induced memory impairment. The study
also found that nobiletin inhibited the activation of microglia and
the secretion of related pro-inflammatory cytokines.

Qi et al. (2019) further demonstrated that NOB treatment
significantly decreased serum levels of iNOS, COX-2, TLR4, IL-
1β, and TNF-α, inhibited NF-κB nuclear translocation, and
enhanced phosphorylation and activation of key signaling
proteins including AKT, JNK, ERK, and p38 MAPK.

Further experiments demonstrated that under NOB
treatment, inhibitors of ERK (U0126), p38 (SB203580), and
JNK (SP600125) can synergistically alleviate the inflammatory
response induced by LPS, confirming that NOB may alleviate the
inflammatory state of BV-2 microglia by regulating the MAPK
signaling pathway.

In summary, NOB effectively alleviates inflammation-induced
cognitive deficits and neuroinflammation by reducing neuronal
damage, inhibiting microglial activation, suppressing
inflammatory factor release, and restoring mitochondrial
function, thereby highlighting its potential therapeutic value in
the prevention and treatment of AD.

4.2 Phenols

4.2.1 Gallic acid (GA)
GA is a polyphenolic organic compound that is found in plants

such as tea leaves, oranges, papayas, pomegranates, and cardamom

(Latha and Daisy, 2011). It has been demonstrated that GA exhibits
a variety of pharmacological activities, including anticancer and
antioxidant effects, and has been extensively applied in medical
research (Gu et al., 2025). Studies have demonstrated that GA
reduces brain injury by decreasing infarct size in rat models of
cerebral ischemia (Kumar et al., 2021). In neurological disorder
models, GA significantly ameliorates cognitive impairment in
rotenone-induced Parkinson’s disease (PD) rat models
(Sheikhpour et al., 2023). Related studies indicate that GA
improves learning and memory performance and enhances
motor function in AD mice. As demonstrated in the
experimental data from Wan et al. (2025), the application of GA
has been shown to attenuate the damage induced by glutamate (Glu)
in PC12, SH-SY5Y, and HT22 neural cells, exhibiting a dose- and
time-dependent response. The protective effects of GA are more
pronounced in PC12 and SH-SY5Y cells. Mechanistic studies
suggest that GA mitigates AD pathological progression by
inhibiting the expression of Gadd45g and Gadd45b and their
downstream P38/MAPK signaling pathway, thereby attenuating
oxidative stress responses. Transcriptomic analyses further reveal
that the P38/MAPK signaling pathway plays a critical role in
mediating GA’s neuroprotective effects against AD. In summary,
GA attenuates the progression of AD by inhibiting the P38/MAPK
signaling pathway. It has potential value as a natural candidate drug
for the prevention of AD.

4.2.2 Resveratrol (RSV)
Resveratrol, a naturally occurring phenolic compound,

functions as a plant antitoxin. It is produced in response to
mechanical damage or attack by pathogens, including bacteria
and fungi (Vestergaard and Ingmer, 2019). It exhibits diverse
pharmacological activities, including anti-angiogenic,
immunomodulatory, antibacterial, neuroprotective, anticancer,
antidiabetic, and cardiovascular disease (CVD) preventive effects
(Breuss et al., 2019). Resveratrol has been demonstrated to
effectively ameliorate mitochondrial dysfunction, mitigate
oxidative stress, modulate inflammatory responses, and inhibit
apoptosis. Moreover, preliminary studies suggest that resveratrol
may also have an improving effect on NDDs (Fantacuzzi et al.,
2022). In aged C57BL/6 mice, oral administration of resveratrol at
200 mg/kg for 10 consecutive days restored brain microvascular
endothelial function and suppressed ROS production, thereby
improving the coupling response of cortical neurovascular and
promoting neuronal activity and functional recovery (Toth et al.,
2014). In a C57BL/6 mouse model, intraperitoneal injection of
100 mg/kg resveratrol for seven consecutive days alleviated

TABLE 1 (Continued) Plant-derived natural compounds modulating the MAPK signaling pathway in clinical studies for the prevention and treatment of
Alzheimer’s disease.

Class Active ingredients Study subjects Impact on Refs

Esculin (ESC) C57BL/6J 6 ↑: p-ERK 1/2 ↓: TNF-α, IL-6, SOD, MDA, MCP-1,
ICAM-1, AP-1, p-p38 MAPK, p-JNK

Song et al. (2018)

Berberine (BBR) MaleC57BL/6J mice ↑: ChAT, GSH-PX, GSH, SOD
↓: AchE, MMP-3/9, MDA, TNF-α, IL-6, caspase-3,
Bax, p38 MAPK

Wang and Zhang (2018)

microglial and BV2 cell ↓: IL-6,MCP-1, COX-2, iNOS, NF-κB p65, Akt, p38,
ERK1/2

Jia et al. (2012)
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TABLE 2 Sources, Bioactivity, and chemical structures of plant-derived natural compounds.

Class Active ingredients Source Biological activities Structures Refs

Flavonoids Myricetin (ME) Myricaceae and
Euphorbiaceae

anti-inflammatory activity
antioxidant properties,
improvement of mitochondrial
dysfunction, and regulation of
autophagy

Taheri et al. (2020)

Nobiletin (NOB) Citrus fruits of the
Rutaceae family

anti-inflammatory, antioxidant,
antiatherosclerotic,
neuroprotective, and anti-obesity
effects

Chen et al. (1997),
Nogata et al. (2006),
Tanaka et al. (2004),
Choi et al. (2007),
Hirata et al. (2008), Cui
et al. (2010), Lee et al.
(2010), Yoshim et al.
(2004), Miyamoto et al.
(2008), Lam et al.
(2011), Lee et al. (2011),
Mulvihill et al. (2011),
Choi et al. (2011),
Kanda et al. (2012)

Terpenoids Paeoniflorin (Pae) Paeonia lactiflora pall anti-inflammatory, antioxidant,
antithrombotic, antidepressant

Chen et al. (2011), Ye
et al. (2016), Hino et al.
(2012), Qiu et al.
(2013), Zhang et al.
(2009)

Ganoderic Acid A (GAA) Ganoderma lucidum anti-inflammatory, antioxidant,
neuropsychopharmacological

Jiang et al. (2018),
Meng et al. (2020),Wan
et al. (2019), Lixin et al.
(2019), Yang et al.
(2018), Zhang et al.
(2020), Zhang et al.
(2021b), Zheng et al.
(2022)

Huperzine A (Hup A) Huperzia Serrata modification of β-amyloid peptide
processing, reduction of oxidative
stress, neuronal protection against
apoptosis, and regulation of the
expression and secretion of nerve
growth factor (NGF) and NGF
signaling

College (1985)

Triptolide (TP) Celastraceae anti-inflammatory,
immunomodulatory, and anti-
aging effects

(Chen et al., 2018),
(Gao et al., 2021; Tong
et al., 2021)

Phenols Gallic acid (GA) Tea leaves, oranges,
papayas, pomegranates,
and cardamom

antioxidant effects Latha and Daisy (2011),
Gu et al. (2025)

Resveratrol (RSV) Grapes anti-angiogenic,
immunomodulatory,
neuroprotective and cardiovascular
disease (CVD) preventive effects

Vestergaard and
Ingmer (2019), Breuss
et al. (2019)

(Continued on following page)
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hippocampus-dependent cognitive deficits via anti-inflammatory
and anti-apoptotic mechanisms (Li et al., 2014). In male
F344 rats, intraperitoneal administration of resveratrol at
40 mg/kg for 4 weeks significantly improved memory and
emotional functions, facilitated hippocampal neurogenesis and
microvascular remodeling, and suppressed glial cell activation

(Kodali et al., 2015). Zhao et al. (2022) demonstrated that
resveratrol ameliorates post-traumatic cognitive dysfunction in
mice by activating the deacetylase Sirtuin one and inhibiting
phosphorylation of p38 MAPK. Studies suggest that p38 MAPK
is activated following traumatic brain injury (TBI), and resveratrol
exerts regulatory effects on this pathway.

TABLE 2 (Continued) Sources, Bioactivity, and chemical structures of plant-derived natural compounds.

Class Active ingredients Source Biological activities Structures Refs

Other
classes

P. Ginseng (BGE) Panax ginseng immunomodulation, antioxidant
effects, anti-fatigue properties, and
cardiovascular protection

Metwaly et al. (2019)

Schisandrin a (SCH A) Schisandra chinensis anti-inflammatory, antioxidant,
neuroprotective

Choi, 2018; Cui et al.
(2020), Kong et al.
(2018), Meng et al.
(2019), Jeong et al.
(2019), Wang et al.
(2014), Zhang et al.
(2010)

Crocin (CRO) Crocus sativus stigmas、
Gardenia jasminoides
Ellis

antioxidant activities Liu et al. (2020b),
Khorasany and
Hosseinzadeh (2016)

Ginsenosides (Re, Rg1, Rg2) Ginseng enhancing cognitive function,
inhibiting apoptosis, and exerting
neuroprotective activities

Li et al. (2020)

Sesame oil (SO) Sesame anti-inflammatory, antioxidant,
and cardiovascular protective
effects

Jayaraj et al. (2020)

1,6-O,
O-diacetylbritannilactone
(OABL)

Impatiens grandiflorum anti-inflammatory and
neuroprotective effects

Shi et al. (2022), Zhao
et al. (2006)

Berberine (BBR) Berberis vulgaris anti-inflammatory,
cardioprotective, neuroprotective

(Ye et al., 2009), (Ma
et al., 1999; Küpeli et al.,
2002; Le Tran et al.,
2003; Zheng et al., 2003;
Kettmann et al., 2004;
Račková et al., 2004;
Letašiová et al., 2006)

Esculetin (ESC) Rutaceae and
Umbelliferae and
essential oils of
cinnamon bark, cassia
leaf, and lavender oil

antioxidant, antiinflammatory,
antidiabetic, neuroprotective

Bhattarai et al. (2021),
Orioli et al. (2024),
Pisani et al. (2022)
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4.3 Terpene

4.3.1 Paeoniflorin (Pae)
Pae is a water-soluble monoterpene glucoside predominantly

extracted from the dried roots of Paeonia lactiflora Pall., a species
within the Paeoniaceae family. It constitutes the major active
component of total paeony glycosides (TGP), comprising over
40% of the total glycoside content. Pae exhibits diverse
pharmacological effects, such as anti-inflammatory, antioxidant,
antithrombotic, anticonvulsant, antidepressant, sedative,
analgesic, antispasmodic, and immunomodulatory activities
(Chen et al., 2011; Ye et al., 2016; Hino et al., 2012; Qiu et al.,
2013; Zhang et al., 2009). Pae modulates multiple signaling
pathways, including G protein-coupled receptors (GPCRs),
MAPKs/NF-κB, PI3K/Akt/mTOR, JAK2/STAT3, and TGF-β/
Smads pathways. Pae has been shown to regulate calcium ion
(Ca2+) and reactive oxygen species (ROS) homeostasis, thereby
exerting therapeutic effects against NDDs.

Gu et al. (2016) established an AD model using transgenic mice
and demonstrated that Pae exerts significant neuroprotective effects,
markedly improving cognitive functions in AD mice, as evidenced
by enhanced escape distance and latency performance. The study
revealed that Pae inhibits apoptosis by elevating the Bcl-2/Bax ratio
and p-Akt expression in brain tissue of AD mice, concurrently
downregulating p-P38 MAPK expression. This results in the
attenuation of inflammatory responses and caspase-3 activity.
Further investigations suggest that prolonged Pae treatment
suppresses JNK and P38 MAPK activation while enhancing ERK
activation. Pae effectively reverses ischemia-induced activation of
the NF-κB signaling pathway and exerts marked neuroprotective
effects in rats with cerebral ischemic injury by mitigating
inflammatory responses within brain tissue.

4.3.2 Ganoderic acid a (GAA)
GAA is a triterpenoid compound isolated from Ganoderma

lucidum (reishi mushroom) has been shown to possess inherent
natural neuroprotective properties. GAA exhibits diverse
pharmacological activities, including anti-inflammatory,
antioxidant, antitumor, neuropsychopharmacological,
hepatoprotective, cardioprotective, nephroprotective, and
pulmonary protective effects by modulating various signal
transduction pathways (Jiang et al., 2018; Meng et al., 2020; Wan
et al., 2019; Lixin et al., 2019; Yang et al., 2018; Zhang et al., 2020;
Zhang L. et al., 2021; Zheng et al., 2022), underscoring its substantial
clinical application potential. In a Caenorhabditis elegans model,
GAA treatment significantly delayed cellular senescence and
extended healthspan (Chen et al., 2025). Studies have reported
that in an Aβ42-induced AD mouse model, GAA activates the
Axl receptor tyrosine kinase (Axl)/CDC42-associated kinase 1
(Pak1) signaling pathway, stimulates autophagy in
BV2 microglial cells, enhances Aβ42 clearance, and subsequently
ameliorates cognitive deficits (Qi et al., 2021). Furthermore, GAA
dose-dependently increased the viability of HT22 cells injured by
Aβ25-35, while concurrently suppressing the expression of MAPK
pathway-related proteins. GAA markedly downregulates cleaved
caspase-3 levels, decreases apoptosis, and suppresses Aβ and
phosphorylated tau (p-Tau) expression via inhibition of the ERK
signaling pathway (Shao et al., 2025). Given its ability to inhibit

apoptosis via the ERK/MAPK signaling pathway, GAA shows broad
prospects as a potential candidate drug for the treatment of AD.

4.3.3 Huperzine A (Hup A)
Elsholtzia ciliata, more commonly referred to as the Thousand-

layer Tower, is a traditional Chinese medicinal herb that belongs to
the Huperziaceae family. Modern studies have identified alkaloids
and triterpenoids as the main bioactive constituents, among which
Hup A is the important active compound. Hup A has been
successfully utilized in the treatment of AD, dementia, and
myasthenia gravis (College, 1985). It has been demonstrated that
this agent functions by impeding the phosphorylation of p38 MAPK
and ERK within the MAPK signaling pathway, leading to decreased
expression of iNOS and cyclooxygenase-2 (COX-2), thereby
suppressing the release of pro-inflammatory mediators. Hup A
exhibits neurotrophic effects against oxidative stress by
promoting nerve growth factor (NGF) synthesis in SH-SY5Y
cells, a process contingent upon activation of the MAPK/ERK
signaling pathway (Tang et al., 2005). Furthermore, the MAPK/
ERK signaling pathway has been implicated in mediating the
neuroprotective effects of Hup A in transient cerebral ischemia-
reperfusion animal models (Wang et al., 2006). The MAPK/ERK
signaling pathway plays a pivotal role in regulating various biological
processes, including proliferation, differentiation, and the
expression of multiple transcription factors.

4.3.4 Triptolide (TP)
The genus Tripterygium, which belongs to the family

Celastraceae, contains Tripterygium lactone, a natural diterpenoid
compound that is one of its principal bioactive constituents (Chen
et al., 2018). This compound has been demonstrated to possess a
wide range of pharmacological activities, including anti-
inflammatory, immunomodulatory, antitumor, and anti-aging
effects (Gao et al., 2021; Tong et al., 2021). Tripterygium
glycoside has been identified as a regulator of β-amyloid (Aβ)
levels, with the capacity to mitigate synaptic dysfunction and
memory impairments associated with AD. Owing to its high
lipophilicity and low molecular weight, Tripterygium glycoside
has been observed to cross the blood-brain barrier (BBB),
thereby demonstrating potential therapeutic efficacy in treating
neurological disorders (Zhang et al., 2012). Reduction of
oxidative stress is regarded as a key protective mechanism of
Tripterygium wilfordii heterophyllum against AD; however, its
potential preventive effects on AD pathology via anti-
inflammatory pathways require further elucidation. TP inhibits
the expression of MKP-1, which primarily deactivates ERK1/2,
p38 MAPK, and JNK1/2 signaling pathways, thereby exerting
anti-proliferative and pro-apoptotic effects (Koo et al., 2009). Cui
et al. (2016) demonstrated that Tripterygium wilfordii significantly
suppresses microglial activation in the cerebral cortex and
hippocampus of APP/PS1 transgenic mice. Recent molecular
biology studies have identified the MAPK signaling pathway is
one of the core mechanisms for regulating inflammatory
responses. Treatment with Tripterygium wilfordii lactone
markedly reduced phosphorylation levels of p38, ERK, and JNK
in the brain tissue of APP/PS1 mice, indicating inhibition of MAPK
pathway activation. Furthermore, Tripterygiumwilfordii lactone has
been shown to suppress the expression of pro-inflammatory
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cytokines TNF-α and IL-1β, effects that are likely linked to its
inhibitory action on the MAPK signaling pathway.

4.4 Other categories

4.4.1 1,6-O, O-diacetylbritannilactone (OABL)
OABL is a natural 1,10-bislactone-type sesquiterpene lactone

compound that has been isolated from Impatiens grandiflorum (Shi
et al., 2022). It exhibits a broad spectrum of pharmacological
activities and has been applied in the treatment of bronchitis,
diabetes, intestinal ulcers, gastrointestinal disorders, and various
inflammatory conditions (Zhao et al., 2006). In addition, OABL has
demonstrated encouraging efficacy in the treatment of AD. Its anti-
inflammatory mechanisms mainly involve the inhibition of
inflammatory mediator production (including NO, PGE2, TNF-α,
iNOS, and COX-2) and the suppression of nuclear translocation of
the transcription factor NF-κB (Chen et al., 2017). Furthermore,
OABL has been shown to possess antioxidant properties that protect
neurons against oxidative damage (Wang et al., 2022). In AD animal
models, OABL has been shown to significantly improve cognitive
performance, restore neuronal morphology in the hippocampus,
reduce Aβ amyloid protein deposition, and inhibit excessive
phosphorylation of the Tau protein. Research has shown that its
structural analog, ABL, also suppresses the expression of COX-2 and
NF-κB and alleviates Aβ23-35-induced learning and memory
deficits in rats (Wang et al., 2008).

In the 5xFAD transgenic AD mouse model, OABL significantly
reduced the immunofluorescence signal intensity of the NF-κB
p-p65 subunit in both the cortex and hippocampus.This
reduction occurred through modulation of the TLR4/NF-κB and
p38 MAPK signaling pathways, and decreased the mRNA
expression of pro-inflammatory cytokines such as TNF-α and IL-
1β. It has also been demonstrated to promote the M1/
M2 transformation of microglia, enhance the expression of
arginase-1 (Arg-1) and IL-10, and suppress the production of
TNF-α, PGE2, iNOS, and COX-2, thereby reducing the
inflammatory response of the CNS and exerting potential
neuroprotective effects (Tang et al., 2022).

4.4.2 Berberine (BBR)
BBR is a naturally occurring isoquinoline alkaloid primarily

derived from the roots, bark, and stems of various medicinal plants,
such as the rhizomes of Coptis chinensis (Ye et al., 2009). It exhibits
a wide range of pharmacological activities, including anti-
inflammatory, cardioprotective, neuroprotective, antitumor, and
antimalarial properties (Ma et al., 1999; Küpeli et al., 2002; Le
Tran et al., 2003; Zheng et al., 2003; Kettmann et al., 2004;
Račková et al., 2004; Letašiová et al., 2006). In the domain of AD
research, BBR has demonstrated a variety of mechanisms of action,
indicating its potential for therapeutic use.Recent studies have
demonstrated that BBR can inhibit the production of pro-
inflammatory cytokines, such as interleukin-6 (IL-6) and C-C
motif chemokine ligand 2 (CCL2), in Aβ-stimulated primary
microglia and BV-2 cell lines. Furthermore, it has been observed
to downregulate the expression of COX-2 and iNOS. While the
precise mechanisms through which BBR exerts its anti-
inflammatory effects remain to be fully elucidated, current

evidence suggests that it may do so primarily through the
modulation of signaling pathways, including NF-κB,
phosphoinositide 3-kinase (PI3K), and MAPK.

Wang and Zhang’s research in 2018 revealed that BBR
demonstrated neuroprotective effects in preventing learning and
memory deficits induced by traumatic brain injury. These effects
were potentially attributable to the reduction of inflammation,
oxidative stress, and neuronal apoptosis, as well as the
modulation of the Sirt1/p38 MAPK signaling pathway (Wang
and Zhang, 2018). In addition, BBR has demonstrated protective
effects in rat models of heavy metal-induced neurotoxicity and AD-
like pathology. Jia et al. (2012) utilized network pharmacology to
identify cross-targets of BBR in AD and pinpointed the
JNK–p38 MAPK signaling pathway as a critical regulatory
pathway. Subsequent in vitro and in vivo experiments confirmed
that BBR exerts its therapeutic effects in AD by activating autophagy,
modulating the JNK–p38 MAPK signaling pathway to clear Aβ
deposits, suppressing neuroinflammation, and promoting
neuronal repair.

4.4.3 Sesame oil (SO)
The Chinese herbal medicine Sesame is rich in sesame oil, which

is the main natural source of sesamin. Sesamin has been
demonstrated to possess a variety of pharmacological activities,
including anti-inflammatory, antioxidant, antitumor, and
cardiovascular protective effects (Jayaraj et al., 2020). SO has also
been demonstrated to reduce monoamine oxidase (MAO) activity
by inhibiting the production of nitric oxide (NO) and hydrogen
peroxide (H2O2) in astrocytes. Given that MAO plays a critical role
in the pathogenesis of NDDs, sesamol is considered to have
significant potential in the prevention and treatment of
CNS diseases.

Hou et al. (2003) demonstrated that SO significantly reduces NO
production as well as iNOS mRNA and protein expression in LPS-
stimulated BV-2 microglial cells. Furthermore, SO markedly
inhibited the activation of p38 MAPK. The specific p38 MAPK
inhibitor SB203580 also exhibited dose-dependent inhibition of NO
production, further supporting the hypothesis that polyphenolic
compounds capable of suppressing NO generation may exert
neuroprotective effects.

In a related study, Wu et al. (2015) treated RAW
264.7 macrophages with sesamol followed by LPS stimulation to
induce an inflammatory response. Their findings indicated that
sesamol exhibited the capacity to impede NF-κB nuclear
translocation and MAPK pathway activation, while
concomitantly promoting the activation of AMP-activated
protein kinase (AMPK). These findings suggest that sesamol
improves inflammatory responses and oxidative stress damage by
activating the AMPK and Nrf2 signaling pathways while inhibiting
the NF-κB and MAPK pathways.

Mohamed et al. (2021) reported that SO significantly
ameliorated AlCl3-induced learning and memory deficits in mice.
It reduced AChE activity and Aβ levels, downregulated the
expression of pro-inflammatory cytokines TNF-α and IL-1β,
suppressed NF-κB and p38 MAPK signaling, and upregulated the
expression of brain-derived neurotrophic factor (BDNF) and
peroxisome proliferator-activated receptor gamma (PPAR-γ).
These results suggest that SO alleviates neuroinflammation and

Frontiers in Pharmacology frontiersin.org10

Zhang et al. 10.3389/fphar.2025.1666082

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1666082


oxidative stress damage by modulating the NF-κB/p38MAPK/
BDNF/PPAR-γ signaling pathway, thereby contributing to the
recovery of cognitive function and showing its potential value in
the treatment of AD.

4.4.4 Schisandrin A (SCH A)
SCH A is a bioactive lignan compound that has been isolated

from Schisandra chinensis, a traditional Chinese medicinal herb. In
recent years, SCH A has attracted growing scientific interest owing
to its broad spectrum of pharmacological activities. It has been
demonstrated to exert diverse biological effects, including anti-
inflammatory, anticancer, hepatoprotective, antioxidant,
neuroprotective, antidiabetic, and musculoskeletal protective
properties (Choi, 2018; Cui et al., 2020; Kong et al., 2018; Meng
et al., 2019; Jeong et al., 2019; Wang et al., 2014; Zhang et al., 2010).
Notably, Schisandra and its active constituents have shown
promising potential in the prevention and treatment of AD.

A series of experimental studies have demonstrated SCH A (10,
20, and 50 μM) suppresses the expression of NO, tumor necrosis
factor-α (TNF-α), and IL-6 in LPS-stimulated BV-2 microglia and
primary microglial cells, thus exerting anti-inflammatory properties.
It mitigates microglia-mediated neuroinflammation by inhibiting
key signaling pathways, such as TRAF6–IKKβ–NF-κB and
JAK2–STAT3, thereby exerting neuroprotective effects (Song
et al., 2016).

Furthermore, schisandrin has been shown to enhance neuronal
viability in Aβ1–42-induced SH-SY5Y cell models of AD through
activation of the PI3K/Akt signaling pathway, thus exerting
protective effects (Zhao et al., 2019). Jia et al. (2024) reported
that SCH A significantly reduces oxidative stress response and
downregulates inflammatory cytokine expression in cells induced
by Aβ25-35, while also increasing the p-ERK1/2 to ERK1/2 ratio,
indicating that its underlying mechanism may involve activation of
the ERK/MAPK pathway.

Further research by Kwon et al. (2018) using an in vitro RAW
264.7 macrophage model demonstrated that SCH A attenuates LPS-
induced inflammation and oxidative stress by activating the Nrf2/
HO-1 signaling pathway, while concurrently suppressing the NF-κB,
MAPK, and PI3K/Akt pathways. Among these, SCHA pretreatment
markedly inhibited the phosphorylation of ERK, JNK, and
p38 MAPK, providing further evidence of its multi-target anti-
inflammatory and antioxidant effects.

4.4.5 Crocin (CRO)
Crocin (CRO) is a natural carotenoid that is found in high

concentrations in the stigmas of saffron (Crocus sativus) and the
fruits of gardenia (Gardenia jasminoides) (Liu T. et al., 2020).
Extensive in vitro, in vivo, and clinical studies have demonstrated
that CRO exerts beneficial effects across multiple organ systems,
including the nervous, immune, cardiovascular, gastrointestinal,
reproductive, and endocrine systems (Khorasany and
Hosseinzadeh, 2016).

Research indicates that CRO exerts significant memory-
enhancing effects, which are partly attributed to its anti-
inflammatory properties and modulation of the ERK/MAPK
signaling pathway. In a D-galactose-induced aging model, CRO
improves cognitive function via its anti-glycation and antioxidant
activities, thereby suppressing the expression of

neuroinflammatory mediators (e.g., IL-1β, TNF-α, and NF-κB)
and activating the PI3K/Akt and ERK/MAPK signaling pathways
(Adabizadeh et al., 2019; Heidari et al., 2017; Looti Bashiyan
et al., 2021).

Furthermore, the use of CRO has been shown to markedly
decrease total tau protein levels and phosphorylation, suppresses β-
and γ-secretase activities, and reduces the deposition of Aβ
precursor protein (AβPP) accumulation in AD models by
inhibiting ERK1/2 kinase activity (Chalatsa et al., 2019). Another
study shows that CRO mitigates acrolein-induced neurotoxicity,
potentially through the attenuation of oxidative stress via the ERK/
MAPK pathway, thus delaying the progression of NDDs
(Rashedinia et al., 2015).

4.4.6 Ginsenosides Re, Rg1, and Rg2
Ginsenosides Re, Rg1, and Rg2 are the major triol-type natural

saponins in ginseng and represent the principal active constituents
of this traditional Chinese medicinal herb. These compounds have
been demonstrated to exert a variety of pharmacological effects,
including the enhancement of cognitive function, the inhibition of
apoptosis, and the exertion of neuroprotective activities (Li et al.,
2020). Among them, ginsenoside Re is a pivotal component (Shi
et al., 2019) and remains the most extensively investigated
ginsenoside to date. It has been demonstrated to possess
antioxidant and anti-inflammatory properties, suppressing the
production of IL-6, tumor necrosis TNF-α, and NO in
microglial cells without impairing cellular viability (Lee et al.,
2020; Lee I-A. et al., 2012). The reduction in the release of pro-
inflammatory and neurotoxic mediators from microglia has been
demonstrated to provide a protective effect on hippocampal
neurons (Madhi et al., 2021). Furthermore, ginsenoside Re has
been shown to attenuate neuroinflammation progression by
inhibiting LPS-induced MAPK phosphorylation (Lee K-W.
et al., 2012).

Among the diverse ginsenosides, Rg1 demonstrates notable
neuroprotective benefits, especially in NDDs such as AD and PD.
Hu et al. (2011) demonstrated that ginsenoside Rg1 suppresses LPS-
induced microglial activation via downregulation of Iba-1 and iNOS
expression. Furthermore, Rg1 effectively inhibits the
phosphorylation of p38 MAPK, ERK1/2, and JNK, and prevents
the degradation of IκB as well as the nuclear translocation of the NF-
κB p65 subunit. Rg1 attenuates LPS-induced inflammatory
responses by activating the phospholipase C-γ1 signaling
pathway in mouse BV-2 microglia. It inhibits the
phosphorylation of p38 MAPK, IκB-α, CREB, and ERK1/2,
significantly reduces NF-κB expression, and decreases the
production of pro-inflammatory cytokines, including TNF-α, IL-
1β, iNOS, and COX-2 (Zong et al., 2012). The neuroprotective effect
of ginsenoside Rg1 against LPS-induced neuronal degeneration in
rats is mediated via the glucocorticoid receptor, involving inhibition
of the p38 MAPK signaling pathway to suppress LPS-induced
inflammation in midbrain dopaminergic neuronal microglia (Sun
et al., 2016).

Treatment with ginsenoside Rg2 significantly elevates the ratios
of phosphorylated ERK to total ERK (p-ERK/ERK) and
phosphorylated MAPK to total MAPK (p-MAPK/MAPK) in the
brain tissue of 3xTg-AD mice, thereby mitigating neurovascular
damage in this AD model (Ye et al., 2023).
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4.4.7 Black ginseng extract (BGE)
Panax ginseng, which is more commonly referred to as Korean

ginseng, contains primary active components including
ginsenosides (-Rg3, -Rg5, and -Rk1), polysaccharides, and
phenolic compounds, with particularly high concentrations in
Korean BGE (Metwaly et al., 2019). Research has demonstrated
that extracts of Korean BGE, when administered as an ethanol
solution, have been shown to attenuate neuroinflammation by
inhibiting the NF-κB and MAPK signaling pathways in LPS-
stimulated BV2 microglia. This attenuation is achieved via a
Toll-like receptor 4 (TLR4)-MyD88-dependent mechanism (Kim
et al., 2023). Furthermore, BGE has been demonstrated to
significantly enhance cognitive function in the 5xFAD AD mouse
model, concomitant with reduced Aβ accumulation in the frontal
cortex and hippocampus (Ha et al., 2025). BGE has been
demonstrated to suppress the activation of microglia and
astrocytes, as well as to downregulate pro-inflammatory
cytokines, including IL-6 and tumor necrosis factor-alpha (TNF-
α), along with the expression of enzymes such as COX-2 and iNOS.
Further studies have demonstrated that BGE reduces Aβ plaque
deposition via activation of the nuclear factor erythroid 2-related
factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and suppresses
p38 MAPK, NF-κB, and STAT3 signaling pathways, as well as
NLRP3 inflammasome activation, thus protecting cognitive
function in 5xFAD mice and highlighting its therapeutic
potential in AD.

4.4.8 Esculetin (ESC)
Esculetin is a natural dihydroxy coumarin; it is mainly extracted

from twig skin and the trunk bark of the Chinese herbal medicine
Fraxinus rhynchophylla Hance.Natural coumarin derivatives have
demonstrated anti-inflammatory effects through various
inflammatory signaling pathways, including TLRs, JAK/STAT,
inflammasomes, MAPK, NF-κB, and TGF-β/SMAD. Possesses
antioxidant (Wang et al., 2011), antiinflammatory (Kirsch et al.,
2016), antiapoptotic (Kim et al., 2015), anticancer (Pinto and Silva,
2017), antidiabetic (Li et al., 2017), neuroprotective (Delogu and
Matos, 2017), and cardiovascular protective activities (Najmanová
et al., 2015). Pruccoli et al. (2020) demonstrated the ability of ESC to
prevent and counteract ROS formation in neuronal SH-SY5Y cells,
suggesting its profile as a bifunctional antioxidant. In particular, ESC
increased the resistance of the SH-SY5Y cells against OS through the
activation of Nrf2 and increase of GSH. In similar experimental
conditions, ESC could also protect the SH-SY5Y cells from the OS
and neuronal death evoked by oligomers of Aβ1-42 peptides.
Further, the use of the inhibitors PD98059 and LY294002 also
showed that Erk1/2 and Akt signaling pathways were involved in
the neuroprotection mediated by ESC.

ESC, a common coumarin derivative, was reported by Song et al.
(2018) to exhibit protective potential against diabetic nephropathy
(DN). In this study, a diabetic mouse model was established in 6-
week-old male C57BL/6J mice by a single intravenous injection of
streptozotocin (STZ, 30 mg/kg). Two weeks after STZ injection, the
mice received intravenous administration of ESC at doses of 5, 10, or
20 mg/kg for an additional 2 weeks. The results demonstrated that ESC
markedly suppressed STZ-induced renal expression of AP-1, p-p38
MAPK, and p-JNK, while upregulating p-ERK1/2. These findings
suggest that ESC may alleviate experimental DN-associated cognitive

impairment through modulation of the MAPK signaling pathway,
exerting both antioxidative and anti-inflammatory effects.

5 Discussion

Alzheimer’s disease (AD) is a complex chronic
neurodegenerative disorder characterized by multiple pathological
processes, including β-amyloid (Aβ) deposition, tau
hyperphosphorylation, neuroinflammation, and oxidative stress.
Given the limited efficacy and adverse effects of current
therapies, natural products, owing to their multi-target actions
and relative safety, have attracted increasing attention as
promising candidates for AD prevention and treatment.

This review systematically summarizes recent progress on
various classes of natural compounds in AD research, including
flavonoids, phenolics, saponins, terpenoids, and alkaloids.
Representative compounds such as 1,6-O,O-
diacetylbritannilactone, berberine, sesamol, schisandrin A, crocin,
ginsenosides, and coumarins have demonstrated potential
neuroprotective effects by improving cognitive performance,
alleviating neuroinflammation, reducing oxidative stress, and
inhibiting neuronal apoptosis. Accumulating evidence suggests
that these compounds exert their beneficial effects mainly
through the modulation of signaling pathways such as NF-κB,
MAPK, PI3K/Akt, and Nrf2/HO-1, thereby interfering with key
pathological events of AD. Moreover, both in vitro and in vivo
studies have shown that natural products significantly suppress
neuroinflammatory responses and ameliorate cognitive
impairments in AD animal models.

Despite these advances, current research models remain limited.
Most animal studies rely on short-term acute dosing and lack long-
term administration protocols, whereas the chronic and progressive
nature of AD suggests that therapeutic efficacy may depend on
sustained exposure. In addition, systematic toxicological evaluations
of candidate compounds are insufficient, particularly concerning
blood-brain barrier (BBB) permeability, organ-specific toxicity, and
long-term safety. Furthermore, the intrinsic issues of low
bioavailability and complex in vivo metabolism substantially
restrict their clinical translation. The potential of combining
natural products with existing drugs also remains largely
unexplored.

To facilitate the effective translation of natural compounds
from bench to bedside, it is essential to establish experimental
systems that align with translational medicine standards. These
include long-term pharmacodynamic evaluations in chronic
disease models and comprehensive preclinical safety
assessments in accordance with ICH guidelines. More
importantly, high-quality clinical studies that comply with
international standards—such as multicenter, randomized,
double-blind trials and biomarker-based validation
studies—are urgently required to confirm the clinical efficacy
of natural bioactive compounds and meet regulatory approval
requirements. Currently, several promising natural compounds
(e.g., huperzine A derivatives, ginkgolide-related components)
are at different stages of development, and systematic
investigations are expected to accelerate the clinical translation
of more AD candidate drugs with therapeutic potential.
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In conclusion, natural products, by virtue of their multi-target
mechanisms and relatively low toxicity, represent a promising avenue
for AD therapy. Future studies should focus on systematic evaluations
of long-term efficacy and safety, optimization of drug delivery
strategies, and implementation of high-quality clinical trials,
thereby laying a solid foundation for their eventual clinical translation.
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