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Mitotic regulators play an essential role in cell cycle progression by ensuring
correct chromosomal alignment, segregation, DNA replication, repair, and
division, thereby maintaining genomic stability. Aberrant activity of cell cycle
kinases, including aurora kinase B (AURKB) and cyclin-dependent kinase 1 (CDK1),
might lead to disrupted mitotic checkpoints, causing aneuploidies and
uncontrolled proliferation, which are critical hallmarks of cancers. Targeted
inhibition of cell cycle kinases is an attractive strategy to combat cancers with
minimal side effects. This study employed a comprehensive multi-staged
computational approach to discover dual-targeting inhibitors against AURKB
and CDK1, which are reported as key promoters of tumorigenesis. High-
throughput screening of phytochemicals available in the Indian Medicinal
Plants, Phytochemistry, and Therapeutics (IMPPAT) database was conducted
to identify common lead/s from top hits. Jervine (IMPHY000366), a steroid
alkaloid, emerged as a common compound depicting high binding affinity and
ligand efficiency for AURKB and CDK1. In addition, this compound qualified all
drug-like filters. After structure analysis, the docked complex was subjected to
300 ns MD simulation studies, confirming structural integrity in AURKB and
CDK1 upon binding of Jervine. H-bonding pattern, secondary structural
content, free energy landscape, and principal component analysis further
supported Jervine’s strong and stable affinity for AURKB and CDK1. Lastly,
MMPBSA showed a higher negative free energy in the presence of Jervine
than VX-680 when complexed with AURKB. Finally, our results suggest that
Jervine is a potent, dual-targeting kinase inhibitor with favourable
pharmacokinetic and therapeutic properties, warranting further experimental
validation for anticancer drug development.
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1 Introduction

Aberrant mitotic regulation triggers defective chromosome
segregation, chromothripsis, improper mitotic spindle assembly,
and compromised genome stability (Potapova and Gorbsky,
2017). Moreover, dysregulated mitosis, causing variability in
DNA, genetic alterations, and aneuploidies, drives tumor
initiation and progression (Zhang et al., 2024). Consequently,
mitotic regulators are recognised as critical therapeutic targets for
treating various diseases, including cancer (Chan et al., 2012).
Additionally, current cancer treatment modalities, including
chemo-radiation and immunotherapy, are primarily associated
with severe complications due to persistent damage to healthy
cells, a lack of efficacy, and a targeted approach (Chan et al.,
2012; Juthani et al., 2024). Hence, there is increasing interest
among pharmaceutical industries and researchers in developing
new therapeutics against oncogenic molecular targets. Selective
targeting of mitotic mediators has been a long-standing
anticancer strategy (Manchado et al., 2012); however, the
challenges, including toxicity and drug resistance, favour failure
to achieve complete tumour regression and elimination.

Chromosomal passenger complex (CPC) comprises crucial
components, including aurora kinase B (AURKB), inner
centromeric protein (INCEP), cyclin-dependent kinase 1 (CDK1)
and survivin, playing an essential role in microtubule assembly and
chromosomal segregation during cellular mitosis (Kitagawa and Lee,
2015). AURKB is a family of serine/threonine kinases involved in
key mitotic processes that maintain genome stability and proper cell
division (Bolanos-Garcia, 2005). Many such kinases are linked with
human cancer initiation and progression. The recent discoveries of
small-molecule kinase inhibitors for treating diverse types of cancer
have also proven successful in clinical therapies (Bhullar et al., 2018;
Shibuya et al., 1992). Although kinase-based drug targets are well
explored, inhibition of distinct signalling pathways involving kinases
is expected to be less cytotoxic to non-cancerous cells, with
substantially lower toxic manifestations (Davies et al., 2000;
Druker et al., 2006). Interestingly, specific-kinase inhibitors such
as imatinib and dasatinib showed favorable outcomes compared to
conventional anti-cancer therapies (Lombardo et al., 2004).

Overexpressed AURKB is common in pro-tumorigenic
pathways involved in many cancer types, including lung,
prostate, breast and liver (Borah and Reddy, 2021; Nakano et al.,
2017). Drug resistance to anticancer therapy has also been associated
with AURKB expression in several tumor types (Ahmed et al., 2021).
Recent studies reveal that regulating AURKB and CPC localization
activity is also a crucial surveillance mechanism for the orderly
mitotic exit (Kitagawa and Lee, 2015). Several clinical inhibitors of
AURKB, such as barasertib (AZD1152) (Wilkinson et al., 2007),

have been evaluated for their ability to disrupt mitotic progression
and induce apoptosis in cancer cells. However, challenges with
toxicity and resistance have limited their clinical success. In
physiological conditions, CDK1, a mitosis-promoting factor, is
also a vital component of CPC and, in complex with cyclin-B1,
induces G2/M and G1/S transitions along with G1 progression
(Kalous et al., 2020). CDK1 is reported to exhibit high oncogenic
potential when aberrantly expressed and is associated with several
cancers, including melanoma and lung cancer (Wang et al., 2023).
Several small molecules targeting CDK1 or multiple CDKs have
been developed and are under pre-clinical evaluation (Flynn et al.,
2015; Zeng et al., 2008).

Ample evidence has suggested that the mitigation of mitotic
regulators such as AURKB and CDK1, when aberrantly expressed,
can prevent compromised genomic integrity of cells showing
abnormal mitotic regulation (Akl et al., 2022; Kang et al., 2014;
Löwenberg et al., 2011; Soncini et al., 2006). Concomitant inhibition
of multiple cancer-driving kinases is an established and effective
strategy to improve clinical responses to conventional targeted
therapies (Ciceri et al., 2014). Since AURKB and CDK1 are
crucial components of CPC, their cumulative inhibition could be
an attractive strategy for drug development to combat associated
diseases. This study aimed to target AURKB and CDK1, regulators
of CPC assembly, by identifying novel and effective dual-
functioning small-molecule compounds. Till now, several small-
molecule inhibitors have been developed against AURKB or
CDK1 individually, but highly efficacious and specific inhibitors
that could simultaneously target both enzymes and render CPC
inactivation are still scant.

Recently, the drug development strategy has mainly focused on
inhibitors encroaching and occupying ATP-binding pockets of
kinases (Nakano et al., 2017; Umezawa and Kii 2021). This study
aimed to logically identify specific and effective molecules that could
selectively recognise the catalytic region of AURKB and CDK1 and
exhibit strong affinity and selectivity. In-silico tools have played an
essential role in designing and developing small-molecule inhibitors
based on structure-activity relationships. Pharmacophore
remodelling, molecular docking, and 3D-QSAR helped identify
key structural features of ligands for targeted AURKB inhibition
(Ashraf et al., 2021; Selvam et al., 2025). Similarly, advanced
computational analysis involving scaffold repurposing and QSAR
has documented inhibitors against CDK1 (Al-Sha’er and Taha,
2010; Elkamhawy et al., 2021).

A multitier virtual screening approach was applied
systematically to identify dual-specific molecules that could
particularly target AURKB and CDK1 for potential therapeutic
applications. The commercially available Indian Medicinal Plants,
Phytochemistry and Therapeutics (IMPPAT) database, comprising
approximately ~18,000 natural compounds, was virtually screened
to identify common lead/s. Furthermore, a sequential filtering
process using Lipinski’s rule of 5, the PAINS filter, ADMET
properties, and prediction of activity spectra of substances
(PASS) analysis was employed to identify a familiar and
promising candidate against AURKB and CDK1. Subsequently,
an all-atom molecular dynamics (MD) simulation was conducted
on detected potential hits (Naqvi et al., 2018).

The findings of the multistage filtering strategy revealed a
familiar candidate IMPHY000366, also known as Jervine, against

Abbreviations: ADMET, Absorption, distribution, metabolism, excretion, and
toxicity; ATP, Adenosine tri-phosphate; AURKB, Aurora kinase B; CHARMM,
Chemistry at Harvard Macromolecular Mechanics; CDK1, Cyclin dependent
kinase 1; CPC, Chromosomal passenger complex; CNS, Central nervous
system; IMPPAT, Indian medicinal plants phytochemistry and therapeutics;
MMPBSA, Molecular mechanics/Poisson-Boltzmann surface area; PASS,
Prediction of activity spectra for substances; MD, Molecular dynamics; Rg,
Radius of gyration; RMSD, Root mean square deviation; RMSF, Root mean
square frequency; SASA, Solvent accessible surface area.
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AURKB and CDK1. Jervine is a steroidal alkaloid known for its anti-
neoplastic characteristics. It interferes with cellular mitosis through
selective targeting of hedgehog and AKT signalling pathways. The
pharmacokinetic profiling, ADMET analysis, and PASS evaluation
project Jervine with strong drug-likeliness. An extensive
computational analysis and MD simulation study depicted strong
binding affinities, interaction dynamics with key residues of both
enzymes, and enhanced ligand efficiencies.

The binding dynamics and potential of Jervine were evaluated in
comparison to the established inhibitors of AURKB and CDK1,
which are VX-680 and RO-3306, respectively, and Jervine
demonstrated superior binding affinities and ligand efficiencies
relative to these control drugs. MMPBSA analysis was also
conducted to validate the results of virtual screening and
docking. The identified hit Jervine showed higher binding
affinities. This dual-targeted approach aligns with emerging
strategies in cancer therapeutics aimed at co-inhibiting key cell
cycle regulators to enhance effectiveness and reduce drug resistance.

2 Materials and methods

2.1 Structure retrieval and refinement

The manually curated phytochemical library of medicinal
plants, Indian Medicinal Plants, Phytochemistry and
Therapeutics (IMPPAT) 2.0, constitutes approximately
~18,000 compounds. A total of 11,699 compounds remained
after applying Lipinski’s Rule of Five (RO5), which were
subsequently used for virtual screening. The RCSB Protein Data
Bank was used to obtain 3D structures of AURKB (PDBID: 4AF3)
and CDK1(PDBID: 6GU2), followed by pre-processing that includes
elimination of all the heteroatoms by using PyMod 3 (an open-
source plugin of PyMol) (Janson and Paiardini, 2021). The co-
crystallised ligand and water molecules were removed from the
structure to conduct virtual screening. This was done to ensure that
the associated ligand and water molecules do not influence the
binding patterns and affinities of drugs being screened. The protein
underwent import, refinement, review, modification, and reduction
during preparation. Using the Prime tool, the protein production
wizard filled in the lack of side chain residues. The catalytically
essential residues and active sites were retained in the protein
structure. Utilising a CHARMM force field, energy reduction was
employed to create low-energy state proteins, which were then
utilised for molecular modelling. Simultaneously, the PDBQT
files of compounds from the IMPPAT library were downloaded.

2.2 Molecular docking analysis

To determine binding affinities and mechanisms, molecular
docking was conducted with InstaDock software with a blind
search space against the IMMPAT library compounds
(Mohammad et al., 2021). For the molecular docking of AURKB
protein and phytochemicals, the center coordinates was at X: 16.886,
Y: −16.521, Z: 0.544, and dimensions of X: 58, Y: 71, Z: 75, with a
grid spacing of 1 Å and for CDK1, the search box was defined by
setting a grid with the center coordinates at X: 315.904, Y: 216.746, Z:

191.792, and dimensions of X: 76, Y: 60, Z: 58, with a grid spacing of
1 Å. The top hits were obtained based on affinity score, and docked
conformers were created for interaction studies. The binding
affinities between the ligand and protein were calculated using
the QuickVina-W (Mohammad et al., 2021). PyMol viewer and
BIOVIA/Discovery Studio 2017R2 platforms were employed for
computational analysis and structure visualization of docked
structures.

Additionally, to validate the AURKB and CDK1 targeting
potential, the docking profile of selected hit/s was compared with
positive controls of both enzymes. To get deeper insights, close
interactions were viewed in Pymol software and polar contacts
within the range of 3.5 Å were measured. Common compound/s
from the top hits depicting interactions with ATP-binding pockets
of both enzymes were selected for further evaluation. In addition,
molecular docking studies were also performed using AURKB and
CDK1 with their respective known inhibitors, VX-680 and RO-
3306, which served as controls.

2.3 Physicochemical properties

The common compound selected after molecular-based drug
screening was checked for physicochemical properties using
SwissADME tools. The physicochemical properties, drug
likeliness, lipophilicity, Lipinski rule, and other parameters were
noted. The Pan Assay Interference Compounds (PAINS) filter was
implemented to ensure specificity in drug design and discovery. This
filter helps to eliminate compounds displaying structural patterns
that tend to bind multiple targets in a non-specific way. Compounds
with high PAINS value are notorious and interfere with biological
assays through non-specific binding and are therefore not
considered good drug candidates. In addition to Jervine, a similar
analysis was also done for VX-680 and RO-3306 drugs as controls.

2.4 ADMET analysis

Jervine’s pharmacokinetics and physicochemical features were
checked to evaluate efficacy using pkCSM (Pires et al., 2015) and
SwissADME tools (Daina et al., 2017). ADMET analysis is crucial in
drug discovery as it reduces the risk of drug failure in clinical trials.
Jervine, VX-680, and RO-3306 were probed for ADMET properties
using the SMILES format file for pkCSM generated using the
Discovery Studio software (Alshehri et al., 2024).

2.5 PASS evaluation

PASS analysis was performed to critically evaluate the biological
and pharmacological features of Jervine, VX-680 and RO-3306 after
evaluating ADMET features (Lagunin et al., 2000). Based on a pre-
defined structure-activity relationship, the PASS web server provides
a comprehensive understanding of the pharmacological effects of
drug molecules. The analysis results are presented as Pa (probability
of activity) and Pi (probability of inactivity) and generally
compounds with a high Pa/Pi ratio are considered to have
biological potential.
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2.6 Interaction studies

After a thorough exploration of the pharmacological role of
Jervine, the interaction analysis between Jervine with AURKB and
CDK1 was performed. 2D interaction analysis was conducted with
Discovery Studio software, and critical residues of the ATP binding
pocket of enzymes making hydrogen bonds, hydrophobic
interactions, and other interactions with the Jervine were
identified. The formation of multiple noncovalent interactions,
including hydrogen bonds, hydrophobic interactions, and π-π
stacking, was noted between Jervine and the key residues of
AURKB and CDK1. For comparison, VX-680 and RO-3306 were
also checked for interactions with AURKB and CDK1, respectively. In
PyMol, the hydrogen bonds at 3.5Å were identified and highlighted/
marked with dotted lines inside the protein-ligand complex.

2.7 MD simulation studies

Molecular dynamics (MD) simulation is a computer method
used to investigate the molecular structure and changes in the
conformation of a protein caused by the binding of a ligand
(Hassan et al., 2022; Khan et al., 2021). The MD simulation
experiments confirmed the docking results of AURKB and
CDK1 with Jervine as a standard drug. VX-680 and RO-3306
(CDK1 inhibitor) were taken as a positive control. GROMACS
v5.5.1 with the CHARMM force field was used to mimic the
structural features of AURKB and CDK1 and their docked
complexes with Jervine and positive controls. This is an open-
source software program that is mainly used to simulate the
behaviour of biomolecules and assist in the process of designing
drugs using computers. The topologies of the receptor-ligand
complex were generated using a web-based CgenFF (https://
cgenff.com/) server. The three systems for each enzyme were
submerged in a cubic container using the TIP3P water model
for solvation.

To ensure charge neutrality, the simulated systems were
neutralized by adding the requisite counter-ions (Na+ and Cl−).
Specifically, six Cl− ions were introduced into the AURKB systems
and four Cl− ions into the CDK1 systems, achieving electrostatic
balance before solvation and energy minimization. The solvated
complexes were energy-reduced using the conjugate gradient
technique in conjunction with 1,500 steps of the steepest descent
approach to eliminate any potential steric hindrances between the
atoms. Under constant volume circumstances, the equilibration
procedure was carried out in two phases throughout 1,000 ps.
The temperature was gradually increased from 0 to 300 K while
maintaining a pressure of 1 atm. An in-depth examination of the
MD data was conducted using GROMACS integrated capabilities. A
300 ns MD simulation was conducted. Subsequently, the QtGrace
program was used to analyse the resulting trajectories.

2.8 MMPBSA analysis

MMPBSA (Molecular mechanics/Poisson-Boltzmann surface
area) is one of the most widely used approaches for estimating
the binding free energy of a protein-ligand complex (Genheden and

Ryde, 2015). A short MD trajectory of 10 ns (from 290 ns to 300 ns)
was extracted from the stable region of the AKB-Jervine and
AURKB-VX-680 complexes for MMPBSA calculations. A similar
experiment was conducted for CDK1-Jervine and CDK1-RO-3306
(control). The binding energy components were calculated using the
MMPBSA approach of the gmx_mmpbsa package. The gmx_
mmpbsa tool uses the following equation to calculate the binding
energy of the protein-ligand complex-

ΔGBinding � GComplex − GProtein + GLigand( )

whereGComplex signifies the total free energy of the binding complex,
and GProtein and GLigand are the measures of total free energies of
native protein and the compounds Jervine, VX-680, and RO-3306.

3 Results

3.1 Molecular docking-based
virtual screening

Computational methods are exploited to virtually screen and
identify potential molecules against pre-defined therapeutic targets.
The implication of high-throughput screening methodologies also
reduces experimental errors and time consumption for lead
identification. Molecular docking-based virtual screening was
conducted using InstaDock software to discover high-affinity
binding partners of AURKB and CDK1. The top 50 hits were
initially selected based on binding affinity scores, and common
compounds for AURKB and CDK1 were identified. In the findings,
IMPHY000366 (Jervine) was identified as a common compound
against AURKB and CDK1 with binding affinities
of −10.7 and −9.1 kcal/mol, respectively. The binding affinities of
AURKB-Jervine and CDK1-RO-3306 were found to
be −8.3 and −9.2 kcal/mol (Supplementary Tables S1 and S2).
Comparing it to other clinically approved inhibitors, Jervine
demonstrates promising potential as a dual AURKB/
CDK1 inhibitor. For AURKB, barasertib (AZD1152-HQPA), a
selective AURKB inhibitor in clinical development, exhibits sub-
nanomolar potency (IC50 ≈ 0.37 nM). Jervine’s predicted binding
affinity of −9.1 kcal mol−1 (~250 nM Kd) falls within the high-
nanomolar range, indicating favorable binding and suggesting its
relevance as a scaffold for further optimization. For CDK1, Jervine
showed a binding affinity of −10.7 kcal mol−1 (~16 nM Kd),
comparable to clinically studied multi-CDK inhibitors. Notably,
AT7519 inhibits CDK1 with IC50 ≈ 210 nM and Ki ≈ 38 nM,
meaning Jervine demonstrates markedly stronger predicted binding.
Together, these comparisons emphasize Jervine’s potential as a
competitive inhibitor for both AURKB and CDK1 (Squires et al.,
2009). To assess the robustness of our docking protocol, we
performed multiple independent docking runs of Jervine with
CDK1 and AURKB using different random seed values.
Interestingly, all runs consistently yielded the same docking score
and binding pose, indicating that the results are highly reproducible
and independent of the initial search conditions. This convergence
strongly supports the reliability of the predicted binding mode.
These data are provided in the Supplementary Material
(Supplementary Tables S3 and S4).
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3.2 Physicochemical properties

Physicochemical profiling of a drug molecule is a crucial step in
rational drug design, as it allows for the analysis and optimisation of
pharmacological efficacy and therapeutic application.
Physicochemical properties and drug likeliness of Jervine were
evaluated using SwissADME software and are provided in
Supplementary Table S5. Characteristics, including molecular
weight, Lipinski rule, TPSA, and lipophilicity, provided more
profound insights into the drug-like behaviour of Jervine.

3.3 ADMET analysis

Among the top 50 hits from the docking study, Jervine was
identified as a common molecule with high binding affinities
towards AURKB and CDK1. PkCSM and SwissADME web
servers were used to predict the ADMET properties of Jervine.
ADMET prediction encompasses a set of different parameters
depicting pharmacokinetic properties and threshold values that
help eliminate unsuitable drugs. ADMET analysis was conducted
for Jervine and the positive controls of AURKB and CDK1, VX-680
and RO-3306, respectively. It was found that Jervine had a higher
gastrointestinal (GI) absorption (94.78%) compared to VX-680
(75.98%) and RO-3306 (92.07%). Jervine was surprisingly
identified as a substrate of the organic cation transporter 2
(OCT2), whereas VX-680 and RO-3306 did not exhibit substrate
characteristics for this transporter. Compared to VX-680 and RO-
3306, Jervine demonstrated higher blood-brain barrier (BBB)
permeability, as indicated by its elevated logBB value. Like VX-
680, Jervine did not exhibit AMES toxicity, indicating an absence of
mutagenic potential.

In contrast, RO-3306 tested positive in the AMES assay,
suggesting potential genotoxicity. Table 1 provides the computed
ADMET properties of Jervine, VX-680, and RO-3306. Jervine
showed satisfactory ADMET properties, including high GI
absorption, significant BBB permeation, low renal/hepatic
toxicity, low AMES toxicity, inhibition of CYP2D, and the
substrate of OCT2.

3.4 PASS evaluation

To learn about the pharmacological activity of Jervine in
comparison to VX-680 and RO-3306, the PASS analysis was
performed. The PASS tool has a comprehensive database of
bioactive molecules and extensive information on structure-activity

relationships from clinical and preclinical studies. Based on the values
of Pa (probable actives) and Pi (probable inactives), the required
biological property for a molecule can be elucidated. After the PASS
analysis, it was found that all three compounds had anti-neoplastic
properties with Pa>0.7. Also, Pa of Jervine (0.722) was higher than
R0-3306 (0.442), but lower than VX-680 (0.893) (Table 2).

3.5 Interaction studies

The interaction analysis of Jervine, with AURKB and CDK1 was
conducted along with respective inhibitors VX-680 and RO-3306 to
elucidate the probable binding sites of compounds. The in-depth
analysis revealed that Jervine interacted with Asp200, the catalytic
site residue of AURKB, by forming a direct hydrogen bond. The
interaction analysis showed that VX-680 formed only non-covalent
interactions with the active site and residues surrounding the ATP-
binding pocket of AURKB (Figures 1A–E). A comparable
interaction profile was observed between Jervine and CDK1, in
contrast to RO-3306. Notably, Jervine establishedmultiple hydrogen
bonds with residues of CDK1, including Glu51 and Asp86 (Figures
2A–E). In contrast, the approved CDK1 inhibitor did not exhibit
hydrogen bond formation in the analysis. Additionally, Jervine
engaged in several non-covalent interactions with substrate-
binding residues of CDK1. Detailed interaction data is presented
in Table 3.

3.6 MD simulation studies

MD simulations are essential in understanding the structural
details and alterations in the dynamics and behaviour of different
biomolecular systems, including protein-ligand complexes, at the
atomic level. This comprehensive tool also provides deeper insights
into the thermodynamics, kinetics and stability of biological
molecules and associated ligands (Khan et al., 2019). MD
simulations offer a detailed outlook into structural dynamics,
addressing complexities often challenging to capture through
experimental approaches (Lobanov et al., 2008; Salsbury Jr,
2010). To understand the conformational dynamics, four systems
of docked complexes, including AURKB-Jervine, AURKB-VX-680,
CDK1-Jervine, and CDK1-RO-3306, were subjected to an MD
simulation of 300 ns to elucidate the stability during the
designated time frame. A 300 ns simulation was performed, as
this duration is generally sufficient to ensure convergence of
structural and energetic parameters in protein-ligand complexes,
as reported in previous studies on similar systems. This timescale

TABLE 1 ADMET propertie.

S. No. Compound ID Absorption Distribution Metabolism Excretion Toxicity

GI
Absorption

BBB permeation CYP2D6
Inhibitor

OCT2 substrate AMES

1. Jervine 94.785 0.202 No Yes No

2. VX-680 75.989 −1.346 No No No

3. RO-3306 92.071 0.114 No No Yes
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TABLE 2 Prediction of activity spectra of substance analysis.

S. No. Compound ID Pa Pi Biological activity

1. Jervine 0.722 0.022 Antineoplastic

0.652 0.001 Antineoplastic (bone cancer)

0.464 0.016 Antineoplastic (lung cancer)

0.446 0.009 Antineoplastic (ovarian cancer)

0.428 0.009 Antineoplastic (non-small cell lung cancer)

1. VX-680 0.893 0.002 Aurora kinase inhibitor

0.887 0.005 Protein kinase inhibitor

0.878 0.003 Protein-serine-threonine kinase inhibitor

0.876 0.002 Aurora-B kinase inhibitor

0.666 0.032 Antineoplastic

6. RO-3306 0.442 0.023 Antineoplastic (solid tumors)

0.405 0.026 Focal adhesion kinase 2 inhibitor

0.325 0.003 Pim-2 kinase inhibitor

0.322 0.004 Pim kinase inhibitor

0.321 0.047 Focal adhesion kinase inhibitor

FIGURE 1
Structural representation of AURKB with ligands. Interaction analysis of AURKB with Jervine and VX-680. (A) 3D interaction of AURKB with Jervine
and VX-680. (B) Enlarged view depicting the key amino acid residues involved in the interaction between AURKB and Jervine. (C) Surface electrostatic
potential view of AURKBwith Jervine. (D) 2D interaction diagram showing hydrogen bonds and hydrophobic interactions between AURKB and Jervine. (E)
Enlarged view depicting the key amino acid residues involved in the interaction between AURKB and VX-680. (F) Surface electrostatic potential map
illustrating the binding interface of AURKB with VX-680. (G) 2D interaction diagram showing hydrogen bonds and hydrophobic interactions between
AURKB and VX-680.
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enabled us to capture stable binding interactions and monitor
conformational changes of the AURKB and CDK1 complexes.
Furthermore, our choice is consistent with literature reports,
where comparable or shorter simulation windows (50 ns–200 ns)
have been successfully employed to investigate related kinase-ligand
systems (Habib et al., 2024b; Jairajpuri et al., 2025).

3.7 Analysis of structural dynamics

The simulation extracted structural parameters, including root
mean square deviation (RMSD), root mean square frequency,
radius of gyration (Rg), and solvent-accessible surface area
(SASA) were calculated. These trajectories provide information

FIGURE 2
Structural representation of CDK1with ligands. Interaction analysis of CDK1with Jervine and RO-3306. (A) 3D interaction of CDK1 with Jervine and RO-
3306. (B)Enlarged viewdepicting the key aminoacid residues involved in the interactionbetweenCDK1 and Jervine. (C) Surface electrostatic potential viewof
CDK1 with Jervine. (D) 2D interaction diagram showing hydrogen bonds and hydrophobic interactions between CDK1 and Jervine. (E) Enlarged view
depicting the key amino acid residues involved in the interaction between CDK1 and RO-3306. (F) Surface electrostatic potential map illustrating the
binding interface of CDK1 with RO-3306. (G) 2D interaction diagram showing hydrogen bonds and hydrophobic interactions between CDK1 and RO-3306.

TABLE 3 Interacting residues of AURKB and CDK1 with Jervine and respective inhibitors.

Types of
interaction

Protein-drug complex

AURKB-Jervine AURKB-VX-680 CDK1-Jervine CDK1-RO-
3306

Conventional
ydrogen bond

Asp200 Cys258 Asp86, Glu51 Leu83

Van der waals bond Trp257, Pro203, Ile201, His198,
Val254, Ile285, Ser275, Glu274,

Thr281

Asp200, His250, Lys202, Pro272, Phe273,
Thr281, Ser275, Glu274, Val254, Arg315,

Leu228.

Met85, Ser84, leu83, Phe82,
leu78, Val64, Leu55, Asp146,
Phe147, Gly11, Glu12, Lys89.

Phe82, Glu81,
Phe147, Leu55,

Gly11,
Val18, Lys89, Ser84,

Met85.

Alkyl/Pi-Alkyl Phe273, Pro272, Val261, Cys258,
Lys202, Pro271

Val261, Pro271, Ile285 Leu135, Ala31, Ala145, Phe80,
Lys33, Val18, Tyr15, Ile10.

Ala31, Ala145,
Val64, Lys33

Carbon-hydrogen bond His250 — — Asp86, Glu51,
Asp146,

Pi sigma — — — Ile10, Leu135

Pi-Pi stacked — Phe80

Frontiers in Pharmacology frontiersin.org07

Sulaimani et al. 10.3389/fphar.2025.1662556

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1662556


on the protein’s changing conformational state upon the ligand’s
invasion (Table 4).

RMSD, a crucial trajectory of MD simulations, provides valuable
insights into the extent of protein flexibility, folding, and overall
dynamics upon ligand binding. This parameter quantifies the
average atomic displacement of protein backbone atoms over
time relative to a reference structure, typically the initial
conformation. RMSD values obtained for native AURKB,
AURKB-Jervine, and AURKB-VX680 were found to be
0.416 nm, 0.388 nm, and 0.456 nm, respectively. RMSD of
AURKB-Jervine was found to be low compared to free AURKB
and AURKB-VX-680 complex. Interestingly, the RMSD of the
AURKB-Jervine complex was slightly less than that of native
AURKB and the AURKB-VX-680 complex, indicating the
formation of a more stable complex. However, the observed
changes were minimal and stabilised by the end of the
simulation, likely due to the initial positioning of Jervine within
the AURKB binding pocket. These findings suggest that the
AURKB-Jervine complex exhibits higher structural stability over
the simulation time than the native protein and AURKB complexed
with VX-680 (Figures 3A,B).

Similarly, for native CDK1, CDK1-Jervine and CDK1-RO-3306,
the RMSD values were 0.217 nm, 0.288 nm and 0.258 nm,
respectively. Here, it was observed that the CDK1-Jervine
complex has an RMSD value similar to that of native CDK1 and
the CDK1-RO-3306 complex. These findings indicate that binding
of Jervine to either AURKB or CDK1 does not trigger significant
structural changes and deviations that could destabilise the protein.
It can be concluded that Jervine gets well accommodated in the
binding pocket of both enzymes without compromising overall
structural integrity (Figures 3C,D).

The following structural parameter investigated was RMSF, a
key metric used to assess the flexibility of individual amino acid
residues in a protein structure. It provides information on localised
structural dynamics upon ligand binding, unlike RMSD, which
indicates overall structural deviation. RMSF projects residue-
specific fluctuations over the entire simulation. RMSF values
obtained for native AURKB, AURKB-Jervine and AURKB-VX-
680 were 0.242 nm, 0.148 nm and 0.209 nm. It was noted that
Jervine binding resulted in a slight deviation and decrease in RMSF
compared to native AURKB (Figures 4A,B). This indicates Jervine-
induced structural stabilisation of AURKB, most likely in the regions

TABLE 4 Calculated MD simulation parameters obtained after a 300 ns simulation.

System RMSD (nm) RMSF (nm) Rg (nm) SASA (nm2) #Intra H-bond

AURKB 0.416012 0.24208 2.00617 154.479 165

AURKB-Jervine 0.388152 0.14856 1.97728 150.224 173

AURKB-VX-680 0.456133 0.209199 1.98789 156.336 165

CDK1 0.21723 0.112584 2.02746 152.334 190

CDK1-Jervine 0.288654 0.135309 2.06300 158.753 185

CDK1-RO-3306 0.258938 0.115183 2.05533 155.081 184

FIGURE 3
RMSD plot of AURKB and CDK1with ligands as a function of time (A) free AURKB, AURKB-Jervine and AURKB-VX-680, (B) PDF of RMSD plot, (C) free
CDK1, CDK1-Jervine and CDK1-RO-3306, (D) PDF of RMSD plot.
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with reduced flexibility (Figure 2C). The RMSF of native CDK1,
CDK1-Jervine and CDK1-RO-3306 were 0.112 nm, 0.135 nm and
0.115 nm, respectively, and were slightly higher than that of native
CDK1 and the CDK1-RO-3306 complex (Figures 4C,D). However,
these changes were found to be non-significant as the equilibrium
was achieved by the end of the simulation.

Rg was calculated to further understand the structural
compactness of AURKB and CDK1, which provided details about
the folding pattern and structural integrity in the presence of ligands.
The Rg of native AURKB, AURKB-Jervine, and AURKB-VX-

680 complexes were 2.006 nm, 1.977 nm, and 1.987 nm,
respectively (Figures 5A,B). The results indicate that Jervine
binding induces a more compact and stable AURKB
conformation than the native state, reflecting enhanced structural
integrity and a stabilising effect of Jervine on the AURKB structure.
Similar Rg findings were obtained for native CDK1, CDK1-Jervine,
and CDK1-RO-3306 complexes, which were 2.027 nm, 2.063 nm,
and 2.055 nm, respectively. Here, the structural compactness of
CDK1 was almost similar to that of the native state and CDK1-RO-
3306 (Figures 5C,D).

FIGURE 4
RMSF plot of AURKB and CDK1 with ligands as a function of time (A) free AURKB, AURKB-Jervine and AURKB-VX-680, (B) PDF of RMSF plot, (C) free
CDK1, CDK1-Jervine and CDK1-RO-3306, (D) PDF of RMSF plot.

FIGURE 5
Time evolution of radius of gyration (A) free-AURKB, AURKB-Jervine and AURKB-VX-680, (B) PDF of Rg plot, (C) free CDK1, CDK1-Jervine and
CDK1-RO-3306, (D) PDF of Rg plot.
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To further validate the Rg findings, SASA was also determined
for all the systems. SASA is a key parameter of MD simulation
studies that gives information on changes in the solvent-accessible
surface area of a protein upon binding ligands. Changes in SASA
values depict structure alterations due to exposure of hydrophobic
and hydrophilic residues to the solvent environment. The SASA of
the native AURKB, AURKB-Jervine, and AURKB-VX-680 complex
was found to be 154.47 nm2, 150.22 nm2, and 156.33 nm2,
respectively (Figures 6A,B).

This shows that the binding of Jervine reduced SASA compared
to native AURKB and had better compactness than VX-680. On the
other hand, the SASA of native CDK1, CDK1-Jervine and CDK1-
RO-3306 was found to be 152.33 nm2, 158.75 nm2, and 155.08 nm2.
However, in CDK1, binding of Jervine slightly enhanced the SASA
values, which were non-significant. These findings also align with
other trajectories, including RMSD, RMSF and Rg. Jervine mostly
enhanced the overall stability parameters of AURKB, while
maintaining structural integrity as in CDK1 similar to native
state (Figures 6C,D). The replicas of the simulation have been
provided in Supplementary Figures S1–S3 and
Supplementary Table S6.

3.8 Hydrogen bond analysis

Intramolecular hydrogen bonds and hydrophobic interactions
are crucial in stabilising the structure of the protein, thereby
facilitating its 3D conformation. Analysis of these bonds gives
essential insights into structural compactness and dynamics.
Intramolecular hydrogen bonds exist in the protein itself,
stabilising the structural elements. The formation of
intramolecular hydrogen bonds in AURKB and CDK1 was
observed over time using MD trajectories. The formation of
intramolecular hydrogen bonds in the unbound state of AURKB
and CDK1, and after binding of Jervine and with their respective

inhibitors, was noted. In the case of AURKB, the number of
intramolecular bonds increases upon binding of Jervine with
AURKB (173) compared to the native protein (165) and
complexed with VX-680 (165) (Figures 7A,B). However, in
CDK1, the number of intramolecular bonds was found with
Jervine (185) to be less than that of the native CDK1 (190)
complexed with RO-3306 (184) (Figures 7C,D). These findings
indicate that both proteins retained structural compactness after
binding their respective ligands.

In addition, intermolecular hydrogen bonding was also analysed
to identify the bonds formed between protein and ligand. These
bonds play a crucial role in stabilising the protein-ligand complex
during simulations. The number of hydrogen bonds formed between
AURKB and CDK1 with their ligands is provided in Figure 8.

3.9 Secondary structure analysis

Parameters, including α-helix, β-sheet, and turns, were plotted
throughout the simulation to examine how the secondary structure
changes upon ligand binding. Secondary structure analysis provides
information about protein’s structural integrity and conformational
transitions upon ligand binding. Investigating the changes in α-
helices, β-sheets, and other structural elements with time can assess
the changes in the native structure of the protein and partial or
global unfolding. The binding of Jervine to AURKB slightly reduced
the coil content and increased the β-sheets and α-helix compared to
the native protein but was almost similar to VX-680. The other
structural elements were unchanged in all three systems
(Supplementary Figure S4). However, in CDK1, Jervine binding
did not cause significant alterations in any structural element and
was similar to native CDK1 and CDK1-RO-3306 complex
(Supplementary Figure S4; Supplementary Table S7). These
findings project the formation of a stable complex in all systems
without any conformational changes in AURKB and CDK1.

FIGURE 6
SASA plot as a function of time (A) free-AURKB, AURKB-Jervine and AURKB-VX-680, (B) PDF of SASA plot, (C) free CDK1, CDK1-Jervine and CDK1-
RO-3306, (D) PDF of SASA plot.
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3.10 Principal component analysis

Principal Component Analysis (PCA) is a statistical tool for
MD simulations that captures and analyses dominant atomic
motions and conformational alterations in proteins upon ligand
binding (Mohammad et al., 2020a; Mohammad et al., 2020b).
Proteins do the collective motion of their atoms to perform specific
functions. The dynamics of a protein can be illustrated through its
phase space behaviour. Eigenvalues were extracted through the

covariance matrix and the principal components (PCs) while using
the gmx anaeig and gmx covar tools to investigate the principal
motion directions in the essential subspace (Anjum et al., 2022).
The eigenvalues corresponding to each eigenvector (EV) were
extracted to indicate the direction of motion in the essential
phase space. MD simulations generate large amounts of data,
representing the atomic coordinates of a biomolecular system
over time. PCA was performed using the essential dynamics
approach to examine the conformational sampling of both the

FIGURE 7
Intra-molecular hydrogen bonds (A) free-AURKB, AURKB-Jervine and AURKB-VX-680, (B) PDF plot, (C) free CDK1, CDK1-Jervine and CDK1-RO-
3306, (D) PDF plot.

FIGURE 8
Intermolecular hydrogen bonds (A) AURKB-Jervine, (B) AURKB-VX-680, (C) CDK1-Jervine, (D) CDK1-RO-3306.
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targets in their native form as well as in complex form AURKB,
AURKB-Jervine, AURKB-VX-680, CDK1, CDK1-Jervine and
CDK1-RO-3306. This analysis facilitated the exploration of
collective movements and conformational changes of the target
protein based on the simulated trajectories.

The conformational sampling was projected onto the alpha
carbon atoms (Cα) in the six systems. The results indicated that
AURKB and its complexes, both of which shared the same subspace,
had a smaller subspace of flexibility in the case of AURKB-Jervine,
decreasing the subspace flexibility of AURKB-VX-680 (Figures
9A–C). On the other hand, CDK1-Jervine and CDK1-RO-
3306 complexes shared the same subspace as the unbound
CDK1. However, a slightly smaller subspace of flexibility was
seen in the case of the CDK1-RO-3306 complex, which decreased
the flexibility of CDK1-Jervine (Figures 9D–F). Overall, both targets
form stable complexes with Jervine and show similar results with
their known inhibitors, making Jervine a potential therapeutic agent
for cancer (Sulaimani et al., 2025)

3.11 Free energy landscapes

Free energy landscapes (FELs) often depict the energetically
favored conformations and transitions between different states of a
biomolecular system. FELs were utilised to assess the stability of
protein molecules and their complexes with ligands in a solvent
environment. FELs offer valuable insights into protein folding,

denaturation, energy minima, and conformational landscapes
(Habib et al., 2024a). Using the first two PCs, we constructed
FELS to analyse the energy minima and conformational
dynamics of unbound CDK1 and AURKB and their respective
ligand-bound complexes. The resulting FEL plots for CDK1 and
AURKB in both unbound and bound states are presented in
Figures 10A–C.

The FEL of unbound AURKB exhibited multiple basins with
identifiable global minima. In contrast, the AURKB-Jervine
complex displays a single large basin with a prominent global
minimum, suggesting a more stable conformational state than the
AURKB-VX-680 complex, which shows relatively less stability
(Rathi et al., 2025). The FEL of unbound CDK1 showed a
dominant, well-defined global minimum, indicating a stable
native conformation (Figures 10D–F). Upon binding with
Jervine and RO-3306, CDK1 adopts multiple conformational
states, as suggested by the presence of several energy basins,
although a global minimum remains. This shift in the energy
landscape implies that ligand binding introduces moderate
perturbations in the conformational phase space of CDK1. A
similar pattern is observed for AURKB and its complexes.

In all FELs, deeper blue regions correspond to lower-energy,
near-native conformations. Despite the conformational changes
upon ligand binding, the overall structural integrity of both
AURKB and CDK1 was maintained throughout the simulations.
This indicates that binding of Jervine and the respective known
inhibitors does not lead to protein unfolding.

FIGURE 9
Principal component analysis. 2D projections of trajectories on eigenvectors showing different projections of (A) free-AURKB, (B) AURKB-Jervine,
(C) AURKB-VX-680, (D) free-CDK1, (E) CDK1-Jervine, (F) CDK1-RO-3306.
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3.12 MMPBSA analysis

MMPBSA analysis was carried out to estimate the binding free
energy of the AURKB and CDK1 protein-ligand complexes using
gmx_MMPBSA module in GROMACS. Binding energy is a
thermodynamic parameter that shows the change in energy
associated with the formation of a bond, and it can be used to
describe the strength of the interactions between a ligand and a
protein. The binding free energy components, including van der
Waals interactions and their corresponding average standard
deviations, as obtained from the MM/PBSA analysis, are
summarised in Table 5. The results demonstrate that all
AURKB-ligand complexes exhibit favourable binding free
energies, indicating the formation of stable complexes. Among
them, the AURKB-Jervine complex showed the highest binding
affinity (−15.51 kJ/mol), closely comparable to the control
AURKB-VX-680 complex (−13.99 kJ/mol), suggesting enhanced
stability. Similarly, the CDK1-Jervine complex exhibited a strong
binding affinity (−25.34 kJ/mol), nearly equivalent to RO-3306

(−25.25 kJ/mol), further indicating the formation of a
stable complex.

4 Discussion

Natural products have gained significant attention for decades
due to their excellent pharmacological and therapeutic properties
(Domingo-Fernández et al., 2024). Therefore, exploration of
phytochemicals against molecular targets holds great promise
(Rudzińska et al., 2023). This study screened IMPPAT, a
natural product database, to determine potent dual-targeting
inhibitors against AURKB and CDK1. The study implied a
multi-tier approach, including high-throughput screening,
ADMET analysis, PASS evaluation, MD simulations and
MMPBSA to identify common inhibitor. Drug-likeliness and
pharmacokinetic properties were also compared with known
inhibitors of AURKB and CDK1, VX-680 and RO3306,
respectively. A detailed docking analysis revealed that Jervine is

FIGURE 10
Gibbs free energy landscape generated by projecting the principal components, PC1 and PC2, during MD simulation (A) free-AURKB, (B) AURKB-
Jervine, (C) AURKB-VX-680, (D) free-CDK1, (E) CDK1-Jervine, (F) CDK1-RO-3306.

TABLE 5 MMPBSA calculations of binding free energy for protein-ligand complexes.

Complex ΔVDWAALS ΔEEL ΔEPB ΔENPOLAR ΔGGAS ΔGSOLV Standard deviation ΔGTotal (kJ/mol)

AURKB-Jervine −21.24 −15.14 23.64 −2.77 −36.38 20.87 1.75 −15.51

AURKB-VX-680 −21.23 −6.87 16.76 −2.65 −28.10 14.11 3.53 −13.99

CDK1-Jervine −38.05 −20.03 36.99 −4.24 −58.09 32.75 7.53 −25.34

CDK1-RO-3306 −44.08 −26.59 49.52 −4.10 −70.67 45.42 4.12 −25.25
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a common compound among the top 50 hits of AURKB and
CDK1, showing a high binding affinity and appreciable ligand
efficiency for both enzymes. Jervine exhibited a higher binding
affinity than control inhibitors (VX-680 and RO-3306) of AURKB
and CDK1. This indicates a more stable complex formation
between proteins and Jervine than control drugs.

Jervine was evaluated for physicochemical and ADMET
properties along with control drugs. ADMET analysis revealed
that Jervine exhibited better GI absorption than control drugs
and non-mutagenic features. Jervine exhibited high permeability
across the blood-brain barrier, suggesting its potential utility in
treating central nervous system (CNS) related disorders. However,
its use in non-CNS models may pose a risk of off-target effects or
adverse outcomes due to unintended CNS exposure. Among
ADMET parameters, Jervine was found to be a substrate of
OCT2, which indicates its smooth renal clearance. Interestingly,
none of the control drugs were OCT2 substrates, which signifies a
possibility of systemic accumulation of these drugs, potentially
causing toxicity. The natural compound Jervine surprisingly
demonstrated superior ADMET features compared to selective
reference drugs against AURKB and CDK1, highlighting its
potential as a safer and more effective alternative with minimal
adverse effects.

PASS analysis, an in silico tool that predicts the biological and
therapeutic role of any drug based on its chemical structure, was
conducted. It was found that, like VX-680 and RO3006, Jervine also
depicted anti-neoplastic properties. This indicates that Jervine might
share structural similarities with compounds or drugs that are well-
reported to inhibit tumor growth. Moreover, this also implies that
Jervine harbours strong anti-cancer potential throughmodulation of
key cellular processes critical for cancer development and
progression (Chen et al., 2020; Lei and Huo, 2020).

After thoroughly evaluating biological properties, ADMET,
and pharmacokinetic parameters, an in-depth computational
analysis of the binding mechanism of Jervine with AURKB and
CDK1 was conducted. 2D-interaction analysis depicted the
formation of hydrogen bonds between Jervine and the ATP-
binding pocket of AURKB. Also, Jervine formed hydrogen
bonds with the catalytic site residue Asp200 of AURKB, which
signifies its higher anti-kinase potential. Similar findings were also
observed in the CDK1-Jervine complex, where Jervine interacted
with important residues of CDK1 through several covalent and
non-covalent interactions. Compared to VX-680, Jervine formed
covalent bonds with key residues of AURKB catalytic core, whereas
VX-680 exhibited only non-covalent interactions. Compounds
showing non-covalent interactions with targets often exhibit a
reversible binding mode, dynamically allowing frequent
association and dissociation (Bandyopadhyay and Gao, 2016).
However, compounds that bind covalently show prolonged
target interactions, thereby increasing potency, but at the same
time might impose serious off-target effects (Bandyopadhyay and
Gao, 2016). Hence, computational tools can be used to predict
these interaction mechanisms, aiding in the drug
development process.

MD simulations were performed for each drug-protein complex
further to investigate stability, conformational dynamics, and
interaction patterns (Hollingsworth and Dror, 2018). This
technique gives detailed insights into the binding mode, key

residue flexibility, and conformational adaptations in the protein
upon ligand binding, providing predictions on drug efficacy and
specificity. In the case of AURKB, the simulation parameters,
including RMSD, RMSF, Rg, and SASA, cumulatively indicated
that AURKB-Jervine was more stable than the AURKB-VX-
680 complex. Compared to the control, decreased RMSD and
RMSF values in the AURKB-Jervine complex reflected lesser
structural deviations and consistent interactions with the protein.
Additionally, lower Rg indicated the formation of a compact
complex of AURKB and Jervine, whereas reduced SASA specified
a decrease in solvent exposure.

However, the changes were non-significant but provided a better
understanding of enhanced AURKB-Jervine stability compared to
the VX-680 complex. However, in the case of CDK1, the simulation
parameters RMSD and RMSF were negligibly higher in the CDK1-
Jervine complex compared to RO-3360 and the native protein.
Similarly, the Rg and SASA values were also higher. These
differences were, however, considered non-significant. This
further indicates that the stability parameters of the CDK1-
Jervine complex were almost similar to those of native
CDK1 and the CDK1-RO-3306 complex, which means that
Jervine did not trigger any structural perturbations or instability
when bound to CDK1, and stability parameters were similar to those
of a known CDK1 inhibitor.

Changes in secondary structure can disrupt the stability and
functionality of proteins (Koop et al., 2020). Therefore, this study
calculated the secondary structure content of all drug-ligand
complexes using MD simulations. When AURKB interacted with
Jervine, a slight decrease in amino acid residues forming coils was
found compared to the native protein. This might occur due to the
initial fitting of the ligand within the catalytic core of the enzyme.
However, in the case of CDK1, the secondary structure content
remained almost the same. These findings indicate that Jervine
binding did not trigger any structural perturbations in either of
the enzymes.

The essential dynamics analysis, conducted through PCA and
FEL mapping, offered valuable insights into the conformational
stability and dynamic behavior of AURKB and CDK1 and their
respective complex with the selected common compound,
Jervine. The analysis revealed that Jervine maintains the
structural integrity of both target proteins while inducing
favorable conformational states, indicating strong and stable
interactions. Lastly, MMPBSA analysis was conducted to
determine the binding free energy between all drug-protein
complexes after molecular docking and MD simulations. This
analysis quantitatively measures binding affinity based on
molecular mechanics and solvation energies. AURKB-Jervine
complex showed a more negative binding affinity than the
AURKB-VX-680 complex. It can be concluded that Jervine
showed stronger and more stable binding with AURKB than
the reference drug. In addition, Jervine had more favourable
interactions with the active pocket of AURKB, better potency,
and therapeutic efficacy than VX-680. However, the binding
affinities from the MMPBSA analysis of the CDK1-Jervine
complex were almost similar to those of the CDK1-RO-
3306 complex. This implies that Jervine has a comparable
stability, efficacy, and therapeutic potential as RO-3306
against CDK1.
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The findings of this study collectively underscore the potential of
Jervine as a dual inhibitor, capable of effectively targeting both
AURKB and CDK1. While our findings highlight a possible
mechanistic link, further extensive and in-depth in vitro and in
vivo studies are necessary to explore the downstream molecular
pathways and define the mode of action of Jervine. In addition, in
vivo models are needed to investigate the pharmacodynamics and
pharmacokinetic properties of Jervine comprehensively. This
approach opens avenues for further optimisation and structural
modification of the Jervine backbone, or screening of related
steroidal alkaloids may yield safer analogues with retained
inhibitory activity. The promising results of this study provide a
robust foundation for further experimental validation and
preclinical development, supporting the continued exploration of
Jervine as a viable therapeutic candidate for cancer treatment.

5 Conclusion

This study used an integrated computational approach to
systematically identify Jervine, a compound from the IMPPAT
database, as a promising drug candidate with dual kinase
targeting properties against AURKB and CDK1. High-throughput
virtual screening, ADMET analysis, drug-likeliness, and PASS
evaluation depicted Jervine as a strong drug candidate against
reference compounds VX-680 and RO-3306. The findings of
molecular docking revealed higher binding affinities of Jervine
towards AURKB and CDK1, indicating strong interactions and
structural stability. ADMET analysis revealed appreciable and
advantageous pharmacokinetic parameters in Jervine compared
to control drugs. Based on the structure-activity relationship,
Jervine exhibited anti-neoplastic potential similar to VX-680 and
RO-3306.

Finally, MD simulation studies validated the stability of Jervine
and protein complexes, particularly with AUKRB. Also, binding of
Jervine did not trigger any structural perturbations in either target
protein. Free energy calculations demonstrated favourable binding
energetics of Jervine-AURKB complex compared to VX-680, while
demonstrating comparable stability with CDK1 relative to RO-3306.
Hence, the overall findings of this study indicate that Jervine is a
potent, highly stable, and pharmacologically active drug molecule
that could offer significant promise in cancer therapeutics via dual
targeting of cell cycle kinases.

6 Limitations

Overall, the study provides a detailed analysis of drug
identification but has limitations, such as exclusive reliance on
computational approaches for identifying dual inhibitors against
AURKB and CDK1. The study must be further validated on
experimental models with comprehensive clinical validations.
Future work should include in-depth in vitro and in vivo studies
to confirm Jervine’s dual inhibitory potential towards AURKB and
CDK1 and assess its translational feasibility as an anticancer
therapeutic. Also, extensive pharmacological profiling, structure
optimisation, or identification of design and development of safer
analogues is crucial before considering its therapeutic potential.
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