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Hepatic fibrosis is a multifactorial process driven by hepatic stellate cell (HSCs)
activation, participation of Kupffer cells and infiltrating immune cells, and
profibrotic cytokine signaling (notably TGF-β), culminating in excessive
extracellular matrix (ECM) and collagen deposition. Post-translational
modifications (PTMs)—covalent changes added after protein synthesis—govern
protein stability, localization, interactions, and activity. Common PTMs include
phosphorylation, acetylation, ubiquitination, glycosylation, nitration, and
methylation; collectively, they modulate fibrogenic pathways across disease
stages. Despite available therapies, clinically effective and well-tolerated
antifibrotic options remain limited. Natural products, with their structural
diversity, relative safety, and broad accessibility, offer promising leads for
antifibrotic drug discovery. This review delineates the central roles of PTMs in
hepatic fibrosis, synthesizes how specific PTMs drive disease initiation and
progression, and evaluates natural products that target PTM-regulated nodes
of fibrogenesis. We also propose strategies to accelerate development of PTM-
informed antifibrotic therapeutics.
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1 Introduction

Hepatic fibrosis (HF) is a progressive pathological condition that substantially
contributes to the global disease burden because it can advance to cirrhosis, liver
failure, and hepatocellular carcinoma—each associated with high morbidity and
mortality (Huang et al., 2023). Pathologically, HF features excessive deposition of
collagen and other extracellular matrix (ECM) components that, while central to
normal wound healing, become dysregulated in persistent injury and inflammation
(Friedman, 2008; Huang et al., 2020; Seki and Schwabe, 2015). Such fibrotic remodeling
impairs organ function and underlies major complications, including cirrhosis, renal
failure, and myocardial fibrosis–related heart failure (McQuitty et al., 2020). In the
liver, fibrosis represents a common, dynamic response across chronic liver diseases
(CLDs) and is a key determinant of progression to cirrhosis, hepatocellular carcinoma,
and ultimately liver failure (Zhou et al., 2020). Its pathogenesis reflects complex crosstalk
among hepatocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, and resident
and infiltrating immune cells (Kisseleva and Brenner, 2021; Tsuchida and Friedman, 2017).
Following acute injury, hepatocytes typically regenerate and replace necrotic or apoptotic
cells to restore tissue integrity (Michalopoulos, 2017; Michalopoulos and Bhushan, 2021);
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with chronic injury, however, this regenerative capacity
progressively fails, and parenchyma is increasingly replaced by
ECM (Baiocchini et al., 2016; Ginès et al., 2021; Tsuchida and
Friedman, 2017).

During fibrogenesis, virtually all hepatic cell types—parenchymal
and non-parenchymal—undergo characteristic alterations (Seo and
Jeong, 2016). Injured hepatocytes undergo apoptosis, whereas liver
sinusoidal endothelial cells lose their fenestrations, resulting in
sinusoidal capillarization (Canbay et al., 2004). Liver injury also
activates Kupffer cells, the resident macrophages, which release
cytokines and chemokines (Dixon et al., 2013; van der Heide et al.,
2019). These mediators drive the transition of quiescent HSCs into an
activated, myofibroblast-like state marked by de novo expression of
platelet-derived growth factor (PDGF) receptors, transforming growth
factor-β (TGF-β) receptors, and α-smooth muscle actin (α-SMA).
Activated HSCs proliferate and secrete ECM components, ultimately
depositing fibrotic scar tissue (Dewidar et al., 2019; Marcher et al., 2019;
Ying et al., 2017).

The progression of liver fibrosis is driven by diverse cellular
programs and regulatory networks. Key molecular effectors in
hepatic fibrogenesis include TGF-β receptors, SMAD transcription
factors, and extracellular-matrix–modifying enzymes, which drive
stellate-cell activation and matrix remodeling. Beyond synthesis,
PTMs introduce specific chemical changes that reshape protein
activity, stability, localization, and interactions, adding a crucial
regulatory layer to the pathological remodeling of the liver. While
gene transcription and translation establish the proteome, PTMs
dynamically define protein function in context. Accordingly, the
addition, removal, or rearrangement of functional groups can
markedly alter protein behavior and thereby influence disease
initiation and progression (Shu et al., 2023) (Figure 1).

More than 400 PTM types have been reported to date; among
the most prevalent are phosphorylation, acetylation, ubiquitination,
glycosylation, nitration, andmethylation (Wu and Jankowski, 2022).
Nevertheless, comprehensive mapping of PTM substrates and
elucidation of their functional consequences—especially in liver
disease—remain incomplete. This review synthesizes current
advances on PTMs in hepatic fibrosis, outlines key knowledge
gaps, and discusses how PTM-focused insights may inform novel
therapeutic targets and drug development.

2 Literature screening and
selection process

To comprehensively review the role of post-translational
modifications (PTMs) in liver fibrosis and the regulatory effects
of natural products on PTMs, a structured literature search was
performed in accordance with the PRISMA 2020 guidelines.

2.1 Databases and time frame

Electronic databases including PubMed/MEDLINE, Web of
Science Core Collection, Embase, and Scopus were searched for
publications from January 2000 to June 2024. Additional references
were retrieved by manually screening the bibliographies of relevant
reviews and primary articles.

2.2 Search strategy

A combination of Medical Subject Headings (MeSH) and free-
text terms was used to capture three major concepts:

Disease: “liver fibrosis” OR “hepatic fibrosis” OR “hepatic
stellate cell*” OR “liver cirrhosis”.

Modification: “post-translational modification” OR “PTM” OR
“phosphorylation” OR “acetylation” OR “ubiquitination” OR
“SUMOylation” OR “methylation” OR “succinylation” OR
“malonylation” OR “glycosylation”.

Natural products: natural product” OR “phytochemical” OR
“herbal compound*” OR “traditional medicine” OR names of key
classes (“flavonoid” OR “saponin” OR “alkaloid” OR “polyphenol”).

The three groups were combined using AND (e.g., liver fibrosis
AND post-translational modification AND natural product).
Searches were adapted for the syntax of each database.

2.3 Eligibility criteria

Inclusion: i. original experimental or clinical studies evaluating
any PTM in the context of liver fibrosis and reporting modulation by
a natural product or plant-derived compound; ii. in vitro (e.g.,
hepatic stellate cell activation), in vivo (animal models), or
human clinical studies; iii. Articles in English with full text available.

Exclusion: reviews, editorials, conference abstracts without
primary data; studies on liver cancer or metabolic liver disease
lacking fibrosis/PTM endpoints; reports of genetic polymorphisms
without PTM assessment.

2.4 Screening procedure

Two independent reviewers screened titles and abstracts for
relevance. Full texts of potentially eligible studies were retrieved for
detailed assessment. Disagreements were resolved through
discussion or consultation with a third reviewer.

2.5 Data extraction and quality assessment

For each included study, we extracted: Type of natural product
or compound (e.g., flavonoid, saponin, alkaloid); PTM type
(phosphorylation, acetylation, ubiquitination, SUMOylation,
methylation, succinylation, malonylation, etc.); Target proteins/
enzymes (writers, erasers, readers) and signaling pathways.

3 Protein post-translational
modifications in liver fibrosis

3.1 Phosphorylation modifications

Protein phosphorylation is a ubiquitous, deeply studied PTM
that governs fundamental biological programs—including cell
growth, differentiation, apoptosis, gene expression, and signal
transduction (Bilbrough et al., 2022). In liver fibrosis,
phosphorylation is tightly coupled to disease initiation and
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progression, largely through effects on ECM deposition and
HSCs activation (Okuno et al., 2001). HSCs release and
activate transforming growth factor-β1 (TGF-β1) and its
intracellular Smad mediators, both of which are pivotal for
driving collagen gene transcription (Inagaki et al., 2005;
Okuno et al., 2001). TGF-β ligands also promote ECM
accumulation and become sequestered within the matrix,
thereby amplifying profibrotic signaling (Walton et al., 2017).
Following injury, elevated TGF-β in the fibrotic niche activates
SMAD2/3 via TGF-β receptors 1/2 (TGFBR1/2) (Budi et al.,
2021). The phosphorylated SMAD2/3 complex then
translocates to the nucleus to directly induce downstream
targets (e.g., COL1A1, COL3A1, COL5A2), initiating ECM
gene expression and advancing fibrogenesis (Walton et al., 2017).

Additional upstream cues converge on Smad signaling through
canonical kinase cascades. For example, lipopolysaccharide (LPS)
induces SMAD2 phosphorylation in HSC-T6 cells via PI3K/AKT
and MAPK pathways, promoting ECM production and
myofibroblastic transition (Kao et al., 2017). Renin/prorenin
signaling increases prorenin receptor (PRR) expression and TGF-
β1 production in LX-2 cells; PRR knockdown deactivates HSCs,
reduces TGF-β1, and diminishes SMAD3 phosphorylation, thereby
alleviating fibrotic responses (Hsieh et al., 2021).

Phosphorylation also regulates hepatocyte fate programs relevant to
fibrosis. During hepatocyte apoptosis, caspase activity is modulated by
phosphorylation—phospho-caspase-9, for instance, promotes
apoptosis—typically accompanied by heightened inflammation and

secondary HSC activation (Cardone et al., 1998; Cui et al., 2020;
Riedl and Salvesen, 2007). Autophagy, another phosphorylation-
tuned process, fuels HSC activation by mobilizing energy from
retinoid-rich lipid droplets; its pharmacologic inhibition suppresses
HSC activation and mitigates fibrosis in vitro and in vivo
(Hernandez-Gea et al., 2012; Thoen et al., 2011). Mechanistically,
Sestrin2 may restrain HSC activation by enhancing AMPK
phosphorylation and dampening mTOR signaling (Hu Y. J. et al.,
2024), whereas the BET inhibitor JQ-1 improves fibrosis by limiting
HSC activation and proliferation through reduced JAK2/
STAT3 phosphorylation (Song et al., 2023a).

In sum, phosphorylation exerts broad, stage-spanning control
over fibrogenesis by modulating key signaling axes (TGF-β/Smad,
MAPK, NF-κB, PI3K/AKT) and by shaping HSC activation,
proliferation, apoptosis, and autophagy (Dooley and ten Dijke,
2012; Hernandez-Gea and Friedman, 2011). Deeper delineation
of these phosphorylation-dependent mechanisms—and their
node-specific roles—will aid target identification and inform the
rational development of antifibrotic therapies (Figure 2).

3.2 Protein glycosylation modification

Altered protein glycosylation is a key driver of hepatic fibrogenesis
(Eichler, 2019). Glycosylation occurs co- and post-translationally as
nascent proteins enter the endoplasmic reticulum, where enzymes
install monosaccharides that are subsequently elaborated into

FIGURE 1
Hepatic fibrosis progresses through hepatic stellate cell activation, leading to ECM deposition and fibrotic scarring. PTM such as phosphorylation,
glycosylation, and ubiquitination regulate protein function and play critical roles in fibrosis pathogenesis.
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oligosaccharide chains in a site-specific manner (Hebert et al., 2005).
Twomajor classes predominate: N-glycosylation on the amide nitrogen
of asparagine (Asn) and O-glycosylation on the hydroxyl groups of
serine/threonine (Ser/Thr) (Kornfeld, 1998). In liver fibrosis,
glycosylation shapes both matrix composition and profibrotic
signaling. For example, glycan-dependent Galectin-1/
NRP1 interactions potentiate TGF-β and PDGF-like pathways to
activate HSCs, while the collagen O-galactosyltransferase
GLT25D1 enhances collagen O-glycosylation and stabilizes fibrotic
matrix architecture (Wang S. et al., 2023; Wu et al., 2017).

Glycosylation participates directly in ECM deposition by
modifying collagens and thereby influencing their stability and
susceptibility to degradation. It also regulates HSC activation
(Caon et al., 2021; Ogawa and Okajima, 2019; Rockey et al.,
2015). A particularly important cytosolic modification is
O-GlcNAcylation, which decorates nuclear, cytoplasmic, and
mitochondrial proteins. O-GlcNAc transferase (OGT) installs,
and O-GlcNAcase (OGA) removes, this modification (Hahne
et al., 2013; Ma and Hart, 2014; Ruan et al., 2012). In
myofibroblast-like HSCs (MF-HSCs), global O-GlcNAcylation
rises in parallel with α-SMA expression; similar increases occur
in CCl4-induced liver injury in mice. Pharmacologic OGT inhibition
(e.g., OSMI-1) lowers O-GlcNAcylation and downregulates collagen
genes (Col1a1, Col1a2, Col3a1, Col5a2), indicating that
O-GlcNAcylation is required for robust expression of fibrosis-

related ECM genes and is a determinant of myofibroblast
activation (Harvey and Chan, 2018; Housley et al., 2009; Wang
et al., 2022).

Glycan-based biomarkers also mirror disease activity. Mac-2
binding protein glycoforms (M2BPGi)—a glycosylated variant of
M2BP produced predominantly by HSCs—serve as serum
indicators of liver fibrosis. M2BPGi engages Mac-2 on Kupffer
cells, which in turn promotes HSC activation and elevates α-
SMA expression (Bekki et al., 2017; Gantumur et al., 2021).

Glycosylation intersects with oxidative stress through advanced
glycation end products (AGEs), non-enzymatic adducts formed
between reducing sugars and proteins, lipids, or nucleic acids.
AGE accumulation augments oxidative stress and activates pro-
fibrotic, pro-inflammatory signaling via the receptor for AGEs
(RAGE) (Hollenbach, 2017; Hyogo and Yamagishi, 2008). In
vitro, glyceraldehyde-derived AGEs increase ROS, induce chronic
injury signals, and drive HSC activation (Iwamoto et al., 2008).
Consistently, RAGE expression is upregulated during HSC
transdifferentiation to myofibroblasts, reinforcing profibrotic
pathways (Fehrenbach et al., 2001).

Collectively, these findings position glycosylation—enzymatic
glycans and non-enzymatic AGEs alike—as a central regulatory
layer in hepatic fibrogenesis. Targeting specific glycosylation
enzymes, lectin-mediated interactions, or AGE–RAGE signaling
may yield promising antifibrotic strategies (Figure 3).

FIGURE 2
Hepatic stellate cell activation is driven by phosphorylation-dependent signaling pathways that regulate fibrogenesis. TGF-β1 activates the SMAD2/
3 pathway, promoting fibrogenic gene expression through SMAD3 phosphorylation and interaction with p300. STAT3 activation via JAK2 and PI3K/Akt
pathways enhances fibrosis, while LPS-induced MAPK signaling further contributes to this process. AMPK inhibits fibrosis by suppressing ERK1/
2 phosphorylation, balancing profibrotic and antifibrotic mechanisms in liver fibrosis.
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3.3 Protein acetylation modification

Protein acetylation—installed by acetyltransferases and
removed by deacetylases—adds acetyl groups to specific residues,
reshaping chromatin architecture, transcription, and signal
transduction, and thereby influencing gene expression, protein
function, cellular metabolism, and cell-cycle progression
(Arnesen, 2011; Verdin and Ott, 2015; Xue et al., 2022). In
hepatic fibrosis, epigenetic dysregulation driven by histone
modifications is a major determinant of disease progression
(Tessarz and Kouzarides, 2014; Tsukamoto et al., 2011).
Activation and transdifferentiation of HSCs require broad
epigenetic reprogramming that silences adipogenic programs
while inducing genes supporting the myofibroblast-like
phenotype (Barcena-Varela et al., 2019; Mann and Mann, 2013;
Moran-Salvador and Mann, 2017).

A growing body of evidence implicates acetylation in HSC
activation and fibrogenesis. Acetylation of C/EBP-α at K298,
K302, and K326 enhances its interaction with Beclin-1 and
promotes autophagy in activated HSCs (Hou et al., 2021).
Pharmacologic inhibition of histone deacetylases with trichostatin
A (TSA) alleviates CCl4-induced fibrosis, in part by increasing

C/EBP-α acetylation and blocking its ubiquitin-dependent
degradation (Ding et al., 2018). More broadly, hyperacetylation at
promoters/enhancers of profibrotic genes associates with elevated
TGF-β, collagen, and α-SMA expression. Acetylation also augments
NF-κB activity, increasing TNF-α and IL-6 production that further
activates HSCs; conversely, HDAC-mediated deacetylation
dampens NF-κB signaling and mitigates inflammatory drive and
fibrogenesis (Jimenez-Uribe et al., 2021; Joanna et al., 2009; Park
et al., 2014). In LX-2 cells, nicotinamide riboside (NR) restrains
TGF-β–induced activation by modulating acetylation within the
Smad pathway and reduces CCl4-induced fibrosis in vivo (Jiang
et al., 2019).

Acetylation also directly tunes mitochondrial function,
influencing cellular energetics and oxidative stress (Anderson and
Hirschey, 2012). The mitochondrial deacetylase SIRT3 deacetylates
key antioxidant enzymes, attenuating oxidative stress and slowing
fibrotic progression (Ning et al., 2024). Additionally, acetylation of
apoptosis regulators within the Bcl-2 family can shift cell-death
propensity. Some studies suggest that acetylation may increase the
activity of pro-apoptotic proteins, promoting the apoptosis of HSCs
and limiting the extent of fibrosis (Ma et al., 2022; Zhang et al.,
2022). Together, these findings position acetylation—as both a

FIGURE 3
The activation of HSCs during liver fibrosis is orchestrated by PTMs, which regulate key signaling pathways and cellular processes. Acetylation
modulates chromatin accessibility and transcriptional activity, ubiquitination governs protein turnover and degradation, and glycosylation influences
protein folding, stability, and intercellular signaling. These modifications, in conjunction with TGF-β1-induced SMAD2/3 activation, oxidative stress, and
metabolic reprogramming, drive HSC activation, extracellular matrix production, and fibrotic remodeling.
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chromatin-level and protein-level switch—as a tractable axis for
antifibrotic intervention (Figure 3).

3.4 Protein ubiquitination modification

Ubiquitination is a covalentmodification in which a small ubiquitin
protein is conjugated to target proteins through a cascade of enzymatic
reactions (Dikic and Schulman, 2023). This process plays a central role
in protein degradation, signal transduction, cell cycle control, DNA
repair, immune responses, and other cellular activities (Popovic et al.,
2014). It requires the coordinated action of three enzymes: the
E1 ubiquitin-activating enzyme, which activates ubiquitin; the
E2 ubiquitin-conjugating enzyme, which transfers activated
ubiquitin; and the E3 ubiquitin ligase, which attaches ubiquitin to
lysine residues of substrate proteins, thereby conferring specificity
(Pickart, 2001). Ubiquitination can occur as monoubiquitination
(attachment of a single ubiquitin molecule) or polyubiquitination
(formation of ubiquitin chains), with the type of linkage
determining the fate of the substrate protein (Nakamura, 2018).

Accumulating evidence highlights the pivotal role of
ubiquitination in liver fibrosis, regulating signaling pathways,
protein turnover, cell activation, and programmed cell death
(Filali-Mouncef et al., 2022; Rao et al., 2022; Shu B. et al., 2021;
Wu et al., 2023). Ubiquitin has been identified as a biomarker of
nonalcoholic liver fibrosis, frequently detected at cell boundaries and
within the fibrotic matrix (Lachiondo-Ortega et al., 2019). The
deubiquitinating enzyme UCHL1 is markedly upregulated in
human HSCs and in livers of patients with alcoholic liver disease.
Pharmacologic inhibition of UCHL1 with LDN-57444 mitigates
fibrosis progression in CCl4-induced mouse models (Wilson et al.,
2015). Similarly, the E3 ligase FBG1 degrades misfolded A1AT-Z
mutants through the ubiquitin–proteasome system and autophagy,
preventing their accumulation in the endoplasmic reticulum and
attenuating fibrogenic stress (Wen et al., 2015).

Other ubiquitin-relatedmechanisms also contribute to fibrogenesis.
Hepatocyte-specific deletion of the E3 ligase RNF5 exacerbates steatosis,
inflammation, and fibrosis in dietary NASH models. Mechanistically,
RNF5 binds HRD1 and promotes its K48/K33-linked ubiquitination,
leading to proteasomal degradation; HRD1 knockdown reduces lipid
accumulation and inflammatory signaling, underscoring the
RNF5–HRD1 axis in hepatocyte injury and fibrosis (Yang et al.,
2021). In HSCs, TGF-β signaling induces Ndfip1 expression, which
recruits the E3 ligase Nedd4-2 to promote ubiquitination and
degradation of TrkB. TrkB overexpression suppresses TGF-β/Smad
signaling and limits HSC proliferation, suggesting that TrkB
ubiquitination contributes to fibrosis progression (Song et al.,
2023b). Moreover, Neuropilin-1 (NRP1) enhances HSC activation
via TGF-β1, VEGFA, and PDGF-BB, while the deubiquitinase
USP9X stabilizes NRP1. Thus, USP9X-mediated deubiquitination
amplifies HSC activation, making the USP9X–NRP1 axis a
promising therapeutic target (Zhao et al., 2023b).

Ubiquitination also intersects with hepatocyte injury and apoptosis.
The transcription factor NRF2, a key antioxidant regulator, is degraded
via ubiquitination by the CUL3–KEAP1 E3 ligase complex, a process
dependent on neddylation (Zhang et al., 2004). Impaired neddylation
disrupts NRF2 stability, induces mitochondrial dysfunction, and
exacerbates oxidative stress, thereby promoting hepatocyte death and

fibrosis (Xu et al., 2022). In addition, TRAF6 mediates K6-linked
ubiquitination of apoptosis signal-regulating kinase 1 (ASK1),
facilitating dissociation from thioredoxin and promoting
ASK1 dimerization. This event activates the ASK1–JNK1/
2–p38 cascade, stimulating pro-inflammatory and pro-fibrotic
mediators that drive HSC activation and fibrogenesis (Wang
et al., 2020b).

In summary, ubiquitination exerts multifaceted regulatory
control over liver fibrosis by modulating HSC activation, ECM
metabolism, inflammation, and apoptosis. Elucidating the precise
ubiquitin-dependent mechanisms in fibrogenesis may reveal novel
molecular targets and foster the development of innovative
antifibrotic therapies (Figure 3).

3.5 Protein nitration modification

Protein S-nitrosylation is a covalent NO-dependent
modification that regulates cell signaling by altering
protein–protein interactions, subcellular localization, stability, and
reactivity (Zhao et al., 2021). In parallel, protein nitration—most
commonly tyrosine nitration mediated by peroxynitrite formed
from NO and superoxide—affects transcriptional control, DNA-
damage responses, cell growth, differentiation, and apoptosis;
dysregulation of these NO-linked processes contributes to diverse
diseases (Fernando et al., 2019).

Extensive evidence implicates NO-mediated modifications in
hepatic fibrogenesis. Svegliati-Baroni et al. showed that the
exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP)
suppresses HSC activation and proliferation by scavenging ROS,
thereby limiting the onset of hepatic fibrosis and cirrhosis (Svegliati-
Baroni et al., 2001). Within the space of Disse, liver sinusoidal
endothelial cells (LSECs) release VEGF, which supports HSC
proliferation and angiogenesis; under physiological conditions,
VEGF-stimulated eNOS activity in LSECs generates NO that
helps revert activated HSCs toward quiescence (Deleve et al.,
2008). Consistently, eNOS-derived NO is generally protective,
whereas iNOS-derived NO is linked to pathological nitrosative
stress and disease progression (Iwakiri and Kim, 2015).

Nitrosative stress is elevated in obesity-related NASH and in
models of chronic fructose exposure, as evidenced by increased
CYP2E1, iNOS, and protein nitration, changes that associate with
fibrotic remodeling (Cho et al., 2021). In HepG2 cells replicating
HBV or expressing HBx, mitochondrial superoxide and
peroxynitrite rise, leading to mtDNA damage, nitration of
respiratory-chain complexes—especially complex I—and
bioenergetic impairment; superoxide scavenging (Mito-Tempo)
or iNOS inhibition prevents these lesions, implicating
mitochondrial nitrosative damage in inflammation and
profibrotic signaling (Loureiro et al., 2023). Heat-shock protein
90 (HSP90), highly expressed in hepatocytes, is a nitration target:
in aged wild-type mice, HSP90 nitration accompanies oxidative
DNA damage, increased mitochondrial nitrosative stress, and
alterations in complexes III/IV, culminating in age-dependent
steatosis, apoptosis, and fibrosis (Abdelmegeed et al., 2016).

Given the central role of NO-driven S-nitrosylation and
nitration in liver fibrosis, therapeutic strategies that rebalance
these pathways are promising: enhancing eNOS-derived
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cytoprotective NO, limiting iNOS-driven nitrosative stress, curbing
peroxynitrite formation, and/or strengthening antioxidant defenses
may attenuate fibrogenic progression (Figure 3).

3.6 Methylation modification

Methylation is a major post-translational modification
occurring predominantly on lysine and arginine residues of
histone and non-histone proteins. By shaping chromatin
architecture, gene expression, and intracellular signaling, it exerts
wide-ranging control over cellular phenotypes; its dysregulation is
closely linked hepatic HSCs activation and liver fibrosis (Mattei
et al., 2022; Menezo et al., 2020).

Emerging evidence indicates that the methylation status of
fibrotic regulators serves not only as a biomarker but also as a
functional driver of disease progression (Yang et al., 2020). For
example, PTEN antagonizes PI3K lipid signaling and thereby
restrains PI3K/AKT and ERK pathways implicated in HSC
activation (Kumar et al., 2018). In TGF-β–stimulated HSCs, the
DNA methylation inhibitor 5-Aza sustains PTEN expression,
attenuating HSC activation and alleviating fibrosis (Bian et al.,
2013). In a CCl4 model, osteopontin (Spp1) is markedly
upregulated; hypomethylation of the Spp1 promoter enhances its
transcription, activates PI3K/AKT, promotes profibrogenic
mediators (including TGF-β), and increases type I collagen and
α-SMA, thereby accelerating HSC activation andmatrix remodeling.
Persistent activation of this axis has also been implicated in the
transition from fibrosis to hepatocarcinogenesis (Song et al., 2019).

DNA methyltransferases (DNMTs) further integrate
methylation cues into fibrogenic programs. DNMT1—the
maintenance methyltransferase—is elevated in human cirrhotic
livers, murine fibrosis, and primary mouse HSCs; in human
HSCs, TGF-β1 recruits DNMT1 to chromatin. Genetic
DNMT1 knockdown or pharmacologic disruption of the G9a/
DNMT1 complex with CM272 suppresses TGF-β1–driven
fibrotic responses and mitigates fibrosis (Barcena-Varela et al.,
2021). DNMT3b also contributes by repressing SUN2: during
CCl4-induced fibrosis, CpG hypermethylation coincides with low
SUN2 expression. AAV9-mediated SUN2 overexpression reduces
fibrotic markers in vivo, and SUN2 overexpression in TGF-
β1–activated HSC-T6 cells dampens HSC activation (Chen
et al., 2018).

Beyond DNA, RNA methylation intersects with fibrogenesis.
Coordinated waves of 5-methylcytosine (5 mC, DNA) and N6-
methyladenosine (m6A, RNA) modifications align with distinct
phases of HSC activation (Luo H. et al., 2023). During initiation,
promoter 5 mC hypermethylation at SOCS3 and PPARγ facilitates
STAT3-dependent metabolic reprogramming and lipid loss. During
maintenance, m6A hypermethylation of collagen transcripts
enhances mRNA stability via YTHDF1, driving excessive ECM
production (Feng et al., 2023).

The dynamic—and reversible—nature of methylation makes it
an attractive therapeutic axis. Modulating methyltransferases/
demethylases can reset profibrotic programs: DNA demethylating
agents or histone demethylase inhibitors have been shown to restore
more physiological methylation states at key loci (e.g., TGF-β1),
reduce overexpression of profibrotic genes, and ameliorate fibrosis

in animal models. Collectively, these findings position protein/
DNA/RNA methylation as a convergent regulatory layer in
hepatic fibrogenesis and a promising target space for antifibrotic
drug development (Figure 3).

4 Natural products targeting PTMs in
liver fibrosis

Natural products have long served as a valuable reservoir for
drug discovery and development. Flavonoids, phenolics, terpenoids,
polysaccharides, and alkaloids derived from plants exhibit diverse
pharmacological activities, including anti-inflammatory,
antioxidant, apoptosis-regulating, and antifibrotic effects.
Importantly, many of these compounds exert their therapeutic
benefits by modulating post-translational modifications
(PTMs) (Table 1).

4.1 Flavonoids

Flavonoids are widely distributed plant-derived compounds
with multiple pharmacological properties, such as anti-
inflammatory, antioxidant, anti-apoptotic, and lipid-regulating
effects (Li et al., 2016; Pourcel et al., 2007; Serafini et al., 2010).
They have been shown to ameliorate liver diseases, including
acute liver injury and fatty liver (Blankson et al., 2000; Luo S.
et al., 2023).

Recent studies demonstrate that flavonoids exert antifibrotic effects
primarily through the regulation of PTMs, especially phosphorylation.
For example, total flavonoids from Scabiosa comosa (TF-SC) selectively
inhibit TGF-β1–induced Smad3 phosphorylation by blocking the
TβRI–Smad3 interaction, thereby attenuating CCl4-induced liver
fibrosis and identifying TF-SC as a potential TGF-β1/Smad3 pathway
inhibitor (Ma et al., 2018). Similarly, luteolin promotesHSC apoptosis by
activating caspase-3 and upregulating p53, while downregulating bcl-2,
cyclin E, and p-Cdk2. In vivo, luteolin alleviates fibrotic injury by
suppressing PDGF- and TGF-β1-mediated AKT and Smad
phosphorylation (Li et al., 2015). Naringin inhibits PI3K/AKT
signaling, decreases fibronectin and TGF-β1 expression, and induces
caspase-3–dependent apoptosis tomitigate fibrosis (El-Mihi et al., 2017).
Myricetin suppresses TGF-β1–induced phosphorylation of Smad2,
p38 MAPK, ERK, and AKT, and dose-dependently inhibits PDGF-
BB–induced ERK/AKT activation. In CCl4 models, myricetin reduces α-
SMA expression and collagen deposition, indicating multitarget
regulation of PTMs (Geng et al., 2017). Quercetin attenuates HSC
activation by downregulating p38 MAPK phosphorylation and
modulating the NF-κB/IκBα axis (Wang et al., 2017).

Other flavonoids demonstrate similar PTM-mediated
mechanisms. Limonin blocks TGF-β–induced Smad2/
3 phosphorylation and nuclear translocation, while enhancing
Smad7 expression to suppress epithelial–mesenchymal transition
(EMT) and HSC activation (Shu et al., 2022). Isoliquiritigenin
inhibits STAT3 phosphorylation by targeting ANXA2 and the
SPHK/S1P/IL-17 pathway, reversing HSC activation (Liu et al.,
2023). Catechin-7-O-β-d-apiofuranoside (C7A) represses TGF-
β1–induced STAT3 phosphorylation and downstream ECM gene
expression, reducing fibrosis (Park et al., 2019). In addition, luteolin-
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TABLE 1 Post-translational modifications of key compounds in liver fibrosis treatment.

Natural
products

Metabolite Source Mechanisms Mode of action Model Dosages References

Flavonoids Total flavonoids from Scabiosa comosa Scabiosa comosa Fisch. ex Roem. and
Schult. [Caprifoliaceae]

Phosphorylation ↓ p-Smad3; ↓ Smad3-TβRI interaction In a rat model of hepatic fibrosis
induced by CCl4; Primary mouse
HSCs

50,100, and 200 mg/kg for 7 days; 25,
50 and 100 µg/mL for 1 h

Ma et al. (2018)

Luteolin Limnophila aromatica (Lam.) Merr.
[Plantaginaceae]

Phosphorylation ↓ AKT/mTOR/p70S6K signalling pathways; ↓
TGFβ/Smad signaling pathways

In mice model of hepatic fibrosis
induced by CCl4, DMN or BDL;
HSC-T6 cells treated with TGF-β1

150 mg/kg for 12 weeks in CCl4 model,
150 mg/kg for 2 weeks in DMN and
BDL model; 10, 20 and 40 µg/mL
for 24 h

Li et al. (2015)

Naringin Citrus × aurantium f. aurantium
[Rutaceae]

Phosphorylation ↓ PI3K/Akt signaling pathway In a rat model of hepatic fibrosis
induced by TAA

40 mg/kg for 6 weeks El-Mihi et al.
(2017)

Myricetin Myrica rubra (Lour.) Siebold and Zucc.
[Myricaceae]

Phosphorylation ↓ p-Smad2, ↓ p-AKT, ↓ p-ERK and ↓ p-P38
MAPK

In a mice model of hepatic fibrosis
induced by CCl4; CFSC-8B Cells
treated with TGF-β1 or PDGF-BB

50 mg/kg for 2 weeks; 12, 25 and 50 µg/
mL for 2 h

Geng et al. (2017)

Quercetin Houttuynia cordata Thunb.
[Saururaceae]

Phosphorylation ↓ NF-κB and p38 MAPK signaling pathways; ↓
Bcl-2/Bax anti-apoptosis signaling pathway

In a rat model of hepatic fibrosis
induced by CCl4

5 and 15 mg/kg for 8 weeks Wang et al. (2017)

Limonin Citrus × aurantium f. aurantium
[Rutaceae]

Phosphorylation ↑ p-Smad7; ↓ p-Smad2/3 In a rat model of hepatic fibrosis
induced by CCl4; AML-12 cell and
LX-2 HSCs cell treated with TGF-β

5 and 15 μM for 24 h; 10 and 20 mg/kg
for 4 weeks

Shu et al. (2022)

Isoliquiritigenin Glycyrrhiza uralensis Fisch. ex DC.
[Fabaceae]

Phosphorylation ↓ p-STAT3; ↓ ANXA2 and SPHKs/S1P/IL-
17 signals pathway

In a mice model of alcoholic liver
fibrosis induced by alcohol feeding
combined with 5% CCl4; HSC-T6
cells treated with alcohol

10 and 20 mg/kg for 10 days; 4, 8 and
16 μmol/L for 24 h

Liu et al. (2023)

(−)-Catechin-7-O-β-d-apiofuranoside Ulmus davidiana var. japonica (Rehder)
Nakai [Ulmaceae]

Phosphorylation ↓ p-STAT3 In a rat model of hepatic fibrosis
induced by TAA LX-2 cells treated
with TGF-β1

40 mg/kg for 3 weeks; 2.5, 5, 10 and
20 μg/mL for 48 h

Park et al. (2019)

Luteolin-7-diglucuronide Perilla frutescens (L.) Britton
[Lamiaceae]

phosphorylation ↑ p-AMPK In a mice model of hepatic fibrosis
induced by CCl4 alone or in
combination with HFHC diet;
Primary HSCs cells and LX-2 cells
treated with TGF-β1

40 and 150 mg/kg for 4 or 8 weeks; 5, 20,
50 µM for 24 h

Tang et al. (2024)

Ampelopsin Nekemias grossedentata (Hand.-Mazz.)
J.Wen and Z.L.Nie [Vitaceae]

Phosphorylation ↓ SIRT1/TGF-β1/Smad3 signaling pathway; ↓
AKT/mTOR signaling pathway

In a mice model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells treated with TGF-β1

125 and 250 mg/kg for 10 weeks; 25,
50 and 100 μM for 24 h

Ma et al. (2019)

Physalin B Physalis L.[Solanaceae] Acetylation ↓ GLI1 deacetylation In a mice model of hepatic fibrosis
induced by CCl4 and BDL; Primary
HSCs cells and LX-2 cells treated
with TGF-β1

1, 2.5 and 5 mg/kg for 4 weeks; 0.25,
0.5 and 1 μM for 24 h

Zhu X. et al. (2021)

Phenolic
Compounds

Capsaicin Capsicum cardenasii Heiser and P.G.Sm.
and Capsicum L. [Solanaceae]

Phosphorylation ↑ PPAR-γ; ↓ TGF-β1/Smad Pathway In a rat model of hepatic fibrosis
induced by DMN; HSC-T6 cells
treated with TGF-β1

0.5 and 1.0 mg/kg for 4 weeks; 0.1, 1 and
10 μM for 24 h

Choi et al. (2017)

Ferulic acid Angelica sinensis (Oliv.) Diels [Apiaceae] Phosphorylation ↓ p-Smad2; ↓ p-Smad3 In a rat model of hepatic fibrosis
induced by CCl4; LX-2 cells treated
with TGF-β1

10 mg/kg/day for 8 weeks; 50 μM
for 24 h

Mu et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Post-translational modifications of key compounds in liver fibrosis treatment.

Natural
products

Metabolite Source Mechanisms Mode of action Model Dosages References

Honokiol Magnolia officinalis Rehder and
E.H.Wilson [Magnoliaceae]

Phosphorylation ↑ E-cadherin/GSK3β/JNK signaling pathway; ↓
AKT/ERK/p38/β-catenin/TMPRSS4 signaling
pathway

In a mice model of hepatic fibrosis
induced by CCl4; AML-2 cells
treated with TGF-β1

1 mg/kg for 6 weeks; 12, 24, 36, and
48 μM for 24 h

Seo et al. (2023)

Epigallocatechin (ECG), Epicatechin-
3-O-gallate (EGC) and
Epigallocatechin-3-O-gallate (EGCG)

Camellia sinensis (L.) Kuntze [Theaceae] Phosphorylation ↓ p-ERK; ↓ p-Smad1/2 In a rat model of hepatic fibrosis
induced by CCl4

ECG (100 and 300 mg/kg), EGC
(100 and 300 mg/kg),EGCG
(300 mg/kg)

Wang et al. (2019)

Astragalus and Salvia miltiorrhiza
extract

Astragalus L. [Fabaceae] and Salvia
miltiorrhiza Bunge [Lamiaceae]

Phosphorylation ↓ p-ERK, p-JNK p-P38; ↓ p-Smad2C/L,
p-Smad3L, Smad4, Imp7/8

In a rat model of hepatic fibrosis
induced by DEN; Primary HSCs
cells treated with TGF-β1 and
HepG2 cells

60,120 and 240 mg/kg for 12 or
16 weeks; 20, 40 and 80 mg/mL

Boye et al. (2015)

Danshensu Salvia miltiorrhiza Bunge [Lamiaceae] Phosphorylation ↓ p-STAT3; ↓ JAK2-STAT3 signaling pathway In a rat model of hepatic fibrosis
induced by CCl4; HSC-T6 cells
treated with TGF-β1

10, 30 and 60 mg/kg for 6 weeks; 1, 2,
and 3 μM for 12, 24 and 48 h

Cao et al. (2019)

Salvianolic acid B Salvia miltiorrhiza Bunge [Lamiaceae] Phosphorylation ↓ p-Smad2/3L, ↓ p-Smad2C, ↑ p-Smad3C; ↓
MAPK

In a mice model of hepatic fibrosis
induced by DEN; HSC-T6 cells and
LX-2 cells treated with TGF-β1

15 and 30 mg/kg for 12 weeks; 20,
50 and 100 μM for 24 h

Wu et al. (2019)

Methylation ↓ DNMT1, ↑ PTCH1 In a mice model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells treated with TGF-β1

100 mg/kg for 8 weeks; 100 μM for 48 h Yu et al. (2015)

Oroxylin A Scutellaria baicalensis Georgi
[Lamiaceae]

Methylation ↑ cGAS and STING, ↓ cGAS gene methylation;
↓ DNMT3A

In a mice model of hepatic fibrosis
induced by CCl4; HSC-T6 cells and
LX-2 cells treated with TGF-β1

40 mg/kg for 8 weeks; 20, 30 and 40 μM
for 24 h

Zhao et al. (2023)

Terpenoids Total astragalus saponins (AST);
Glycyrrhizic acid (GA)

Astragalus mongholicus Bunge
[Fabaceae]; Glycyrrhiza uralensis Fisch.
ex DC. [Fabaceae]

Phosphorylation ↓ p-Smad2/3 and TGF-β1 pathway In a rat model of hepatic fibrosis
induced by DEN and Bile duct
ligation; JS-1 cells and AML-12
cells

AST (164 mg/kg)+GA (48 mg/kg), AST
(164 mg/kg), GA (48 mg/kg) for 2 or
3 weeks; AST (10、20 and 40 μg/mL),
GA (25、50 and 100 μM), AST: 20 μg/
mL + GA: 50 μM

Zhou et al. (2016)

Corosolic acid Crataegus pinnatifida var. pinnatifida
[Rosaceae]

Phosphorylation ↓ TGF-β1/Smad2, NF-κB, and AMPK signaling
pathways

In a mice model of hepatic fibrosis
induced by HFD diet and CCl4;
LX-2 cells treated TGF-β1 and
HepG2 cells

10, 20 and 30 mg/kg for 9 weeks; 5,
10 and 20 μM for 24 h

Liu et al. (2021)

Cryptotanshinone Salvia miltiorrhiza Bunge [Lamiaceae] Phosphorylation ↓ p-STAT3; ↓ CTP1A fatty acid metabolism In a mice model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells and LX-2 cells treated TGF-β

40 mg/kg for 5 weeks; 1, 5 and 10 μM
for 48 h

Li et al. (2024)

Asiatic acid Centella asiatica (L.) Urb. [Apiaceae] Phosphorylation ↓ NF-κB/IκBα and JAK1/STAT3 signaling
pathway

In a rat model of hepatic fibrosis
induced by CCl4

5 and 15 mg/kg for 6 weeks Fan et al. (2018)

Demethylzeylasteral Tripterygium wilfordii Hook.f.
[Celastraceae]

Phosphorylation ↓ AGAP2, ↓ p-FAK, ↓ p-AKT In a rat model of hepatic fibrosis
induced by CCl4; Primary HSCs,
LX-2 and HSC-T6 cells treated
with TGF-β1

20 mg/kg for 4 weeks; 0.5, 1 and 2 μM
for 24 h

Chen et al. (2022)

Triptolide Phosphorylation ↑ p-AMPK, ↑ p-ACC1 lipid metabolism 50 μg/kg and 100 μg/kg for 10 weeks Huang et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Post-translational modifications of key compounds in liver fibrosis treatment.

Natural
products

Metabolite Source Mechanisms Mode of action Model Dosages References

Tripterygium wilfordii Hook.f.
[Celastraceae]

In a mice were fed a methionine/
choline-supplied (MCS) or MCD
diet

Celastrol Tripterygium wilfordii Hook.f.
[Celastraceae]

Phosphorylation ↑ p-AMPK, ↑ p-SIRT3 In a rat model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells treated with PDGR-BB

0.25, 0.5 and 1 mg/kg for 8 weeks; 10,
20 and 40 μM for 24 h

Wang et al.
(2020a)

Saponin extract of P. japonicus
rhizomes

Panax japonicus (T.Nees) C.A.Mey.
[Araliaceae]

Phosphorylation ↑ p-Akt, ↑ p-GSK3β; ↑Akt/GSK3β/Nrf2 cascade In a mice model of hepatic fibrosis
induced by CCl4; AML-12 cells
treated with TGF-β

50 and 100 mg/kg for 4 weeks; 30 and
100 μg/mL for 24 h

Dai et al. (2021)

Carnosol Salvia rosmarinus Spenn. [Lamiaceae] Acetylation ↑ SIRT1; ↓ EZH2 acetylation In a rat model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells and LX-2 cells treated with
TGF-β1

25 and 30 mg/kg for 4 weeks; 10 μM
for 24 h

Zhao et al. (2018)

Sclareol Salvia sclarea L. [Lamiaceae] Ubiquitylation ↓ SENP1, ↑ VEGFR2 SUMOylation, ↓
VEGFR2–STAT3 interaction, ↓ p-STAT3

In a rat model of hepatic fibrosis
induced by CCl4 and Bile duct
ligation; LX-2 cells treated TGF-β1

300 mg/kg for 4 weeks; 10 and 20 μM
for 24 h

Ge et al. (2023)

Ginsenoside Rg1 Panax ginseng C.A.Mey. [Araliaceae] Methylation ↓ DNMT1-mediated Smad7 methylation In a mice model of hepatic fibrosis
induced by CCl4; Primary HSCs
treated TGF-β

40 mg/kg for 8 weeks, 50 μM for 24 h Zhang et al. (2023)

Ginsenoside Rg3 Panax ginseng C.A.Mey. [Araliaceae] Methylation ↑ ACSL4, ↓ DNMT3B-mediated
ACSL4 methylation

In a mice model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells treated with TGF-β1

10 and 20 mg/kg for 8 weeks; 20 and
40 μM for 24 h

Hu Y. et al. (2024)

Alkaloids Matrine (MT) Thio derivative of MT
(MD-1)

Sophora flavescens Aiton [Fabaceae] Phosphorylation ↓ p-EGFR and p-AKT In a rat model of hepatic fibrosis
induced by DMN; HSC-T6 cells
treated with TGF-β1

MT and MD-1 (62 μmol/L/kg) for
4 weeks; MD-1 (62 µmol/L), MT
(128 µmol/L) for 24 h

Feng et al. (2016)

Berberine Coptis chinensis Franch.
[Ranunculaceae]is

Phosphorylation ↑ p-AMPK, ↓ p-Akt, ↓ Nox4, ↓ TGF-β1 In a mice model of hepatic fibrosis
induced by CCl4; CFSC-2G cells

25 and 50 mg/kg for 4 weeks; 12.5 μM
for 24 h

Li et al. (2014)

Neferine Nelumbo nucifera Gaertn.
[Nelumbonaceae]

Phosphorylation ↑ p-AMPK and p-ACC; ↑ p-Smad2/3, TGF-β In a mice model of hepatic fibrosis
induced by HFD diet and CCl4;
LX-2 cells treated with TGF-β and
HepG2 cells

5 and 10 mg/kg for 4 weeks; 12.5 and
25 μM for 24 h

Wang M. Y. et al.
(2023)

Piperine Piper nigrum L. [Piperaceae] Phosphorylation ↑ Nrf2, ↓ p-Smad2/3, ↑ Smad7 In a mice model of hepatic fibrosis
induced by CCl4; AML-12 cells and
LX-2 cells treated with TGF-β

20 and 40 mg/kg for 4 weeks; 20 and
40 μM for 48 h

Shu G. et al. (2021)

Other Natural
Drugs

Ganoderma lucidum polysaccharide Rhinacanthus nasutus (L.) Kurz
[Acanthaceae]

Phosphorylation ↓ TGF-β, p-Smad2 and p-Smad3 In a mice model of hepatic fibrosis
induced by CCl4; HSC-T6 cells
treated with TGF-β1

150 and 300 mg/kg for 6 weeks; 1.25,
2.5 and 5 mg/mL for 24 h

Chen C. et al.
(2023)

S. glauca extract (SGE) Suaeda glauca (Bunge) Bunge
[Amaranthaceae]

Phosphorylation ↓ p-Smad2/3 and Smad2/3 nuclear
translocation

In a mice model of hepatic fibrosis
induced by CCl4; Primary HSCs
cells and LX-2 cells treated TGF-β

30 and 100 mg/kg for 6 weeks; 100 and
300 μg/mL for 30 min, 72 h or 5 days

Hong et al. (2023)

Amygdalin Prunus armeniaca L. [Rosaceae]] Phosphorylation ↓ p-Smad2 and p-Smad3; ↓ p-p65 (NF-κB) 3 mg/kg for 8 weeks; 1.25, 2.5 and 5 mg/
mL for 48 h

Wang et al. (2021)
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7-diglucuronide (L7DG) has been identified as an inhibitor of
protein tyrosine phosphatase 1B (PTP1B), which promotes
AMPK phosphorylation and suppresses cell activation in TGF-
β1–stimulated HSCs (Tang et al., 2024).

Beyond phosphorylation, other PTMs also play important roles in
the anti-fibroticmechanisms offlavonoids. Ampelopsin (Amp) has been
shown to exert regulatory effects largely through deacetylation.
Specifically, Amp downregulates collagen I, α-SMA, TIMP1, TGF-β1,
and p-Smad3 expression, while promoting the upregulation of
MMP9 and SIRT1, thereby inhibiting the sustained activation of
HSCs. Importantly, SIRT1 activation is central to this process, as its
inhibition reverses the protective effects of Amp. Moreover, Amp
induces autophagy by upregulating LC3-II and Beclin-1, whereas the
autophagy inhibitor 3-MApartially abrogates its anti-fibrotic effects (Ma
et al., 2019). Physalin B enhances the acetylation of the transcription
factor GLI1, preventing its interaction with the LAP2α/
HDAC1 complex, leading to its inactivation, downregulation of α-
SMA and COL1A1 expression, and ultimately exerting anti-fibrotic
activity (Zhu X. et al., 2021).

In summary, flavonoids and related bioactive compounds exert
anti-fibrotic effects not only through classical signaling pathways such
as TGF-β/Smad, PI3K/AKT, MAPK, STAT3, and NF-κB, but more
importantly through the regulation of diverse PTMs. Phosphorylation is
central to blocking the Smad, AKT, andMAPK axes; deacetylation and
acetylation regulate HSC fate via SIRT1 activation and
GLI1 inactivation, respectively; and autophagy induction contributes
to the suppression of fibrosis progression. These findings highlight
PTMs as critical therapeutic targets of natural compounds,
underscoring their multi-target and multi-pathway advantages and
providing a solid theoretical foundation for the development of
novel PTM-oriented anti-fibrotic drugs.

4.2 Phenolic compounds

Phenolic compounds are naturally occurring substances abundant
in fruits, vegetables, grains, legumes, chocolate, and beverages such as tea
and wine (Spencer et al., 2008). They display diverse pharmacological
properties, including anti-inflammatory, antioxidant, anti-proliferative,
lipid-regulating, and anti-aging activities (Toma et al., 2020; Urso and
Clarkson, 2003; Van Hung, 2016). Clinically, phenolics have been
applied in the management of hypertension, metabolic disorders,
infections, and neurodegenerative diseases (Lin et al., 2016; Rahman
et al., 2021). Increasing evidence supports their therapeutic role in HF
through the regulation of PTMs and epigenetic processes.

Capsaicin (CPS) has been shown to upregulate
Smad7 expression through the activation of PPAR-γ, thereby
suppressing DMN-induced TGF-β1 production. In HSCs, CPS
effectively reduced TGF-β1–mediated α-SMA and collagen I
expression via this pathway, suggesting that it ameliorates
fibrosis by negatively regulating the TGF-β1/Smad signaling
axis through the PPAR-γ/Smad7 pathway (Choi et al., 2017).
Similarly, ferulic acid (FA) markedly inhibits the
phosphorylation of Smad2/3 and the downstream signal
transduction of Smad4, thereby attenuating TGF-β1–induced
HSC activation and contributing to the reversal of fibrosis
progression (Mu et al., 2018). Honokiol exhibits broader
multi-pathway regulatory effects. In HSCs, honokiol reducesT
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the expression of α-SMA, TGF-β1, p-Smad3, p-AKT, Cyclin D1,
c-Myc, and Wnt3a/β-catenin, while inhibiting the
phosphorylation of GSK3β, which leads to GSK3β activation,
blockade of Wnt3a/β-catenin signaling, and apoptosis induction
(Lee et al., 2021). Further studies revealed that honokiol also
suppresses non-canonical TGF-β1 pathways (AKT, ERK, and
p38) while promoting GSK3β/JNK phosphorylation, which
enhances E-cadherin expression and inhibits EMT
progression. In vivo, honokiol has been shown to attenuate
CCl4-induced hepatic fibrosis and necrosis (Seo et al., 2023).

Tea polyphenols also confer hepatoprotection. Green tea
catechins [epigallocatechin (EGC), epicatechin-3-O-gallate (ECG),
and epigallocatechin-3-O-gallate (EGCG)] significantly reduce
desmin, α-SMA, and TGF-β expression, while inhibiting the
phosphorylation of ERK1/2 and Smad1/2, thereby ameliorating
fibrosis (Wang et al., 2019). Sugarcane polyphenol extract (SPE)
has also been shown to inhibit the phosphorylation of p38 and
JNK1/2 and downregulate α-SMA expression in TGF-β1–induced
HSCs (Wang L. et al., 2018). In addition, the compound extract of
Astragalus and Salvia miltiorrhiza (CASE) suppresses linker-region
phosphorylation of Smad2/3 and the nuclear import of Smad4 and
Imp7/8, thereby reducing the transcriptional activity of PAI-1, a key
target gene of TGF-β signaling. This effect is accompanied by
inhibition of the MAPK pathway (pERK, pJNK), ultimately
suppressing the fibrotic response of HSCs (Boye et al., 2015).

Among active compounds from S. miltiorrhiza, Danshensu
(DSS) is identified as an inhibitor of indoleamine 2,3-
dioxygenase 1 (IDO1). DSS downregulates JAK2/
STAT3 signaling by reducing JAK2/STAT3 phosphorylation
and STAT3 nuclear localization, thereby inhibiting ECM
deposition and liver injury. Overexpression of IDO1 reverses
these effects, confirming its role in fibrosis (Cao et al., 2019).
Salvianolic acid B (Sal B) suppresses fibrosis via the MAPK/Smad
axis and Hedgehog pathway, significantly reducing p-ERK1/2,
p-JNK1/2, p-p38, p-Smad2/3, and PAI-1 levels (Wu et al., 2019).
In addition, Sal B attenuates HSC activation by regulating miR-
152/DNMT1-mediated DNA methylation, thereby suppressing
the hypermethylation of PTCH1 and restoring its expression (Yu
et al., 2015). Oroxylin A further demonstrates epigenetic action
by inhibiting DNMT3A-mediated methylation of the cGAS
promoter. This activates the cGAS–STING pathway and
induces cellular senescence, while DNMT3A overexpression
reverses these effects (Zhao et al., 2023).

In summary, phenolic compounds—including alkaloids,
phenolic acids, polyphenols, and herbal extracts—exert potent
antifibrotic effects by targeting both canonical and noncanonical
pathways (TGF-β/Smad, MAPK, PI3K/AKT, Wnt/β-catenin, and
JAK/STAT), as well as by modulating DNA methylation and other
epigenetic processes. Their ability to act at multiple levels of
regulation underscores PTMs and epigenetic remodeling as
promising therapeutic intervention points, providing a strong
foundation for the development of novel antifibrotic strategies.

4.3 Terpenoids

Terpenoids are a large and structurally diverse class of bioactive
natural compounds found in plants, animals, marine organisms, and

microorganisms. They exhibit a wide spectrum of pharmacological
properties, including antitumor cytotoxicity, neuroprotection, anti-
inflammatory activity, regulation of lipid metabolism, as well as
hepatoprotective and hypoglycemic effects (Cassiano et al., 2014; El
Omari et al., 2021; Hua et al., 2022; Yao and Liu, 2022).

Co-administration of total astragalosides (AST) and glycyrrhizic
acid (GA) markedly inhibits HSC activation, lowers α-SMA and
COL1A1 expression, and suppresses transcription and
phosphorylation of TGF-β1 and Smad2/3, thereby reversing
dimethylnitrosamine (DMN)– or bile duct ligation (BDL)–induced
hepatic fibrosis (Zhou et al., 2016). Similarly, corosolic acid (CA)
mitigates fibrosis by blocking TGF-β1/Smad2 phosphorylation and
concomitantly regulating the AMPK and NF-κB pathways, which
decreases ECM deposition and inflammation (Liu et al., 2021).
Ginsenoside Rg1 restores Smad7 expression through promoter
demethylation, blocking TGF-β/Smad signaling and suppressing
epithelial–mesenchymal transition (EMT); consistent with this
mechanism, the DNMT inhibitor 5-Aza also enhances
Smad7 demethylation and expression (Zhang et al., 2023).

Several terpenoids act through STAT3 modulation.
Cryptotanshinone (CTS), a derivative of tanshinone IIA, inhibits
STAT3 nuclear translocation, reduces CPT1A-dependent fatty acid
oxidation, and promotes an adipocyte-like phenotype in HSCs,
collectively producing antifibrotic effects. In CCl4-induced fibrosis,
p-STAT3 co-localizes with the HSC activation marker α-SMA; CTS
reduces p-STAT3 and favors HSC adipogenic reprogramming, thereby
attenuating fibrosis (Li et al., 2024). Similarly, Asiatic acid (AA) further
suppresses JAK1/STAT3 phosphorylation, preventing persistent
pathway activation and ameliorating fibrosis (Fan et al., 2018).
Sclareol (SCL) suppresses SENP1 expression, augments
VEGFR2 SUMOylation, and disrupts the
VEGFR2–STAT3 interaction, thereby inhibiting downstream
STAT3 phosphorylation and providing new evidence that
SUMOylation contributes to antifibrotic effects (Ge et al., 2023).

Other terpenoids target cytoskeletal and metabolic signaling.
Demethylzeylasteral (T-96), from Tripterygium wilfordii, selectively
inhibits FAK and AKT phosphorylation and disrupts the
AGAP2–FAK interaction, suppressing HSC proliferation and
migration (Chen et al., 2022). Triptolide acts as an AMPK
agonist, increases AMPK Thr172 phosphorylation and
phosphorylation of its downstream substrate ACC1, thereby
attenuating fibrosis (Huang et al., 2021). Similarly, celastrol
mitigates hepatic fibrosis by activating the AMPK–SIRT3 axis,
improving mitochondrial homeostasis and anti-inflammatory
defenses (Wang et al., 2020a). Likewise, the ginsenoside
metabolite 20(S)-protopanaxadiol (20S-PPD) activates LKB1-
dependent AMPK Thr172 phosphorylation, downregulates the
mTOR/S6K pathway, and promotes HSC apptosis (Park
et al., 2017).

Other mechanisms have also been reported. The saponin extract of
Panax japonicus rhizomes (SEPJ) augments phosphorylation of AKT
and GSK-3β to activate NRF2 signaling, upregulates NRF2 and its
downstream antioxidant genes, thereby inhibiting EMT and HSC
activation, and demonstrates antifibrotic efficacy in vitro and in vivo
(Dai et al., 2021). Carnosol (CS) activates SIRT1 to reduce
EZH2 acetylation and stability, limiting myofibroblast differentiation
and ECM accumulation (Zhao et al., 2018). Ginsenoside Rg3 augments
ferroptosis through ACSL4 demethylation to restrain HSC activation;
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this effect is mediated via the miR-6945-3p/DNMT3B axis, unveiling a
ferroptosis-based mechanism underlying Rg3’s antifibrotic activity (Hu
Y. et al., 2024).

4.4 Alkaloids

Alkaloids are nitrogen-containing basic compounds with broad
pharmacological activity. More than 18,000 alkaloids have been
identified across >300 plant families as well as from microorganisms,
marine invertebrates, insects, and other sources (Elissawy et al., 2021;
Nair and van Staden, 2019). Research has demonstrated that various
alkaloids possess pharmacological effects such as antihypertensive, anti-
inflammatory, anticancer, and anti-fibrotic properties (Bhambhani et al.,
2021; Feng et al., 2016; Halim et al., 2019).

Mechanistically, representative alkaloids modulate key PTM-
linked signaling nodes to restrain HSC activation and ECM
accumulation. The matrine derivative MD-1 engages EGFR on
HSC-T6 cells to suppress EGFR/AKT phosphorylation,
downregulate cyclin D1, and block persistent HSC activation;
in DMN–induced rat fibrosis, MD-1 attenuates disease
progression, improves liver function, and preserves hepatocyte
integrity (Feng et al., 2016). Berberine (BBR) exerts antifibrotic
activity predominantly via AMPK activation with concomitant
repression of NOX4/AKT expression, thereby reducing oxidative
stress and ECM deposition (Li et al., 2014). Neferine (NEF)
protects against NASH-associated fibrosis by inhibiting TGF-
β/Smad2/3 signaling, preventing HSC activation and
downregulating profibrotic genes (Wang M. Y. et al., 2023). In
AML-12 hepatocytes and LX-2 HSCs, piperine (PIP) drives
NRF2 nuclear translocation and antioxidant gene transcription
to limit TGF-β1–elicited ROS; concurrently it increases
SMAD7 while restraining SMAD2/3 phosphorylation/nuclear
entry, an effect blunted by NRF2 knockdown, implicating
NRF2 as a key mediator (Shu G. et al., 2021).

Collectively, these alkaloids converge on receptor signaling
(EGFR), metabolic/oxidative pathways (AMPK/NOX4), and
canonical profibrotic axes (TGF-β/Smad) with NRF2 crosstalk,
highlighting PTM-centered mechanisms as tractable targets for
antifibrotic intervention.

4.5 Other natural drugs

Accumulating evidence indicates that natural products of varied
origin mitigate hepatic fibrosis by tuning PTMs across key signaling
nodes. Ganoderma lucidum polysaccharide (GLP) lowers hepatic
TGF-β and SMAD2/3 phosphorylation in CCl4-injured mice while
restoring SMAD7, thereby preventing activation of HSC-T6 cells
(Chen C. et al., 2023). Likewise, Suaeda glauca extract (SGE)
suppresses TGF-β1–evoked SMAD2/3 phosphorylation and
nuclear translocation and reduces SBE-dependent transcriptional
activity—without affecting JNK or ERK—implicating selective
blockade of the TGF-β/SMAD axis (Hong et al., 2023).
Moreover, amygdalin diminishes TGF-β/SMAD2/
3 phosphorylation and downregulates profibrotic gene expression,
thereby curbing HSC activation and ECM deposition and mitigating
CCl4-induced hepatic injury (Wang et al., 2021).

Several agents act through coordinated pathway inhibition. In
HSCs, emodin reduces TGF-β1, TβRI/TβRII, and
SMAD4 expression and markedly suppresses SMAD-responsive
luciferase activity and p38 MAPK activation. Notably, single
inhibition of SMAD4 or p38 only partially attenuates emodin’s
effect, whereas combined inhibition abolishes it, indicating that
emodin represses collagen gene transcription via cooperative
blockade of SMAD and p38 MAPK signaling (Wang X. et al.,
2018). Chrysophanol 8-O-glucoside (C8G) selectively inhibits
p38 phosphorylation and blocks STAT3 activation/nuclear
import, reducing MMP2 expression and ECM accumulation
(Park et al., 2020). In NASH, cordycepin augments AMPK
phosphorylation to restrain NF-κB activation and, via ACC
phosphorylation, corrects lipid dysregulation, yielding anti-
inflammatory and antifibrotic benefits; AMPK inhibition
abrogates these effects, underscoring AMPK dependence (Lan
et al., 2021). Plumbagin (PL) lowers IκB phosphorylation in
CCl4-injured rat liver and IL-1β–stimulated HSCs, preventing
NF-κB nuclear entry/transactivation and thus mitigating
inflammation and ECM build-up (Chen et al., 2019). The Kampo
formula Inchin-ko-to (TJ-135) decreases collagen deposition and α-
SMA in fibrotic rats and represses COL1A1, COL3A1, and
fibronectin transcription in HSCs by inhibiting PDGFRβ
phosphorylation and downstream signaling (Imanishi et al., 2004).

Epigenetic targeting is also prominent. Emodin suppresses ERK/
Nur77 signaling, drives Nur77 nuclear translocation and DNMT3b
binding, increases GLS1 promoter methylation, inhibits
glutaminolysis, triggers energetic stress and HSC senescence, and
thereby exerts antifibrotic activity (Chen L. et al., 2023). Sennoside A
(SA) upregulates SOCS1 in a DNMT1-dependent manner and
suppresses macrophage pro-inflammatory cytokines, indirectly
limiting HSC proliferation and ECM deposition; SOCS1 blockade
diminishes efficacy, highlighting a pivotal epigenetic component in
SA’s antifibrotic action (Zhu H. et al., 2021).

These natural products—polysaccharides, halophyte extracts,
anthraquinones, nucleosides, naphthoquinones, and multi-
component formulas—converge on PTM-regulated nodes (e.g.,
SMAD, p38, STAT3, AMPK/ACC, NF-κB, PDGFRβ) and epigenetic
machinery (DNMT1/DNMT3b, promoter methylation) to suppress
HSC activation, inflammation, and ECM deposition. Their multi-target
profiles reinforce PTMs and epigenetic remodeling as tractable
intervention points for antifibrotic drug development.

5 The prospects and challenges of
traditional medicine in the treatment of
liver fibrosis

Natural products have long served as a vital source for drug
discovery because of their broad biological activities. Effective
antifibrotic constituents are generally categorized into flavonoids,
saponins, alkaloids, and other classes (Liu et al., 2022; Liu et al.,
2020; Sharma et al., 2024; Zhao et al., 2023a). Their antifibrotic
mechanisms include inhibition of hepatic inflammation, suppression
of lipid-peroxidation injury, regulation of the synthesis and secretion of
profibrotic factors, modulation of ECM synthesis and degradation, and
inhibition of HSCs activation and proliferation. These effects are tightly
linked to the regulation of PTMs, and this multi-target strategy offers
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distinct advantages for addressing the complexity of liver fibrosis (Li
et al., 2023; Ma et al., 2020).

A growing body of in vivo and in vitro evidence indicates that
natural products can attenuate fibrosis by tuning PTMs
(phosphorylation, acetylation, methylation, SUMOylation). However,
current PTM research is heavily skewed toward phosphorylation,
whereas other PTMs remain sparsely studied. This imbalance
reflects not only biological interest but also methodological
convenience: phosphoproteomic enrichment and mass-spectrometry
workflows are mature and widely accessible, whereas systematic
profiling of lysine acetylation, ubiquitination, or emerging PTMs
such as succinylation or malonylation requires higher cost, more
complex sample preparation, and specialized antibodies or chemical
probes. As a result, kinase/phosphatase axes dominate the mechanistic
landscape, potentially obscuring druggable “writers,” “erasers,” and
“readers” of other PTMs and underestimating crosstalk among PTM
layers. Such bias limits discovery of alternative regulatory nodes in HSC
activation and ECMdynamics andmay hinder translation if therapeutic
development focuses narrowly on kinase pathways.

Clinical translation remains nascent. Small randomized trials in
non-alcoholic fatty liver disease (NAFLD) suggest that certain
flavonoids (e.g., hesperidin) improve liver and metabolic indices
(El-Mihi et al., 2017). Human studies of the green-tea catechin
EGCG report heterogeneous effects on steatosis and inflammation,
and dose-related hepatotoxicity has been documented (Wang et al.,
2019; Yu et al., 2015). Components of Salvia miltiorrhiza (e.g.,
salvianolic acid B, danshensu) and the alkaloid berberine show
partial clinical benefit in metabolic or cardiovascular settings, yet
evidence specific to liver fibrosis remains largely preclinical or
exploratory (Wu et al., 2019; Li et al., 2014). From an evidence-
quality perspective, major limitations persist: small sample sizes,
inadequate randomization or controls, and pronounced
heterogeneity in dosing, administration routes, and experimental
models, all of which compromise reproducibility and cross-study
comparison. Variability in extraction, purity, and chemical
characterization further contributes to divergent findings.
Conflicting effects—such as inconsistent impacts of green-tea
catechins on HSC activation and ECM deposition—raise
concerns about model dependence, selective reporting, and
publication bias (Spencer et al., 2008; Van Hung, 2016). Safety is
equally critical: EGCG-associated hepatotoxicity underscores the
need for integrated toxicology and drug–drug interaction
assessments alongside clinical evaluation (Wang et al., 2019).

Pharmacokinetic and formulation barriers compound these
challenges. Many flavonoids, phenolics, and saponins display
poor oral bioavailability, rapid metabolism, and variable systemic
exposure, making it difficult to achieve therapeutic concentrations in
vivo (Zhang et al., 2023; Zhao et al., 2018). Nanodelivery systems,
liposomal encapsulation, and prodrug strategies have improved
exposure and efficacy in animal models, but scale-up
manufacturing and long-term safety remain to be validated (Hu
Y. et al., 2024).

5.1 Future directions

To overcome these limitations and correct the PTM imbalance,
priority areas include: i. expanding research from single-PTM

(phosphorylation) analysis to multi-PTM network interrogation using
integrated phosphoproteomics, acetylomics, ubiquitinomics, and
emerging succinyl/malonyl modifications; ii. systematically evaluating
PTM “writers,” “erasers,” and “readers” (e.g., deacetylases, ubiquitin
ligases, SUMO E3 ligases, methyltransferases) as potential therapeutic
targets; iii. validating candidate PTM changes not only in animal and cell
models but also in human liver tissues and circulating biomarkers; iv.
advancing compoundswith defined pharmacokinetics, acceptable safety,
and concordant in vitro/in vivomechanisms into standardized Phase I/II
trials (dose finding, PK/PD, interaction studies), followed bymulticenter
randomized trials with long-term antifibrotic endpoints; and v.
implementing rigorous standards for extraction, chemical
characterization, and reporting of PTM data to reduce selective
reporting and publication bias. Only by broadening the PTM
perspective beyond phosphorylation, integrating high-throughput
epigenomics and systems biology, and coupling mechanistic insight
with early pharmacokinetic/toxicological evaluation can natural-product
discoveries be efficiently translated into clinically useful antifibrotic
therapeutics.
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