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Cancer remains one of the leading causes of death worldwide. The severe
adverse reactions and toxic side effects associated with conventional
treatments such as surgery, radiotherapy, and chemotherapy pose significant
challenges for researchers and clinical practitioners. These limitations have driven
the pursuit of more advanced and effective therapeutic approaches. In recent
years, natural products have attracted considerable attention in the field of
disease treatment and have become an important source for new drug
development. Matrine, a major active component of the traditional medicinal
plant Sophora flavescens, exhibits a broad range of pharmacological activities,
particularly notable antitumor effects. Its antitumor mechanisms include the
induction of apoptosis, autophagy, and ferroptosis in tumor cells, as well as
the inhibition of tumor cell proliferation, migration, and invasion. With the
continuous advancement of therapeutic technologies and the emergence of
novel drug delivery strategies, the integration of natural products into cancer
therapy has gained renewed significance in the context of innovative delivery
systems. Based on this, the present review comprehensively discusses and
analyzes the antitumor mechanisms of matrine and its application in nano-
delivery systems, highlighting their progress and potential in major disease
intervention strategies. This provides new insights for the development and
application of advanced drug delivery strategies and technologies in both
basic and clinical pharmaceutical research.
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1 Introduction

Malignant tumors are among the most serious diseases threatening human life and
health, with incidence rates steadily rising each year, though their underlying mechanisms
remain incompletely understood. According to GLOBOCAN data, by 2040, the global
number of new cancer cases is projected to reach 28.4 million, posing a substantial threat to
public health (Sung et al., 2021). At present, the main clinical treatment modalities include
surgery, chemotherapy, radiotherapy, and molecular targeted therapy. However, their
effectiveness is often limited by unsatisfactory therapeutic outcomes and severe adverse
effects (Pei et al., 2022; Kessler et al., 2014). In the face of the global challenge of cancer
prevention and control, the development of safe and effective antitumor agents has become
a major focus for researchers worldwide. In recent years, natural products have
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demonstrated significant advantages in the comprehensive
treatment of cancer, particularly in improving patients’ quality of
life, prolonging survival, and reducing the toxic side effects
associated with chemotherapy (Yu et al,, 2024; Li H. et al.,, 2024;
Lee et al., 2018). They have now emerged as an important strategy in
the prevention and treatment of cancer.

Matrine, a major active component of the traditional Chinese

medicinal herb Sophora flavescens Ait., belongs to the class of

alkaloid compounds (Gao et al, 2024). Studies have
demonstrated that matrine possesses a wide range of
pharmacological activities, including antitumor, anti-
inflammatory, antifibrotic, antidiabetic, antiarrhythmic,

antiplatelet, and anti-atherosclerotic effects (Zhang et al., 2020;
Zhou et al, 2019; Chen et al, 2022; Huan et al, 2023). Its
antitumor mechanisms involve inducing apoptosis and autophagy
in tumor cells, inhibiting tumor cell proliferation, invasion, and
migration, as well as triggering ferroptosis (Chen et al., 2022).
Matrine is characterized by strong pharmacological activity,
relatively low toxicity, and significant therapeutic efficacy. It has
shown promising therapeutic effects against various acute and
chronic inflammatory conditions, cancers, and arrhythmias (Li
M. et al,, 2024; Halim et al., 2019; Yu et al, 2020; Zhang et al.,
2023). Owing to these properties, matrine has been widely studied
and applied in the development of traditional Chinese medicine
formulations, indicating its broad potential for clinical and
pharmaceutical applications.

Malignant tumors currently pose a major global public health
challenge, and the innovation of therapeutic strategies has long been
a central focus of medical research. However, with the deepening
understanding of major diseases such as cancer, inflammation, and
neurodegenerative disorders, the limitations of conventional drug
delivery methods—such as poor targeting, low bioavailability, and
significant toxicity due to poor solubility—have become increasingly
apparent (Amiryaghoubi et al., 2023; Qu et al., 2021). To address
these issues, nano drug delivery systems (NDDS) have emerged and
become a research hotspot in drug development and precision
therapy in recent years. Compared with traditional drug delivery
methods, targeted NDDS offer several advantages, including
improved targeting, enhanced bioavailability, and reduced toxicity
(Amiryaghoubi et al., 2023; Qiao et al., 2022; Luo Y. et al., 2023). The
rise of NDDS has provided new strategies for the modernization and
development of traditional Chinese medicine monomers such as
matrine. By encapsulating matrine in liposomes, polymeric
nanoparticles, solid lipid nanoparticles (SLNs), nanocrystals,
nanogels, or stimulus-responsive nanoplatforms, its solubility and
stability can be significantly improved, while enabling controlled
release, tumor targeting, and microenvironmental responsiveness.
Some studies have also explored the co-encapsulation of matrine
with other anticancer drugs in multifunctional nanosystems to
achieve combination therapy and synergistic antitumor effects.
These
overcoming drug resistance and reducing side effects. Therefore,

approaches have shown considerable promise in
matrine formulations developed using NDDS platforms represent a
key strategy for promoting the translational development of this
compound from basic research to clinical application.

Therefore, given the broad-spectrum antitumor activity of
matrine demonstrated in various tumor models and the rapid

advancement of nano-delivery systems, this review aims to
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systematically summarize the current research progress on
nanotechnology-based matrine delivery strategies in cancer
therapy. The focus is placed on elucidating the underlying
mechanisms by which matrine induces apoptosis, promotes
autophagy, and inhibits tumor metastasis. In addition, we
highlight the
therapeutic potential of matrine-loaded nanodelivery systems.

tumor-targeting capabilities and  synergistic
This review also evaluates the advantages and challenges of these
systems in clinical translation, providing new insights for the
development and application of novel drug delivery strategies

and technologies in both basic and clinical pharmaceutical research.

2 Origin and properties of matrine

Sophora  flavescens is a well-known traditional Chinese
medicinal herb that contains a variety of bioactive constituents.
Among them, quinolizidine alkaloids are the major phytochemical

group,
sophoridine, which have been extensively investigated for their

including matrine, oxymatrine, sophocarpine, and
pharmacological properties. In addition to alkaloids, S. flavescens
also contains flavonoids, triterpenoids, and polysaccharides, which
contribute to its broad biological activities (Aly et al., 2019). Matrine
is a tetracyclic quinolizidine alkaloid primarily found in plants of the
Sophora genus within the Fabaceae family, with the highest
concentration present in the roots and rhizomes of Sophora
flavescens Ait., a traditional Chinese medicinal herb (Gao
et al.,, 2024).

Specifically, matrine and oxymatrine have been identified as the
primary anticancer alkaloids, exerting effects through induction of
apoptosis, autophagy, ferroptosis, and inhibition of proliferation,
invasion, and angiogenesis. Flavonoids like kurarinone also
demonstrate anticancer potential by modulating PI3K/Akt and
MAPK signaling pathways, while sophoridine has shown efficacy
in suppressing tumor growth and metastasis in preclinical models
(Cao and He, 2020). These phytoconstituents may act synergistically
or via distinct molecular targets, providing a comprehensive
pharmacological basis for the anticancer activity of S. flavescens.
Modern pharmacological studies have further demonstrated its wide
range of biological activities, including anti-inflammatory,
antitumor, and antiviral effects.

Chemically, matrine is classified as a quinolizidine alkaloid with
the molecular formula C;sH,4N,O and a molecular weight of
248.36 Da. Its core structure comprises four fused rings and
features a lactam moiety, which is believed to be closely related
to its diverse biological activities (Sun et al., 2022). Matrine appears
as a white crystalline powder with a bitter taste. It is soluble in water,
ethanol, and chloroform, and exhibits a melting point of 77 °C-78 °C
(Chen S. et al., 2024). Due to its relatively weak basicity, matrine is
commonly formulated as hydrochloride or sulfate salts to enhance
its stability and bioavailability. In addition, matrine demonstrates
favorable thermal and chemical stability under standard storage
conditions. Its ultraviolet (UV) absorption spectrum shows a major
peak within the range of 220-230 nm, which is frequently utilized
for quantitative analysis and quality control.

From the perspective of structure-activity relationship (SAR),
modifications at specific sites of the matrine scaffold markedly
activities. For instance, the

influence its pharmacological
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introduction of lipophilic or electron-withdrawing substituents at
the C-13 or C-14 positions has been shown to enhance its cytotoxic
effects against tumor cells. In addition, altering the degree of
saturation of the parent ring system may modulate its anti-
inflammatory or antiviral activities. These findings indicate that
the diverse pharmacological effects of matrine are closely associated
with its rigid polycyclic framework and specific functional groups,
thereby providing important theoretical insights for structural
optimization and the rational design of matrine-derived drugs
(Cai et al., 2018; Li et al.,, 2023). A comprehensive understanding
of the source and physicochemical characteristics of matrine not
only contributes to elucidating its pharmacological basis but also
provides a theoretical foundation for the design of novel drug
delivery systems, structural modification, and the investigation of
multi-target mechanisms.

3 Antitumor mechanisms of matrine
3.1 Inhibition of tumor cell proliferation

Cell proliferation, as one of the fundamental biological functions
of living cells, is a highly regulated and orderly process (Goodlad,
2017). The uncontrolled proliferation and other malignant
behaviors of tumor cells are major contributors to cancer-related
mortality (Turajlic and Swanton, 2016; Hanahan and Weinberg,
2000). The hematological and neurological expressed 1 (HN1) gene is
upregulated in various types of cancer, and growing evidence
suggests that HN1 contributes to tumor progression in several
malignancies (Javed et al, 2023; Liu et al, 2020). Guo et al.
(2023) that inhibits the
proliferation and promotes apoptosis of triple-negative breast
(TNBC)
According to the

demonstrated in  vitro matrine

cancer cells by downregulating HNI1 expression.
latest data World Health

Organization, colorectal cancer (CRC) ranks third among the

from the

most common malignant tumors worldwide, with incidence and
mortality rates of 9.6% and 9.3%, respectively (Bray et al.,, 2024).
Cheng et al. (2022) treated CRC cells with various concentrations of
matrine and found that matrine significantly inhibited CRC cell
proliferation. The treatment led to downregulation of miR-10b-5p
expression and upregulation of PTEN protein levels, indicating that
matrine may suppress CRC cell proliferation via the miR-10b/PTEN
signaling pathway. This finding provides a potential molecular
mechanism by which matrine may impede the progression of CRC.

The endoplasmic reticulum lipid raft-associated protein 1
(Erlinl), also known as SPFHI, is a membrane protein of the
endoplasmic reticulum and a member of the SPFH domain-
containing protein family (Browman et al, 2007). Studies have
shown that Erlinl expression is dysregulated across various
tumor differentiation stages, indicating its potential as a
diagnostic biomarker for cancer (Xi and Zhang, 2018). Ren et al.
(2022) investigated the role of matrine in the pathogenesis of CRC
and found that matrine induced the upregulation of Erlinl in CRC
cells. Overexpression of Erlinl promoted the progression of CRC
cells, whereas knockdown of Erlinl effectively suppressed CRC
proliferation. These findings suggest that matrine may inhibit
CRC progression by modulating Erlinl expression, identifying
Erlinl as a novel molecular target of matrine. Acute myeloid
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leukemia (AML) is a common malignant hematologic disorder
characterized by the abnormal proliferation and differentiation of
immature myeloid progenitor cells in the bone marrow and
peripheral  blood 2013). In the
United States, more than 20,000 new cases of AML are
diagnosed each year (De Kouchkovsky and Abdul-Hay, 2016).

In recent years, numerous non-coding RNAs (ncRNAs),

(Pelcovits and Niroula,

particularly long non-coding RNAs (IncRNAs) and microRNAs
(miRNAs), have been recognized as key regulators of cellular
physiology and function (Yamamura et al., 2018). Notably, both
IncRNAs and miRNAs are involved in the onset and progression of
various human cancers and regulate gene expression in cancer cells
(Li et al., 2020; Tsagakis et al., 2020). LncRNAs are known to play
critical roles in controlling cell proliferation, apoptosis, and
differentiation (Chen et al, 2016; Guo et al., 2017). Zhang PP.
et al. (2022) found that matrine inhibited cell proliferation and
cytokine
downregulated the expression of LINCO01116 while upregulating

inflammatory levels, induced apoptosis, and
miR-592. In vivo studies showed that matrine suppressed tumor
growth by regulating the LINC01116/miR-592 axis and inactivated
the JAK/STATS3 signaling pathway in AML cells through this axis.
These results indicate that matrine exerts its anti-AML activity by
modulating the LINC01116/miR-592 pathway, thereby leading to
the inactivation of JAK/STATS3 signaling.

Hepatocellular carcinoma (HCC) ranks as the sixth leading
cause of cancer-related death worldwide. Its development results
from multiple factors, including hepatitis virus infections,
consumption of aflatoxin-contaminated food, and liver cirrhosis
(Bray et al, 2024; Li and Lan, 2016). One of the key pathogenic
features of HCC is its malignant proliferation and invasive capacity,
which also represents a major limitation in the clinical efficacy of
current anti-HCC therapies (Hu et al., 2019). The ERK1/2 MAPK
signaling pathway plays a critical role in regulating tumor cell
growth, differentiation, division, and apoptosis, and its abnormal
activation has been shown to promote tumor cell proliferation and
migration (Zhao et al., 2018). Yu et al. (2020) reported that matrine
downregulates the ERK1/2 signaling pathway and inhibits the
proliferation and migration of HCC cells in a concentration-
dependent manner. These findings suggest that the ERKI/
2 pathway may serve as a specific molecular target for matrine in
the treatment of HCC. Osteosarcoma is a common and aggressive
malignant bone tumor with high incidence and rapid progression.
Huang et al. (2024) treated HOS osteosarcoma cells with various
concentrations of matrine for 72 h and assessed cell viability using
the CCK-8 assay. The results showed that matrine significantly
inhibited the viability and proliferation of HOS cells, and this
inhibitory effect was enhanced in a dose-dependent manner.
These findings indicate that matrine possesses potent anti-
proliferative activity against tumor cells and holds great promise
for clinical applications in cancer therapy. Figure 1 shows the
mechanism of matrine in inhibiting tumor cell proliferation.

3.2 Induction of tumor cell apoptosis
Apoptosis, a form of programmed cell death, is a critical

physiological mechanism that limits cell population expansion,
maintains tissue homeostasis, and eliminates potentially harmful
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Mechanism of matrine inhibiting tumor cell Proliferation. Matrine regulates the miR-10b/PTEN and ERK1/2 MAPK pathways to suppress proliferation
in various cancer types including BC and HCC. It also inhibits HN1 expression via Erlinl. In glioma and CRC, matrine modulates the LINC01116/miR-
592 axis and suppresses the JAK/STAT3 signaling pathway. BC, breast cancer; HCC, hepatocellular carcinoma; CRC, colorectal cancer. Arrows indicate

activation, blunt lines indicate inhibition, and red dots represent matrine.

cells (Morana et al., 2022). Thyroid cancer is the most commonly
diagnosed endocrine malignancy, with a steadily increasing
incidence worldwide (Wiltshire et al., 2016). In papillary thyroid
carcinoma (PTC), apoptosis of cancer cells is closely associated with
patient prognosis. Fu et al. (2020) found that matrine induces
apoptosis in PTC cell lines, decreases the expression level of the
anti-apoptotic protein Bcl-2, and activates caspase-3 both in vitro
and in vivo. Furthermore, matrine was shown to inhibit tumor
growth in vivo via mechanisms partially associated with the
downregulation of miR-182-5p. This study elucidated the
antitumor mechanism of matrine in PTC and identified miR-
182-5p as a potential therapeutic target for matrine-based PTC
treatment. TNBC is an aggressive malignancy associated with poor
prognosis (Choupani et al., 2023). Guo et al. (2023) demonstrated
that matrine significantly inhibited the proliferation, colony
formation, and invasion of TNBC cells in vitro, while promoting
apoptosis. Matrine was found to suppress the expression of HN1. In
vivo experiments further confirmed that matrine inhibited tumor
growth and HN1 protein expression, while upregulating cleaved
caspase-3 protein levels. These results suggest that matrine exerts its
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antitumor effects by suppressing HN1 expression, thereby inhibiting
TNBC cell proliferation and promoting apoptosis. Targeting
HN1 with matrine may provide novel therapeutic insights for
TNBC treatment.

Gliomas, which originate from transformed glial cells, are the
most common and lethal primary brain tumors. Characterized by
high incidence and mortality rates, gliomas represent a serious
global public health concern (Dolecek et al., 2012). Recent studies
have identified circular RNAs (circRNAs) as critical regulators
involved in gene expression, protein binding, and tumor
progression (Guarnerio et al., 2016; You et al., 2015). The PI3K/
AKT and Wnt/B-catenin signaling pathways are two fundamental
pathways that regulate cell survival, apoptosis, and proliferation
(Fresno et al., 2004; Zhang et al., 2013). Chi et al. (2019) observed
that matrine induces apoptosis and autophagy in glioma cells by
inhibiting the PI3K/AKT and Wnt/B-catenin signaling pathways.
This effect is accompanied by the downregulation of circ-104075
and Bcl-9 expression, indicating that matrine exerts its antitumor
effects in glioma through the suppression of key oncogenic pathways
and circRNA-mediated mechanisms. SHARPIN is a conserved
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Mechanism of Matrine inducing tumor cell apoptosis and Autophagy. It activates caspase-3 by inhibiting Bcl-2, modulates the PI3K/AKT and Wnt/p-
catenin pathways, and regulates circ-104075, Bcl-9, miR-182-5P, and the miR-299-3P/PGAM axis to promote apoptosis and suppress EMT. Meanwhile,
matrine triggers autophagy by downregulating HN1 and inhibiting AKT/mTOR signaling via the ROS/AMPK/mTOR pathway. Arrows indicate promotion;

blunt lines indicate inhibition; purple dots represent matrine.

protein of approximately 40 kDa that is widely expressed across
various human tissues (Wang et al., 2012).

Moreover, SHARPIN is found to be amplified in several types of
cancer, including prostate, breast, and ovarian cancers (Tian et al.,
2019; Zhang et al., 2014; De MELo and Tang, 2015). Zhou et al.
(2024), using proteomic analysis and data from The Cancer Genome
Atlas (TCGA), discovered that SHARPIN is upregulated in CRC
tissues. Furthermore, SHARPIN expression was associated with
different TNM stages and poor prognosis. In vitro experiments
demonstrated that downregulation of SHARPIN induced apoptosis
in CRC cells. Treatment with matrine led to decreased SHARPIN
expression, which in turn promoted apoptosis and inhibited the
proliferation, invasion, and migration of CRC cells. Wang et al.
(2022) investigated the role of matrine in regulating HCC through
the microRNA (miR)-299-3p/phosphoglycerate mutase 1 (PGAM1)
axis. Their study revealed that matrine upregulated miR-299-3p
expression in vitro, thereby suppressing HCC cell proliferation,
invasion, and anti-apoptotic capacity, while also inhibiting
epithelial-mesenchymal transition (EMT) and cancer stem cell

differentiation.  Inhibition = of PGAMI1  abolished the
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downregulatory effects of miR-299-3p on HCC cells. These
findings suggest that matrine promotes apoptosis and inhibits
EMT and stemness in liver cancer cells via the miR-299-3p/
PGAMI axis. Altogether, these results reveal a novel mechanism
underlying the antitumor effects of matrine in HCC and identify a
potential new therapeutic target for HCC treatment. Figure 2 shows
the mechanism of matrine in inducing tumor cell apoptosis.

3.3 Induction of autophagy in tumor cells

Autophagy is an evolutionarily conserved stress response and
degradation mechanism involving the delivery of damaged or
dysfunctional intracellular components to lysosomes via double-
membrane autophagosomes for degradation (Kondo et al., 2005;
Parzych and Klionsky, 2014). Dysfunctional autophagy has been
shown to contribute to tumorigenesis (White et al., 2015). Therefore,
inducing autophagy in tumor cells has emerged as an important
anticancer strategy. The phosphoinositide 3-kinase (PI3K)-AKT-
mammalian target of rapamycin (mTOR) signaling pathway is a
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well-established negative regulator of autophagy (Xu et al., 2020).
Liu et al. (2022) demonstrated that matrine triggers autophagy in
neuroblastoma (NB) cells by blocking the AKT-mTOR signaling
pathway and inhibiting the phosphorylation of both AKT and
mTOR. The PI3K inhibitor 3-methyladenine (3-MA) antagonized
the matrine-induced inhibition of cell proliferation, further
supporting the notion that matrine’s antitumor activity is at least
partially dependent on autophagy. In vivo, matrine treatment
significantly reduced the phosphorylation of AKT and mTOR in
NB xenografts and increased the LC3-II/GAPDH ratio, indicating
that matrine functions as an autophagy inducer. Li X. et al. (2024)
found that matrine induces apoptosis and cell cycle arrest in
multiple myeloma (MM) cells in vitro, while simultaneously
promoting autophagy. The use of ATG5 siRNA or the autophagy
inhibitor spautin-1 partially reversed matrine’s inhibitory effects on
MM cells. Conversely, the combination of matrine with the
autophagy inducer rapamycin enhanced their antitumor efficacy.
These findings suggest that matrine-induced autophagy contributes
to MM cell death. Mechanistically, matrine activates the ROS/
AMPK/mTOR signaling axis to induce autophagy in MM cells,
indicating that combined treatment with matrine and rapamycin
may represent a promising therapeutic strategy for MM.
Non-small cell lung cancer (NSCLC) is a leading cause of cancer
incidence and mortality worldwide, representing one of the most
pressing cancer-related challenges in modern medicine (Mathieu
et al., 2022). Luo D. et al. (2023) isolated a novel water-soluble
matrine-type alkaloid with anti-NSCLC effects, named sophflarine
A (SFA), from the roots of Sophora flavescens. Compared to
SFA  exhibited
significantly ~ enhanced  antitumor  activity  in  vitro.
Mechanistically, SFA promoted NSCLC cell death by inducing
pyroptosis through activation of the NLRP3/caspase-1/GSDMD
signaling pathway. Additionally, it increased reactive oxygen
species (ROS) production by inhibiting the PI3K/AKT/mTOR
pathway, thereby activating autophagy and suppressing cancer
cell proliferation. SFA also inhibited NSCLC cell migration and
invasion by blocking the EMT pathway, and further suppressed

previously identified matrine-type alkaloids,

colony formation and angiogenesis in human umbilical vein
endothelial cells. Consistent with these in vitro findings, SFA
treatment effectively inhibited tumor growth in an orthotopic
mouse model implanted with A549 cells. In summary, SFA
provides a new theoretical foundation for the clinical application
of matrine and exhibits several key properties necessary for its
development as a potential therapeutic candidate for NSCLC.
Figure 2 shows the mechanism of matrine in inducing tumor
cell autophagy.

3.4 Inhibition of tumor cell invasion
and migration

Tumor cell migration is a major contributor to cancer-related
mortality and recurrence, and is closely associated with the loss of
cell adhesion induced by EMT activation (Zhang et al, 2021;
Akhmetkaliyev et al, 2023). Targeting metastasis is therefore
considered one of the most effective strategies to suppress tumor
progression (Perlikos et al., 2013). Gallbladder cancer (GBC) is a
highly lethal disease and the most common primary invasive tumor
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of the biliary tract (Kam et al., 2021). Mo et al. (2024) found that
matrine significantly inhibited the migration and invasion of GBC
cells. By analyzing the mRNA and protein levels of EMT markers
and matrix metalloproteinases (MMPs), they further confirmed
matrine’s anti-metastatic effect. Compared with the control
group, matrine treatment markedly reduced the mRNA levels of
Snail, Vimentin, N-cadherin, MMP2, and MMP9, while increasing
the expression of E-cadherin. Importantly, matrine also
downregulated the protein levels of Vimentin, N-cadherin,
MMP2, and MMP9, and upregulated E-cadherin, indicating that
matrine inhibits GBC cell invasion and migration at both the
transcriptional and translational levels. These findings suggest
that matrine exerts its anti-invasive effects by modulating EMT
and MMP-related proteins, providing a theoretical basis for its
development as a potential therapeutic agent for GBC. Ren et al.
(2022), Liu et al. (2020) were the first to identify Erlinl as a novel
target of matrine. Erlinl is significantly upregulated in tumors; its
knockout suppresses CRC cell migration, whereas its overexpression
promotes it. Notably, matrine treatment was able to reverse the
oncogenic effects of Erlinl on CRC cell proliferation and migration.
When Erlinl was knocked out, matrine exhibited even more potent
antitumor activity in CRC cells. These results suggest that CRC
patients with low Erlinl expression may be more responsive to
matrine treatment, positioning matrine as a promising therapeutic
strategy for CRC.

Growing evidence indicates that microRNAs (miRNAs) play
critical roles in various biological processes, including cell
proliferation, invasion, migration, and apoptosis (Yu et al., 2015).
In recent years, numerous miRNAs have been identified as tumor
suppressors, and their aberrant expression has been linked to
oncogenic transformation (Podshivalova et al.,, 2018; Kwak et al.,
2018). Phosphatase and tensin homolog (PTEN) is a well-known
tumor suppressor gene with both protein and lipid phosphatase
activity (Sansal and Sellers, 2004), and has been reported to inhibit
the initiation and progression of multiple cancers. Cheng et al.
(2022) found that matrine significantly inhibited CRC cell
downregulated the
expression of miR-10b-5p, and upregulated PTEN protein levels.
PTEN was identified as a direct target of miR-10b-5p in CRC cells.
Both miR-10b-5p knockdown and matrine treatment suppressed

proliferation, invasion, and migration,

cell migration and invasion, while reintroducing PTEN partially
reversed these inhibitory effects. These findings suggest that matrine
inhibits CRC cell migration and invasion via the miR-10b/PTEN
axis, offering a molecular mechanism by which matrine suppresses
CRC progression.

Esophageal cancer (EC), a malignant tumor primarily affecting
esophageal epithelial cells, is another aggressive cancer type. Xu et al.
(2024) investigated the relationship between oxymatrine (OMT)
and esophageal squamous cell carcinoma (ESCC). Their study
revealed that OMT may inhibit the development and metastasis
of ESCC by suppressing the ERK/B-catenin/EMT signaling pathway.
In vivo studies confirmed that OMT suppressed the growth of ESCC
cell-derived tumors in NOG mice without causing damage to other
organs. In vitro, OMT inhibited ESCC cell migration and invasion
by targeting MEK1 (MAP2K1), a key upstream regulator of the ERK
pathway, thereby blocking the ERK/P-catenin/EMT axis. Studies
have shown that the expression of MMPs is closely associated with
the degree of inflammation that promotes tumor cell invasion and
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Mechanisms by which matrine inhibits tumor cell migration and invasion and induces ferroptosis. Matrine inhibits tumor cell migration and invasion
by regulating EMT-related pathways (e.g., miR-10b-5P/PTEN, MMP2/9, E-cadherin, MAPK) and promotes ferroptosis via suppression of GPX4 and the
SIRT1/YY1/GPX4 axis. Arrows indicate activation, blunt lines indicate inhibition, and red dots represent matrine.

migration. Among them, MMP2 and MMP9 play pivotal roles in
tumor invasion, metastasis, and angiogenesis (Guo et al., 2021). Du
et al. (2023) were the first to report that claudin-9 (Cldn9) is
upregulated in human colon cancer (CC) tissues compared to
normal tissues. Silencing Cldn9 in CT26 colon cancer cells
significantly inhibited vasculogenic mimicry (VM) formation, as
well as cell proliferation, migration, and invasion. This suppression
was accompanied by downregulation of N-cadherin, MMP2, and
MMP9 expression, along with reduced phosphorylation levels of
ERK and JNK, while E-cadherin expression was upregulated. These
findings suggest that inhibition of Cldn9 can reverse the EMT
process and suppress the MAPK signaling pathway, thereby
of CC cells.
Collectively, this research provides a potential therapeutic

reducing the proliferation and invasiveness

candidate and target for VM-based anti-metastatic strategies in

colon cancer. Figure 3 shows the mechanism of matrine in

inhibiting tumor cell invasion and migration.

3.5 Induction of ferroptosis in tumor cells
The regulation of cell death processes is critically important

in the development and treatment of cancer. Ferroptosis is a
newly identified form of programmed cell death that is
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morphologically, biochemically, and genetically distinct from
apoptosis, pyroptosis, and autophagy (Dixon et al, 2012).
Biochemically, ferroptosis is characterized by glutathione (y-
glutamylcysteinylglycine, GSH) depletion and reduced activity
of glutathione peroxidase 4 (GPX4). As a result, lipid
hydroperoxides are no longer efficiently reduced by GSH
under GPX4 catalysis. This leads to the accumulation of lipid
peroxides, which are oxidized by ferrous ions (Fe*") in a Fenton-
like reaction, generating excessive ROS and ultimately triggering
ferroptotic cell death (Zhang C. et al., 2022). The discovery of
ferroptosis has garnered significant attention in the scientific
community. Numerous studies have demonstrated that tumor
cells require more iron than normal, non-cancerous cells (Steve
etal, 1994; Torti and Torti, 2013). This iron dependency suggests
that cancer cells may be more susceptible to ferroptosis, making it
a promising therapeutic target in oncology. Jin et al. (2024)
conducted an in vivo study and found that matrine effectively
inhibited tumor growth in a SiHa cell-induced tumor-bearing
mouse model, without causing noticeable harm to the animals.
Matrine treatment significantly reduced GPX4 protein levels
while increasing lipid peroxidation and intracellular Fe**
content, indicating that matrine induces ferroptosis. Further
investigation revealed that matrine markedly upregulated the
expression of Piezol, a mechanosensitive ion channel, while
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TABLE 1 The antitumor mechanisms of Matrine.

Mechanism Model/Tissue Concentration Duration of Method of Types of
administration extraction cancers
Inhibition proliferation MDA-MB- 45, HCC- 0, 1.0, 2.0 and 4.0 mM 24, 48, 72h Pure compound TNBC Guo et al.
1806 (2023)
HT29, DLD1 0, 0.4, and 0.8 mg/mL 0-48 h Pure compound CRC Cheng et al.
(2022)
HT-29, RKO 1.722 mg/mL 24 h Pure compound CRC Ren et al.
(2022)
THP-1 and HL-60 cells, 0.5, 1, or 2 g/L 72 h Pure compound AML Zhang et al.
HS-5 cells (2022a)
HepG2 1, 2, 4 mg/mL 24 h Pure compound HCC Yu et al.
(2020)
HOS cells 5 ug/mL 72 h Pure compound Osteosarcoma Huang
et al. (2024)
Induction apoptosis TPC-1, BCPAP, and 0.25, 0.5, 1 mg/mL 24h Pure compound PTC Fu et al.
K1 cell line (2020)
BALB/c athymic nude = 50 mg/kg 6w Pure compound PTC Fu et al.
mice (2020)
MDA-MB-453, HCC- 0, 1.0, 2.0, 3.0, 4.0 and 48 h Pure compound TNBC Guo et al.
1806 5.0 mM (2023)
U251 cells 0,0.1,05, 1, 2, 4 nm 24h Pure compound Glioma Chi et al.
(2019)
Induction of autophagy SK-N-AS , SK-N-DZ 0,02,04, 1,24, 24,48 or 72 h Pure compound Neuroblastoma Liu et al.
and 6 mM (2022)
NCI-H929, RPMI8226, = 0, 0.5, 1.0, 1.5 mg/mL 12, 24, or 48 h Pure compound MM Li et al.
and U266 (2024c¢)
Inhibition of invasion GBC-SD cell line, NOZ 0, 5, 10umol/L 24h Pure compound GBC Mo et al.
and migration cell line, SGC-996 (2024)
HT29 and DLD1 0, 0.4, and 0.8 mg/mL 0-48 h Pure compound CRC Cheng et al.
(2022)
HCT116, SW480, and 0, 0.25, 0.5, or 1 mM 24, 48h Pure compound Colon Cancer Du et al.
KM12, CT26 (2023)
Induction of ferroptosis SiHa cells 0.25, 0.5, 1, 2 mg/mL 24 h Pure compound Cervical cancer Jin et al.
(2024)
female CB17 SCID 25, 50, 75 mg/kg 22d Pure compound Cervical cancer Jin et al.
mice (2024)
Hep3B and HepG2 0, 5, 10, 20, 30, 40 pg/ 24h Pure compound HCC Hu et al.
mL)f (2025)

having no significant effect on the expression or interaction of
transferrin receptor (Tfr) and system Xc~ (xCT). These findings
suggest that matrine exerts its antitumor effects in cervical cancer
by activating the Piezol channel to trigger ferroptosis, thereby
offering a novel protective mechanism against tumor
progression.

SIRT1 (Silent Information Regulator 1) plays a crucial role in
various biological processes and has been shown to deacetylate the
transcription factor Yin Yang 1 (YY1) (Du et al, 2021).
Additionally, several studies have reported that SIRTI can
promote apoptosis in cancer cells and function as an antitumor
factor in cancer progression (Lee et al., 2020). Hu et al. (2025)
affects the

development and progression of HCC. They founcd that OMT

investigated the mechanism by which OMT
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induced cell death and inhibited proliferation in HCC cells, while
simultaneously downregulating the expression of YY1 and
GPX4 and upregulating SIRTI1 expression. Ferroptosis was
identified as the primary mode of OMT-induced cell death.
Overexpression of GPX4 or YY1, or inhibition of SIRTI,
reversed the ferroptosis induced by OMT, confirming the
involvement of this pathway. Furthermore, in an HCC xenograft
model, OMT suppressed tumor growth via the SIRT1/YY1/
GPX4 signaling axis. These findings suggest that OMT reduces
HCC cell viability and induces ferroptosis through regulation of the
SIRT1/YY1/GPX4 axis, highlighting a potential novel therapeutic
mechanism for the treatment of liver cancer. Figure 3 illustrates the
mechanism by which matrine induces ferroptosis in tumor cells,
and Table 1 summarizes its antitumor mechanisms.
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4 Pharmacokinetic advantages
of NDDS

NDDS, typically defined as delivery platforms with particle
diameters ranging from 10 to 1,000 nanometers, represent a
significant advancement over conventional drug delivery
NDDS  offer
enhanced bioavailability and stability for poorly soluble drugs.

methods Compared to traditional systems,
Moreover, nanoparticles that are specifically designed and
surface-modified can improve drug targeting and controlled
release, thereby increasing the therapeutic index of the
administered agents (Hassan et al., 2017). NDDS mark a
major breakthrough in the field of drug delivery systems
(DDSs), with the primary objective of delivering the
appropriate amount of a therapeutic agent to the right site at
the right time. This approach aims to maximize drug utilization,
enhance therapeutic efficacy, minimize toxicity, and reduce
overall treatment costs (Jain, 2008).

NDDS encompass a broad range of platforms, including
micelles, liposomes, polymeric nanoparticles, biologically derived
carriers (e.g., exosomes), biomimetic nanocarriers, metal-organic
framework nanoparticles, and inorganic nanomaterials. Their
effectiveness in drug delivery is attributed to unique properties
such as particle size, surface charge, morphology, and material
composition, as well as the ability to undergo targeted surface
modifications. These systems can be used to efficiently deliver a
variety of therapeutic agents, including small molecules and
macromolecules such as nucleic acids. One of the key advantages
of nanotechnology-based drug delivery is the enhanced permeability
(EPR) effect, which allows for preferential
accumulation of nanoparticles in tumor tissues. Additionally,

and retention

surface modification with targeting ligands can further enhance
drug distribution within tumors and improve penetration into
deeper tumor regions, ultimately leading to superior therapeutic
outcomes (Gabizon et al., 2006; Nikpoor et al., 2015). At the same
time, NDDS have demonstrated significant advantages in improving
the pharmacokinetic behavior of drugs due to their unique
physicochemical properties and tunability. From the perspective
of the four fundamental pharmacokinetic processes—absorption,
distribution, metabolism, and excretion (ADME)—NDDS can
optimize drug behavior at multiple stages in vivo, thereby
enhancing therapeutic efficacy and reducing adverse effects
(Hamidi et al., 2013).

4.1 Absorption

Conventional drugs often face challenges such as poor
solubility, limited membrane permeability, and degradation in
which their
improve drug solubility and

the gastrointestinal tract, restrict
bioavailability. NDDS can

stability, enhance adhesion and mucosal penetration, and thus

severely

effectively promote transmembrane absorption. For instance,
carriers such as liposomes, solid lipid nanoparticles, and
polymeric nanoparticles can encapsulate unstable or poorly
soluble drugs, protecting them from degradation by gastric
acid and enzymes while improving absorption efficiency in the
small intestine (Hamidi et al., 2013).
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4.2 Distribution

NDDS can be engineered to achieve targeted distribution to
specific tissues or cells by adjusting parameters such as particle size,
surface charge, and ligand modification. For example, nanoparticles
modified with tumor-targeting ligands (e.g., folic acid, RGD
peptides) can actively recognize and accumulate in tumor tissues,
significantly increasing local drug concentration while minimizing
nonspecific exposure to healthy tissues. In addition, NDDS can
leverage the enhanced EPR effect to achieve passive targeting,
effectively prolonging drug retention at the tumor site (Alexis
et al.,, 2008).

4.3 Metabolism

Certain drugs are rapidly metabolized and inactivated by hepatic
enzymes due to first-pass metabolism. NDDS can extend drug half-
life by encapsulating the drug to evade enzymatic recognition or by
utilizing targeted delivery strategies to bypass first-pass metabolism.
For instance, PEGylated nanoparticles (modified with polyethylene
glycol) can markedly reduce clearance by the reticuloendothelial
system (RES), delay drug metabolism, and enhance systemic drug
exposure (Mitche et al., 2021).

4.4 Excretion

NDDS offer the ability to modulate drug elimination pathways
and rates effectively. By adjusting particle size and surface
characteristics, NDDS can reduce rapid glomerular filtration and
extend plasma half-life. Conversely, for drugs requiring rapid
elimination, degradable nanocarriers can be designed to ensure
timely clearance after therapy, thereby reducing toxicity risks.
Additionally, some carriers can be gradually degraded in vivo
into non-toxic small molecules, which are safely excreted via
hepatobiliary or renal pathways (Hamidi et al., 2013).

In summary, NDDS exhibit clear advantages across all four key
pharmacokinetic processes, providing superior control over the in
vivo fate of drugs. This represents a crucial strategy for improving
therapeutic indices and enhancing the clinical prospects of drug
candidates.

5 Types of matrine-based NDDS

NDDS represent a groundbreaking pharmaceutical technology
that emerges from the interdisciplinary integration of theories and
methodologies across fields such as physical chemistry, biology,
polymer science, materials science, mechanical engineering, and
electronics (Liechty et al., 2010). Compared to traditional drug
delivery methods, NDDSs offer several notable advantages (Li
2019). NDDSs
conventional drug formulations, including enhanced targeted

et al, demonstrate numerous benefits over
delivery and controlled drug release (Williams et al, 2013),
improved solubility and bioavailability (Li et al., 2013), reduced
toxicity and side effects, as well as the ability to cross physiological
barriers such as the blood-brain barrier (BBB) (Yoo et al., 2010).
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Nano-delivery strategies of matrine for cancer therapy. Overview of NDDS applied for matrine and oxymatrine delivery, including nanoliposomes,
metal-organic frameworks (MOFs), and co-delivery systems, with applications in ESCC, CRC, and HCC.

Moreover, functional or structural modification of nanoparticles can
reduce off-target effects, prolong systemic circulation time, and
increase delivery efficiency in vivo (Maeda et al., 2009). Given
these
monomers such as matrine with advanced NDDS platforms has

advantages, combining traditional Chinese medicine
become a promising and emerging trend in the development of anti-
This the

pharmacokinetic profile of the active compound but also

tumor therapies. approach not only enhances
provides new opportunities to optimize therapeutic outcomes and
overcome the limitations of conventional administration methods.
Figure 4 illustrates the types of nano drug delivery systems (NDDS)
applied in the delivery of matrine and oxymatrine.

Figure 4 Types of NDDS Applied in the Delivery of Matrine and
Oxymatrine. Overview of NDDS applied for matrine and
oxymatrine delivery, including nanoliposomes, metal-organic
frameworks (MOFs), and co-delivery systems, with applications

in ESCC, CRC, and HCC.

5.1 Matrine-loaded nanoliposomes

ESCC is typically diagnosed at an advanced stage, necessitating
more effective therapeutic strategies. In China, approximately 90% of
esophageal cancer cases each year are classified as ESCC (Watanabe
et al,, 2020). Studies have shown that nano-sized drug carriers can
enhance drug absorption and improve therapeutic outcomes
(Gabizon et al, 2006). Generally, lipid-based drug formulations
with particle sizes ranging from 10 to 100 nanometers can
penetrate and accumulate in tumor tissues, while minimizing
toxicity in healthy tissues. This is due to the larger vascular
fenestrations in tumor tissues—often several hundred nanometers
in diameter—compared to those in normal capillaries. To enhance the
antitumor activity and bioavailability of matrine, Zhao et al. (2024)

Frontiers in Pharmacology

10

developed matrine-loaded nanoliposomes (MNLs). Liposomes are
subject to rapid clearance by the reticuloendothelial system (RES);
however, they can accumulate in target tissues via the EPR effect. The
EPR effect refers to the preferential leakage and retention of
macromolecules in tumor tissues due to the unique vasculature of
tumors, which facilitates the passive targeting of nanoparticle-based
drugs (Maeda et al., 2000; Sawant and Torchilin, 2012).

In their study, Zhao and colleagues utilized a film-ultrasonic method
to prepare MNLs and applied them to KYSE-150 ESCC cells. The results
demonstrated that MNLs significantly enhanced the anticancer efficacy
of matrine in a concentration-dependent manner, as evidenced by
reduced cell viability and a lower ICs, value. MNLs effectively
suppressed cell proliferation and induced apoptosis in KYSE-150
cells. These findings suggest that matrine-loaded nanoliposomes
represent a promising and effective strategy for enhancing the anti-
ESCC activity of matrine, offering a potential natural therapeutic agent
and delivery platform for the clinical treatment of ESCC.

5.2 Matrine-loaded metal—organic
frameworks

Metal-organic frameworks (MOFs) are a class of porous hybrid
materials composed of metal ions or clusters coordinated to organic
ligands. These materials possess distinctive characteristics such as
high surface area, tunable pore size, ease of synthesis, surface
modifiability, and controlled chemical instability (Mckinlay et al.,
2010). Due to these properties, MOFs have become a research
hotspot as drug delivery platforms for cancer therapy.

Graphene oxide (GO), with its layered structure, offers a
favorable template for the in situ growth of MOF particles. The
combination of MOFs with GO not only enhances drug permeability
and retention but also improves drug absorption efficiency. This
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hybrid system provides more efficient drug-binding sites and
enhances the hydrophilicity of the composite materials (Abazari
et al.,, 2022; Hu et al.,, 2023; Wang et al.,, 2023). Shen et al. (2024)
developed a novel dual-drug delivery system composed of MIL-
101(Fe)@GO co-loaded with luteolin and matrine. They successfully
synthesized a composite carrier based on NH,-MIL-101(Fe) and GO
with uniform particle size and stable structure. This system
effectively encapsulated both luteolin and matrine, forming a pH-
responsive drug delivery platform capable of releasing luteolin under
acidic conditions—mimicking the tumor microenvironment. In
vitro pharmacodynamic studies confirmed the synergistic effect
between NH,-MIL-101(Fe) and GO, with GO significantly
enhancing the anti-colorectal cancer efficacy of the composite
system. The platform effectively suppressed the proliferation and
migration of RKO CRC cells by increasing ROS production and
upregulating the expression of caspase-3 and caspase-9. This
research highlights the advantages of combining MOFs with GO
and demonstrates the potential of MOF@GO-based delivery systems
in drug loading and anticancer applications. Moreover, it provides a
novel and promising approach for multi-component therapeutic
strategies against CRC.

5.3 Co-delivery systems of oxymatrine

Studies have shown that the incidence of multidrug resistance
(MDR) in primary liver cancer ranges from 84.6% to 100% (Ceballos
et al, 2019). Currently, combination chemotherapy is commonly
used in clinical settings to improve therapeutic efficacy. However, its
overall effectiveness remains unsatisfactory. Compared with free
drugs or those delivered separately via individual nanocarriers, the
co-delivery of anticancer agents using a single nanocarrier has been
demonstrated to be significantly more effective in reversing MDR
both in vitro and in vivo (Zhang et al, 2016). This co-delivery
strategy offers several advantages, including precise and controlled
drug release profiles that help maintain optimal drug ratios at target
sites (Gurunathan et al., 2018). Proper drug pairing is crucial for
successful combination therapy. Co-delivering anticancer drugs
with that MDR
mechanisms—has shown better therapeutic performance than

chemosensitizers—agents modulate
simply combining multiple anticancer agents (Zhao et al.,, 2015).

In this context, OMT, a natural compound with notable
antitumor and low-toxicity properties, has emerged as a
promising candidate for MDR-targeted co-delivery systems.
When  loaded

chemotherapeutic agents or MDR modulators, OMT can enhance

into  nanocarriers  alongside traditional
drug accumulation in tumor tissues, improve chemosensitivity, and
reduce systemic toxicity. This approach not only maximizes
therapeutic synergy but also provides a new direction for
overcoming drug resistance in HCC and other refractory cancers.
Chitosan (CS)

biocompatibility and permeability, as well as a variety of

is a biopolymer known for its excellent
biological properties, including antibacterial and anticancer
activities (MikuSovd and MIkus, 2021). Hyaluronic acid (HA), a
negatively charged linear glycosaminoglycan composed of
D-glucuronic acid and N-acetyl-D-glucosamine, has been shown
to enhance drug accumulation in cancer cells that overexpress

CD44—a non-kinase transmembrane glycoprotein—when used to
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modify chitosan nanoparticles (Wang et al., 2017; Yang et al., 2015;
Suh et al,, 2017; Xu et al.,, 2017). Based on these principles, Chen X.
et al. (2024) developed a plant-derived biocompatible nanocarrier
system for the co-delivery of OMT and glycyrrhizin (GL) to treat
HCC. In this system, OMT and GL were co-loaded into organelle-
like plant-derived particles (OGPs) for combination therapy. CS and
HA were used to modify the surface of OGPs to control drug release
and enable active targeting of tumor cells. The loading ratio of OMT
to GL in the nanocarrier was fixed at 1:1.

Further studies on in vitro cytotoxicity and cellular uptake using
HepG2 cells demonstrated that the plant-based co-delivery system
exhibited significant synergistic antitumor activity. This effect was
further enhanced by CS and HA modification. These findings
suggest that the HA-CS-OGPs platform for co-delivery of OMT
and GL is a promising strategy for reversing multidrug resistance in
cancer therapy and offers a novel, biocompatible approach to
combination treatment in HCC.

In summary, natural products have emerged as a vital resource
in the development of anticancer drugs. However, the low lipid
solubility of many natural compounds often leads to poor
their
plant-derived

absorption efficiency, significantly limiting

chemotherapeutic potential. In recent years,
nanocarriers have shown great promise as novel delivery systems.
By encapsulating bioactive compounds within phospholipid-based
structures, these carriers can markedly improve the absorption
characteristics of natural drugs. Although combination therapy
has been widely adopted in clinical oncology, the inherent
of

anticancer agents often present major barriers to enhanced

pharmacokinetic properties and biodistribution profiles
therapeutic efficacy. Nano-based drug delivery systems offer a
compelling solution by co-loading multiple anticancer agents into
a single nanocarrier. This approach not only enhances the
accumulation and retention of drugs within tumor tissues but
also enables precise control over drug release profiles. As a result,
it significantly increases the therapeutic index while minimizing
systemic side effects.This strategy presents a scientifically grounded
and clinically translatable paradigm for cancer therapy, offering new
opportunities for improving treatment outcomes through advanced,
nanotechnology-enabled drug delivery.

6 Conclusion and perspectives

Matrine, as a natural alkaloid derived from Sophora flavescens,
exhibits a diverse array of pharmacological activities, among which
its antitumor potential has attracted considerable attention. The
compound demonstrates multifaceted anticancer mechanisms,
including the induction of apoptosis, autophagy, and ferroptosis,
as well as the suppression of tumor cell proliferation, migration, and
invasion. These characteristics make matrine a promising candidate
for antitumor therapy, especially as part of integrative treatment
strategies (You et al., 2020).

However, its clinical application is significantly hindered by
inherent drawbacks such as poor water solubility, low bioavailability,
and lack of tumor-targeting ability. The incorporation of matrine
into NDDS offers a viable strategy to address these limitations.
NDDS can improve the pharmacokinetic profile of matrine by
enhancing its protecting it

solubility, from premature
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degradation, promoting targeted tumor accumulation, and enabling
controlled release. These advantages collectively contribute to
improved therapeutic efficacy and reduced systemic toxicity.
Nonetheless, the development of matrine-based NDDS still faces
several challenges. Issues such as potential nanocarrier toxicity,
batch-to-batch
incomplete understanding of in vivo behavior remain to be
addressed. the of
microenvironments and inter-patient variability can affect the

variability, stability =~ during storage, and

Moreover, complexity tumor
performance of NDDS, underscoring the need for more precise,
adaptable, and intelligent delivery strategies (Patra et al., 2018).
Future research should focus on the rational design of matrine
formulations with optimized physicochemical and pharmacokinetic
properties, supported by advanced materials science and
preparation technologies. The integration of artificial intelligence,
machine learning, and big data analytics holds promise for
accelerating formulation optimization, improving delivery
precision, and supporting the development of personalized
nanomedicine. Additionally, combination therapies leveraging
with agents,

multifunctional nanocarriers, may further enhance antitumor

matrine other therapeutic co-loaded into
efficacy while minimizing adverse effects.

In conclusion, while matrine-based NDDS present clear
further

innovation

advantages and significant therapeutic  potential,

systematic investigation and technological are

necessary to translate these findings into clinically viable
cancer therapies.
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