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Aim: To explore the possible mechanism and target of scutellarin (Scu) on
diabetic kidney disease (DKD).

Method: The Network analysis was used to explore and enrich the possible
pathway. RNA transcriptome were employed to deepen the understanding of
candidate targets in key signaling pathways. Core targets were optimized through
8 machine learning algorithms. Single-cell transcriptome were utilized to clarify
the expression locations and temporal trajectories of core targets, identifying
high-expression cell types. Finally, molecular docking and cell experiments were
conducted to validate the regulatory effects of Scutellarin on the
molecular targets.

Result: The Network analysis showed the roles of hypoxic response and
apoptosis pathways. RNA transcriptome and machine learning identified HIF-
la and CASP3 as the hub genes related to DKD outcomes and hypoxic apoptosis.
Single-cell transcriptome analysis confirmed the expression patterns and
locations of hub genes, identifying the CD-PC cells as the high-expression
cell type. In-vitro experiments demonstrated 20 pM scutellarin was most
beneficial for mIMCD-3 cell proliferation. The hypoxia significantly enhanced
HIF-1a gene transcription driven by HRE conserved genes (P < 0.0001), whereas
high glucose inhibited hypoxia-induced HIF-1a transcription (P < 0.05).
Scutellarin significantly upregulated HIF-1a transcriptional activity (P < 0.05)
and HIF-1a total protein expression under high glucose-hypoxia (P < 0.05),
reduced mitochondrial ROS release (P < 0.05) and renal tubular cell
apoptosis (P < 0.01).

Conclusion: Scutellarin attenuated renal collecting duct cell apoptosis by
modulating HIF-1a for the treatment of DKD.

diabetic kidney disease, scutellarin, machine learning, single-cell transcriptome analysis,
network analysis
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GRAPHICAL ABSTRACT

1 Introduction filtration rate (Thomas et al, 2015). It affected approximately
35%-40% of all individuals with diabetes and accounting for

Diabetic Kidney Disease (DKD) is a renal disease secondary to  roughly half of incident dialysis cases in high-income countries
diabetes mellitus, which is mainly manifested by an increased  (Liu et al., 2024). Despite the implementation of renin-angiotensin
urinary albumin excretion rate with a decreased glomerular  system blockade, SGLT-2 inhibitors, mineralocorticoid receptor
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antagonists, and stringent glycaemic control, 15%-25% of patients
still progress to ESRD, highlighting an urgent need for additional
mechanism-based therapies (Barutta et al., 2021; Chen et al., 2020).

Traditional Chinese Medicine (TCM) has garnered significant
attention in the treatment of DKD due to its holistic approach,
focusing on anti-inflammatory effects, regulation of DNA
methylation and improvement of the intestinal micro-
environment (Jiang et al, 2022; Ma et al, 2024; Zhao et al,
2024). Erigeron breviscapus was the commonly used herb which
have been shown the certain hypoglycaemic and nephroprotective
effects (Wu et al., 2021; Qi et al., 2006; Xu et al., 2013). Scutellarin
(4' ,5,6,7-tetrahydroxyflavone-7-O-glucuronide), a major bioactive
constituent and the quality control of E. breviscapus herbs (National
Pharmacopoeia Committee, 2020), has been verified to have a wide
range of well-established pharmacological activities, including
improving microcirculation, antioxidant, antifibrotic, and others
(Wang and Ma, 2018). More essentially, it has been proven to
ameliorate various features of DKD in vivo, including proteinuria,
glomerular expansion, mesangial matrix accumulation, renal
fibrosis, and podocyte injury (Huang et al.,, 2023). However, the
specific mechanism by which it improves DKD injuries remained to
be explored.

This study aimed to explore and enrich the signaling pathways
of scutellarin in treating DKD using network analysis. RNA
transcriptome were employed to deepen the understanding of
candidate targets in key signaling pathways. Core targets were
optimized through various machine learning algorithms. Single-
cell transcriptome were utilized to clarify the expression locations
and temporal trajectories of core targets, identifying high-expression
cell types. Molecular docking and dynamics simulation were applied
to predict the binding potential between compounds and biological
macromolecules. Finally, cell experiments were conducted to
validate the regulatory effects of scutellarin on the molecular targets.

2 Materials and methods
2.1 Network analysis

Following the suggestions for network analysis methods (Zhang
etal,, 2023; Nogales et al., 2022), molecular targets of scutellarin and
disease were sourced from relevant databases (Supplementary Table
S1). Active compound datasets were input into the DrugBank and
STITCH databases, filtering for confidence >0.7 to obtain target
enrichment data. In Swisstarget, the 2D and 3D structures of
compounds were input to predict compound targets. DKD-
related targets were retrieved from the DrugBank and TTD
databases using MESH terms. A Venn diagram of Scutellarin-
DKD common targets was created, and the intersecting target
dataset was imported into the STRING database to obtain a
protein target interaction network (PPI). After calculating key
nodes and clusters, the core target interaction map was generated
using Cytoscape software. Target clusters were imported into R
Studio, with a P-value cutoff of 0.05, minimum overlap of 3, and
minimum enrichment of 1.5. Gene Ontology (GO) annotation was
performed using the “org.Hs.e.g.,.db” package, categorizing results
into Biological Process (BP), Cellular compound (CC), and
Molecular Function (MF) (Ding et al., 2018). KEGG analysis was
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conducted using the “enrichKEGG” package, with the top thirty
genes individually subjected to KEGG enrichment (Chen

et al.,, 2017).

2.2 RNA transcriptome analysis

The gene expression datasets included GSE99339, GSE30529,
GSE96804, GSE104954, and GSE30528. Specimens for
GSE96804 and GSE30528 were derived from isolated glomerular
tissue of DKD patients, while GSE30529 and GSE104954 specimens
were from isolated tubular tissue of DKD patients. GSE99339 was
sourced from kidney tissue of DKD patients. Detailed platform and
annotation information for these datasets were provided in
Supplementary Table S2. The R package “sva” was used to merge
these data cohorts and address batch effects, with the ComBat
function used for batch effect adjustment. Differential gene
expression analysis was performed using the “limma” package,
with genes showing log2FC >0.5 and P-value <0.05 designated as
differentially expressed genes (DEGs) (Zhou et al., 2023).

Weighted Gene Co-expression Network Analysis (WGCNA)
was employed to identify gene modules potentially exhibiting
differential expression in the disease context. After excluding
outlier samples and adjusting the soft threshold, a weighted gene
co-expression network was constructed based on disease binary
classification variables. The most strongly correlated modules were
intersected with the original DEG dataset, hypoxia and apoptosis
geneset (Supplementary Table S3), to refine the gene set selection.

2.3 The filter of geneset based on 8 machine
learning algorism

8 machine learning algorithms were employed to repeatedly
learn the dataset and identify hub genes. The algorithms included
Least Absolute Shrinkage and Selection Operator (LASSO)

regression, Support Vector Machine Recursive Feature
Elimination (SVM-RFE), Regularized Random Forest (RREF),
Stepwise Regression, All Possible Regression, Best Subset

Regression, Extreme Gradient Boosting (XGBoost) regression,
and SHapley Additive exPlanations (SHAP) for XGBoost regression.

For LASSO, the automatically output values were selected and
ranked according to the correlation coefficients (Courtois et al.,
2021). SVM-RFE selected feature variables consistent with the
number of gene sets, used 5-fold cross-validation, and repeated
the learning process 3 times. The model’s root mean square error
(RMSE) after cross-validation was used as the evaluation metric to
output the best gene set, ranked by importance (Sanz et al., 2018).
RRF selected the number of option trees that produced the
minimum error rate. Model accuracy after cross-validation served
as the evaluation metric, with all variables ranked according to Mean
Decrease Accuracy and Mean Decrease Gini (Yi et al, 2022).
Stepwise Regression initially added features through forward
selection, then removed the least contributing features one at a
time, outputting the best-fit features based on an acceptable
collinearity level (K < 100) (Hauck and Miike, 1991).

All Possible Regression and Best Subset Regression aimed to
identify the subset yielding the best predictive results for DKD

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1656409

Jiang et al.

TABLE 1 Cell culture system in different experiment.

Experiment

cells

Number of

10.3389/fphar.2025.1656409

Treatment time

MTT Assay 96-well plate

TUNEL Assay 6-well plate
Caspase-Glo® 3/7 Assay 96-well plate
Electron Paramagnetic Resonance Assay 6-well plate
MitoSox Flow Cytometry Assay 6-well plate
HIFla Transcriptional Activity Assay

12-well plate

Nuclear Protein Extraction and Western blot Assay 15 cm dish

10,000 per well

62,500 per well

1,500 per well

62,500 per well

62,500 per well

25,000 per well

1,000,000 per dish

RPMI without
phenol red

48-h scutellarin intervention after cell seeding

1.5 mL per well 24-h hypoxic treatment in hypoxic workstation after

compound addition

100ul per well 24-h hypoxic treatment in hypoxic chamber after

compound addition

1.5 mL per well 24-h hypoxic treatment in hypoxic workstation after

compound addition

1.5 mL per well 24-h hypoxic treatment in hypoxic workstation after

compound addition

1 mL per well 44-h high-glucose treatment and 24-h hypoxic

treatment after compound addition

18 mL per dish 6-h hypoxic treatment in hypoxic workstation after

compound addition

Immunofluorescence Assay 6-well plate

62,500 per well

1.5 mL per well 6-h hypoxic treatment in hypoxic workstation after

compound addition

RNA Extraction, Purification, Reverse
Transcription and Amplification

6-well plate

62,500 per well

1.5 mL per well 44-h high-glucose treatment and 24-h hypoxic

treatment after compound addition

outcomes, selecting the subset with the highest R2 value and the lowest
MSE, Cp, or AIC value (Salt et al., 2007). The XGBoost model was built
using logistic regression, with nfeatures set to 8, niter to 50, and nrounds
to 10 (Liang et al., 2021). The DALEX package’s explain function was
used for interpretation, with each row representing a feature. In SHAP
for XGBoost, the model calculated the SHAP value for each feature of
each sample. The contribution of each gene feature to DKD outcomes
was represented by the color intensity and size of the bar graph. The top
half-ranked genes were output as the best feature gene set (Tarabanis
et al,, 2023). Genes identified by all machine learning algorithms were
designated as hub genes. The DKD composite datasets of
GSE47185 and GSE218344 would be used as the validation set. The
receiver operating characteristic (ROC) analysis for these hub genes was
executed. Area under the Curve (AUC) values exceeding 0.65 were
deemed to exhibit commendable diagnostic efficacy (Deng et al., 2022).

2.4 Single cell transcriptome analysis

Data from eight samples in the GSE195460 dataset and six
samples in the GSE131882 dataset were combined, resulting in six
DKD kidney tissues and eight control kidney tissues (non-tumor
tissues from nephrectomy patients). Detailed information was
provided in Supplementary Table S2. The “Seurat” package was
used for preprocessing (Hoffmann et al., 1999). After cell removal,
batch correction, feature selection, and high-variable gene
enrichment for quality control, data normalization and PCA
clustering were performed. The appropriate PC value was
selected based on the Elbowplot curve fitting, resulting in
different clustering. Cell
information was obtained from the top three cytokines in the
CellMarker 2.0 online database and annotated factors for DKD
in the KT database. The hub genes (HIF-la, CASP3) were

colored modules for annotation
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included in the clustering map to explore the main cell types
with high expression of these genes. Cells expressing both HIF-
la and CASP3, with significant differences compared to the control
group (log2FC >0.5 and P < 0.05), were selected for differentiation
trajectory and dynamic gene expression analysis.

2.5 Molecular docking and dynamics
simulation

The 3D structure of the HIF-1a protein was downloaded from
the Protein Data Bank (PDB). The crystal structure was ensured to
contain a complete pocket, excluding any structures with missing
residues. A resolution of <2A and similarity of the crystal structure
to the ligand were set as criteria. The protein structure was processed
using Pymol by removing water molecules and ligands, adding
hydrogen atoms, calculating charge numbers, and determining
rigidity. The 3D structures of the scutellarin was downloaded
from PubChem. AutoDock software was used for docking, with
the algorithm set to genetic search and output set to local. A two-
stage blind-docking process was performed (Hand et al., 2004). In
Stage-1, a 126 A® box (0.375 A grid) centered on 1H2K chain A
(21.3,4.7,15.9 A) sampled the entire protein plus 10 A cushion. The
200 lowest-energy poses were clustered (2.0 A RMSD), and a focused
60 A* box centered on the centroid of the top cluster (residues
495-530 and 775-803) was used for refinement. GA parameters:
population 150, 2.5 X 107 evaluations, 27,000 generations, crossover
0.8, mutation 0.02, elitism 1, and Solis-Wets local search every
300 generations (300 steps, p = 1.0). Poses were rescored with
AutoDock 4.2 and the top pose energy-minimized (conjugate-
gradient, 200 steps, 0.02 A convergence) before acceptance. Re-
analysis of blind docking was performed on CB-Dock2 using its
curvature-based cavity-detection algorithm (Liu et al, 2022);
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TABLE 2 Operation methods in molecular experiments.

Experiment

Equipment

Materials

10.3389/fphar.2025.1656409

Operating procedure

MTT Assay

Multiskan SkyHigh Microplate
Spectrophotometer

Vybrant® MTT Cell Proliferation
Assay Kit

Roswell Park Memorial Institute
(RPMI) 1640 medium

Add 10 uL of MTT solution to 100 uL of the culture
medium as a negative control. After incubation, add
100 pL of SDS-HCI solution and read the absorbance at
570 nm wavelength

TUNEL Assay

Caspase-Glo~ 3/7 Assay

Leica dm3000 led Microscope
with shutter

GloMax

In Situ Cell Death Detection Kit,
POD

Triton X-100

3% H202 in methanol

DNase I, RNase-free

Prolong Gold Antifade
Mountant with DAPI

Caspase-Glo
3/7 assay (10 mL)

Place the slide in contact with TUNEL the reagents,
incubate, then wash. Using a fluorescence microscope,
induce the emission of green light in the 515-565 nm
wavelength range at 450-500 nm

Mix the Caspase-Glo 3/7 reagent, and use the GloMax
luminescence instrument (Promega) to detect the
luminescence values of Caspase-3/7

Electron Paramagnetic Resonance Assay

Benchtop EPR with the Bruker

e-scan

Krebs-Henseleit buffer; mito-
TEMPO-H;
antimycin A

KHB buffer was used to wash the cells, and then 5.3 uL of
9.5 mM mito-TEMPO-H solution was added. The sample
was then loaded into a capillary tube and rapidly frozen in
liquid nitrogen. The EPR acquisition parameters were set
as default

MitoSox Flow Cytometry Assay

CyAn™ ADP Analyzer by
Beckman Coulter Life Sciences

MACS BSA Stock Solution
AutoMACS Rinsing Solution
MitoSOX Red Mitochondrial
Superoxide Indicator

Add 2.0 uL of 5 mM MitoSox stock solution. Incubate,
wash, detach the cells, centrifuge, resuspend in FACS
buffer. Run the flow cytometer. Analyze using FlowJo
software. The mitochondrial ROS level is expressed as a
percentage of MitoSOX Red fluorescence intensity

HIFla Transcriptional Activity Assay

Nuclear Protein Extraction and Western
blot Assay

Hypoxia Workstation
INVIVO2 (Ruskinn)

Glass Dounce homogenizer
Slide-A-Lyzer™ MINI Dialysis
Device, 7ZK MWCO

Dual-Luciferase Reporter
Assay System
Lipofectamine™ 3000
Transfection Reagent
ZymoPURE II Plasmid;
Maxiprep Kit

anti-HIF-1alpha

anti-Histone H3

IRDye 800 goat anti-rabbit
Secondary Antibody
NuPAGE™ LDS Sample Buffer
(4X)

DTT (dithiothreitol)

Halt™ Protease and Phosphatase
Inhibitor Cocktail (100X)

The plasmids encoding HRE-Luciferase and Renilla were
co-transfected into cells using Lipofectamine reagent.
After ultrasonic lysis, a fluorescence reaction was
conducted, and the optical measurement was used to
obtain the activity value of luciferase/Renilla, which
represents the nuclear transcriptional activity of the HIF1a
transcription factor

After adding the hypotonic buffer, the cell suspension is
transferred to the Dounce B type homogenizer for
separation and extraction of the cell nuclei. The dialysis
tube membrane is rinsed with deionized water, and the
protein concentration is measured by the Bradford
method. Then, protein loading and electrophoresis are
completed

Immunofluorescence Assay

RNA Extraction, Purification, Reverse
Transcription and Amplification

Leica dm3000 led Microscope
with shutter

MicroAmp™ Optical
384-Well Reaction Plate with
Barcode

4% formaldehyde
Goat anti-Rabbit Alexa 594

NucleoSpin miRNA kit
Tagman Advanced miRNA
Assays;

Stabilize the cells in PBS containing 0.1% Triton-X100 for
10 min. After washing with PBS, block the cells with PBS
containing 5% bovine serum albumin. After incubating
with antibodies, mount the coverslips onto slides using
DAPI. Take fluorescence images using a Leica

DM3000 LED fluorescence microscope

After cell lysis, the samples were subjected to
chromatography, purification, precipitation and elution
according to the NucleoSpin” instructions. Using the
micro RNA reverse transcription kit. Quantitative RT-
PCR was performed on the 7300 or 7900 Real-Time PCR
system, and the expression level of the miR191 gene was
used as the control

candidate sites were ranked by Vina score. Concurrently, high-
affinity pockets of HIF-1a were identified with P2Rank’s physics-

eigenvalues,

driven scoring, and the binding precision of scutellarin was
predicted with a Random Forest model (Poldk et al, 2025).

Molecular dynamics simulations assessed the flexibility of the

protein-ligand complex; iMODS calculated per-residue motion

vectors and global dynamics (Lopez-Blanco et al., 2014). System-
wide deformability, thermal fluctuations, positional uncertainty,
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and

residue-residue  cross-correlations  were

evaluated to quantify the drug-target binding potential.

2.6 Cell culture

Mouse inner medulla collecting tubular cells (mIMCD-3)
were selected as the representative CD-PC commercial cell

frontiersin.org
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FIGURE 1

The result of network analysis. (A) Target intersection of Scutellarin and DKD. (B) Core target interaction map of HIF-1a. (C) Core target interaction
map of MAPK3. (D,E) GO functional annotation. (F,G) KEGG functional annotation.

line for culture (Zheng et al, 2022). Hypoxia modeling was
performed in a hypoxia workstation (5% CO2, 1% O2). Since
HIF-1a is activated under hypoxia but inhibited by high glucose,
four groups were typically set up: N5 (normoxia, 5 mM normal
glucose medium), H5 (hypoxia, 5 mM normal glucose medium),
H30 (hypoxia, 30 mM high glucose medium), and H30-Scu
(hypoxia, 30 mM high glucose medium with 20 uM

Frontiers in Pharmacology

scutellarin). When necessary, a positive control group H30-
DMOG (hypoxia, 30 mM high glucose medium with DMOG,
a HIF-1a stabilizer) was included (Fine and Norman, 2008). Cells
were passaged every 3 days when 80% confluent using trypsin-
EDTA digestion. Passage numbers P5-P10 were preferred, and
new cell lines were purchased after 5-10 passages. The details was
shown in Table 1; Supplementary Figures S1-S7.
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FIGURE 2

Bulk RNA transcriptome analysis. (A) Volcano plot of differentially expressed genes (DEGs). (B) Heatmap of the top 50 DEGs. (C) Clustertree by
WGCNA. (D) Soft threshold setting. (E) Correlation analysis between gene modules and diseases. (F) Cluster dendrogram of gene modules. (G)
Intersection of strongly correlated gene modules with DEGs, hypoxia and apoptosis geneset.

2.7 Molecular experiment

The MTT assay was used to determine the optimal concentrations
of scutellarin for mIMCD-3 proliferation. To explore and verify the

regulatory effects of these compounds on the hub gene HIF-1a, an

Frontiers in Pharmacology

07

HRE-driven luciferase reporter system was used to assess their impact
on HIF-la transcriptional activity and the CTAD/NTAD
transcriptional domains of HIF-la. The plasmids encoding HRE-
luciferase and renilla were co-transfected with lipofectamine reagent.
The plasmid ratio was 0.12 g pT81/HRE-luc, 0.04 g RLTK/Renilla-luc,
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FIGURE 3

The output of multiple machine learning algorithms. (A—C) LASSO regression. (D—F) SYM-RFE. (G-I) RRF. (J) All Possible Regression. (K) Best Subset

Regression. (L) XGBoost regression.

0.24 g CMX vector. In TAD driven luciferase reporting experiments,
cells were transfected with plasmids encoding NTAD, CTAD, GAL4-
Luciferase, and Renilla. The plasmid ratio was 0.02 g NTAD or CTAD,
0.08 g GAL4-luc, 0.04 g RLTK/Renilla-luc, 0.26 g of CMX vector.
Immunofluorescence was employed to qualitatively detect the effects of
the compounds on HIF-1la protein expression, while Western blot
quantified the effects on HIF-1a nuclear and total protein expression.

At the downstream target genes and phenotypic levels of HIF-
la, RT-PCR was used to measure the impact of the compounds on

Frontiers in Pharmacology

target genes miR210. Electron paramagnetic resonance (EPR) and
MitoSox flow cytometry assessed the effects of the compounds on
mitochondrial reactive oxygen species (ROS) release under high
glucose and hypoxic conditions. TUNEL staining and Caspase-3/
7 activity chemiluminescence assays were conducted to investigate
the compounds’ effects on cell apoptosis phenotypes under high
glucose and hypoxic conditions. Specific information on materials
and equipment were shown in Table 2. The additional information
of materials were shown in Supplementary Table S4.
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Expression of hub genes in DN single cells. (A,B,E) Distribution and expression of CASP3. (C,D,F) Distribution and expression of HIF-1a.

3 Result

3.1 Network analysis showed that scutellarin
might treat DKD by modulating hypoxic
responses and apoptotic pathways

The scutellarin was found to target a total of 175 biological

targets. The intersection with DKD disease resulted in 172 active
targets (Figure 1A). Two key clusters naturally formed: the HIF-1a
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cluster (Figure 1B) and the MAPK3 cluster (Figure 1C). The
stronger the interaction, the larger the target circle. GO analysis
(Figures 1D,E) revealed that key biological processes annotated for
the targets include response to hypoxia, response to decreased
oxygen, and regulation of apoptotic signaling. KEGG analysis
(Figures 1F,G) showed that key pathways annotated for the
targets include the HIF-1 signaling pathway and apoptosis. So
the response to hypoxia and apoptotic pathways may be key
mechanisms through which the scutellarin treated DKD.
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A Scuterlin-HIF 1a Molecular pocket 1
B Scuterlin-HIF 1a Molecular pocket 2
FIGURE 6

Molecular Docking Results of scutellarin with HIF-1a. (A) The first docking locus. (B) The second docking locus. (C) the third docking locus.

3.2 DKD bulk RNA revealed eight
differentially expressed genes related to
hypoxia response and apoptosis pathway

The results of the DKD bulk RNA transcriptome analysis were
shown in Figure 2. Data preprocessing was shown in Supplementary
Figure S8. The volcano plot indicated 335 upregulated and
316 downregulated genes (Figure 2A). Among the top fifty
differentially expressed genes, thirty were significantly upregulated,
while twenty were downregulated (Figure 2B). WGCNA identified
eight outlier samples (Figure 2C). After excluding these samples, the
curve smoothed at a soft threshold of 14 (Figure 2D). Based on this
threshold, KNN clustering revealed nine gene modules, with the ME-
black module showing the strongest association with the DKD variable
(P = 7e-12, |Q| = 0.67) (Figure 2E). The ME-green module contained
the most gene variables (Figure 2F). The intersection of the ME-black
module, DEGs, hypoxia, and apoptosis gene sets identified eight key
genes: CASP3, HS3ST1, CLU, TUBA1A, CASP4, PFKP, TIMP1, and
HIF-1a.

3.3 Machine learning identified HIF-1a and
CASP3 as hub genes for DKD

The results of the machine learning analysis were shown in Figure 3.
In the LASSO regression, most genes were positively correlated with
DKD (Figure 3A). Six genes were selected to form the predictive model
(Figure 3B), ranked by correlation coefficient: CASP3, TUBAIA,
HS3ST1, CLU, CASP4, and HIF-1a (Figure 3C). In the SVM-RFE
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analysis, all input genes were ranked from CASP3 to TUBAIA
(Figure 3D). The model had the lowest RMSE when the number of
variables was four (Figure 3E), with the hub genes ranked by
importance as CASP3, CASP4, HIF-1a, and HS3ST1 (Figure 3F).
The RFF analysis used 500 decision trees (Figure 3G) and showed
the highest accuracy when the number of variables was eight
(Figure 3H). Genes were ranked from CASP3 to TIMP1 (Figure 3I).
Both All Possible Regression (Figure 3]) and Best Subset Regression
(Figure 3K) indicated the highest predictive validity when n = 8.
Stepwise Regression identified CLU, CASP3, TUBAIA, and HIF-la
as key variables in the model (Supplementary Figures S9A,B). XGBoost
regression showed the top variables as CASP3, HIF-1a, HS3ST1, CLU,
and PFKP (Figure 3L). Each variable’s partial dependence profile was
shown in Supplementary Figures S14C. SHAP value analysis ranked the
top variables as CASP3, HS3ST1, HIF-la, PFKP, and CASP4
(Supplementary Figures S9C-E). The intersection of all results
indicated that HIF-1a and CASP3 were hub genes (Supplementary
Figure S10A). Both genes were significantly upregulated in the DKD
patient test set (Supplementary Figure S10B). ROC analysis showed an
AUC of 0.726 for CASP3 and 0.652 for HIF-1a in the validation set
(Supplementary Figure S10C).

3.4 Single-cell transcriptome revealed CD-
PC as the primary cell type for hub gene
differential expression

The quality control results of the single-cell dataset were shown in
Supplementary Figure S11. Low heterogeneity was observed between
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Molecular dynamics simulation of scutellarin with HIF-1a. (A) The amplitude of amino acid movement. (B) The deformability map of amino acid
residues. (C) The covariance map of movements among amino acid residues. (D) The B factor diagram of the thermal vibration amplitude. (E) Elastic

network model. (F) Eigenvalue of protein conformational change.

samples, with no interference from mitochondrial, ribosomal, or
erythrocyte RNA. Batch effects were not significant, and cell types
were similar across samples. Dimensionality reduction and clustering
were performed using 3000 highly variable genes. In the DN group, the
combined data were effectively reduced to 14 clusters and 11 cell types:
collecting duct-principal cell (CD-PC), proximal convoluted tubular cell
(PCT), Loop of Henle cell (LOH), distal convoluted tubular cell (DCT),
collecting duct-intercalated cell type A (CD-ICA), glomerular parietal
epithelial cell (PEC), endothelial cell (ENDO), mesenchymal cell (MES),
podocyte (PODO), connecting tubular cell (CNT), and collecting duct-
intercalated cell type B (CD-ICB) (Supplementary Figures S11F,G).
CASP3 showed low overall expression and there was a relatively high
level of expression in CD-PC cells (Figures 4A-C). HIF-1a had higher
overall expression and there was also a relatively high level of expression in
CD-PC cells (Figures 4D-F). Compared with normal groups, CASP3 was
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relatively more distributed in CD-PC and CD-ICA cells in DN samples
(Figures 5A,B,E). Compared to the control group, HIF-la was
significantly upregulated in CD-PC cells of DN samples (Figures 5D-F).

All markers in different cell type were shown in Supplementary
Figure S12. The differential expression of hub gene and pseudotime
analysis of CD-PC was shown in Supplementary Figure S13. HIF-1a
expression was highest in moderately differentiated CD-PC cells and
lowest in undifferentiated CD-PC cells, indicating a positive
correlation between HIF-la expression and cell differentiation.
CASP3 expression was also highest in moderately differentiated
PEC cells and lowest in highly differentiated mature CD-PC cells,
suggesting a negative correlation between CASP3 expression and cell
differentiation. The cell communication analysis of CD-PC was
shown in Supplementary Figure S14, in which GDF signalling
pathway exerted a crucial part.
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Effects of scutellarin on mitochondrial ROS release, cell apoptosis and HIF-1a function. N5: Normoxia and normal glucose medium; H5: Hypoxia and
normal glucose medium; H30: Hypoxia and high glucose medium; S: Scutellarin; DMOG: dimethyloxallyl glycine, the HIF-1a stabilizer. *P (One-way
ANOVA) <0.05, **P (One-way ANOVA) <0.01, ***P (One-way ANOVA) <0.001, ****P (One-way ANOVA) <0.0001. (A) The effect of scutellarin on cell
apoptosis was detected by TUNEL assay. (B) The effect of scutellarin on Caspase-3/7 activity was measured using the Caspase-Glo~ 3/7 Assay.

Frontiers in Pharmacology

13

(Continued)

frontiersin.org


mailto:Image of FPHAR_fphar-2025-1656409_wc_f8|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1656409

Jiang et al.

10.3389/fphar.2025.1656409

FIGURE 8 (Continued)

(C) The effect of scutellarin on mitochondrial ROS release in cells was analyzed by flow cytometry. (D) Mitochondrial free radical levels in cells
treated with scutellarin were measured using EPR. (E) IF for total HIF-1a under the treatment of scutellarin. (F) The effect of scutellarin on nuclear HIF-1a
protein. (G) Luciferase-reporter measurement for the HIF-1a transcriptional activity under N5, H5, H30. (H) Luciferase-reporter measurement for the
HIF-1a transcriptional activity under the treatment of scutellarin. () Luciferase-reporter measurement for HIF-1a transcriptional domains CTAD and
NTAD under the treatment of scutellarin. (J) RT-PCR result of HIF-1a downstream target genes miR210 under the treatment of scutellarin

3.5 Molecular docking indicated potential
binding capability of scutellarin with HIF-1a

The molecular docking energies and specific binding sites of the
scutellarin with HIF-la based on Autodock were listed in
Supplementary Table S5. The first docking locus involved the
protein residue GLN-164 (Figure 6A), with a mixed hydrogen
bond energy of -5.6, with ligand efficiency equal to -0.27,
Intermol energy equal to —4.31 and electrostatic energy equal
to —0.15. The second docking locus involved the protein residues
LYS-674 (Figure 6B), with a mixed hydrogen bond energy of —5.22,
with ligand efficiency equal to —0.21, Intermol energy equal
to —3.12 and electrostatic energy equal to —0.05. The third
docking locus involved the protein residues SER-664 (Figure 6C),
with a mixed hydrogen bond energy of —5.17, with ligand efficiency
equal to —0.21, Intermol energy equal to —3.06 and electrostatic
energy equal to —0.01, all showing a clear nested pocket structure on
the molecular surface. Blind molecular docking based on CB-
DOCK?2 also revealed that scutellarin has 5 binding pockets with
protein HIF-1a, with the lowest score being —6.5 and the highest
score being —8.3 (Supplementary Figure S15; Supplementary Table
S6). Targeted molecular docking based on P2RANK platform
revealed that scutellarin could embed in the natural pocket and
binding hot spot formed by the HIF-1a protein, with the maximum
score of —13.07 (Supplementary Figure S16; Supplementary Table
S7). The molecular dynamics simulation of scutellarin with HIF-1a
was shown in Figure 7. A global helical motion was observed
(Figure 7A). The binding interface displayed moderate flexibility,
with peak deformability localized at atom indices 400-600
(Figure 7B). Consistent directional motion (red covariance)
within this region indicated that these residues formed a
cooperative functional unit, ensuring stable ligand binding
(Figure 7C). B-factors fluctuated within the same 400-600 range
without perturbing the intrinsic protein dynamics (Figure 7D). The
lighter gray elastic-network springs in this zone denoted reduced
stiffness (Figure 7E). The dominant eigenvalues appeared at model
indices 14-18, reflecting the primary conformational modes of the
complex (Figure 7F).

3.6 Scutellarin reduced apoptosis and ROS in
collecting duct cells and upregulated HIF-1a
transcriptional activity

The MTT assay indicated that 20 pM scutellarin (P < 0.05) resulted
in the highest OD values, which exhibited a peak effect and most
beneficial for cell proliferation (Supplementary Figure S17). TUNEL
staining showed that fluorescence intensity significantly increased in
mIMCD-3 cells under high glucose and hypoxia conditions (H30) (P <
0.01). Treatment with scutellarin significantly reduced the fluorescence

Frontiers in Pharmacology

14

signal (P < 0.01) (Figure 8A). Scutellarin also significantly decreased
caspase-3/7 activity levels (P < 0.01) (Figure 8B), indicating that
scutellarin effectively reduced apoptosis in mIMCD-3 cells under
high glucose and hypoxia conditions. After MitoSox staining,
fluorescence intensity was significantly higher in the H30 group
(P < 0.01), while the H30-Scutellarin group showed a reduction
(P < 0.05) ((Figure 8C). EPR analysis revealed that the electron spin
resonance (ESR) signal significantly increased in the H30 model group
(P < 0.01), and was reduced following treatment of scutellarin (P <
0.05) (Figure 8D).

After transfection with GFP-HIF-la plasmid and hypoxia
induction, a noticeable red fluorescence signal was observed. The
H30-Scutellarin, and H30-DMOG groups showed significant
increases in fluorescence (P < 0.05), similar to the positive
control DMOG (P < 0.05) (Figure 8E). WB results, with Histone
H3 as a nuclear protein reference, showed an increase in the
H5 group compared to the N5 group, while a decrease in the
H30 group compared to the H5 group. However, no significant
changes were noted in the H30-Scu group (Figure 8F). The luciferase
reporter system demonstrated that with Renilla as a reference, the
luciferase intensity in the H5 group was significantly higher than in
the N5 group (P < 0.0001), while it was significantly lower in the
H30 group compared to the H5 group (P < 0.05) (Figure 8G). This
suggested that hypoxia significantly enhanced HIF-la gene
transcription driven by HRE conserved genes, whereas high
glucose inhibited  hypoxia-induced  HIF-1la
transcription. The luciferase intensity the H30-S was
significantly higher than in the H30 group (P < 0.05), while H5-
S group was higher than H5 group (P < 0.01) (Figure 8H). The
luciferase intensity in the H30-S group was significantly higher than
in the H30 group for both CTAD and NTAD (P < 0.05) (Figure 8I).
The PCR results showed the expression of HIF-la downstream

significantly
in

target gene miR210 was significantly higher in hypoxia while lower
in hyperglycemia. The expression of miR210 in H30-S group was
higher than that in H30 group (Figure 8]). The original WB banding
pattern, the cell flow cytometry gated image, and the PCR
amplification plot were shown in Supplementary Figure S17.

4 Discussion

This study explored the molecular mechanisms of scutellarin in
treating DKD using network analysis, emphasizing the roles of
hypoxic response and apoptosis pathways. RNA transcriptome
and machine learning identified key gene sets related to DKD
outcomes and hypoxic apoptosis. Single-cell transcriptome
analysis confirmed the expression patterns and locations of hub
genes, identifying the CD-PC cells as the high-expression cell type.
In vitro experiments demonstrated scutellarin’s regulation of HIF-

la and its protective effect against cell apoptosis.
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DKD is characterized by chronic hypoxia. High glucose levels lead
to hypoxia in renal cells through several pathological pathways. First,
high glucose and hyperperfusion cause glomerular hyperfiltration,
increasing tubular reabsorption and oxygen consumption, leading
to functional hypoxia in the tubules (Chae et al, 2023). Second,
persistent high glucose induces oxidative stress and ferroptosis,
damaging mitochondrial function and disrupting the respiratory
chain, impairing oxygen synthesis (Wang and Chen, 2022). Third,
dysregulated glucose and lipid metabolism causes endothelial
dysfunction,
elevated vascular resistance, and reduced renal blood flow and

impaired vasodilation, increased vasoconstriction,
perfusion (Tanaka and Nangaku, 2013). Additionally, increased
ATP demand and reduced ATP generation result in ATP
deficiency and increased renal QO,, making kidney more
susceptible to hypoxic injury (Nangaku, 2006; Spencer et al,, 2021).
The stable expression of HIF-1a is crucial for hypoxia tolerance. HIF-
la is activated under hypoxic conditions (Koyasu et al, 2018).
Therefore, its significant upregulation was observed in DKD
patients in both RNA and single-cell transcriptome analyses. Under
high glucose conditions, HIF-la nuclear translocation efficiency
decreased, degradation accelerated, and transcriptional activity
reduced, impairing the hypoxic adaptive response and leading to
(Catrina 2021;
Thangarajah et al.,, 2010). Thus, in cell experiments, both Western

oxidative stress-related damage and Zheng,
blot and HRE-driven luciferase-reporter measurements showed higher
levels in H5 compared to N5 and lower levels in H30 compared to H5.
The modulating effect of scutellarin on HIF-1a is to antagonize the
inhibition effect of high glucose on HIF-1a, thereby reducing ROS
release and reducing apoptosis of renal tubule cells.

At the phenotypic level, scutellarin reduced mitochondrial ROS
release and apoptosis in mIMCD-3 cells under high glucose and
hypoxia. This finding was consistent with previous literature. Wang
Z et al. reported that scutellarin promoted JAK/STAT3 activation
and inhibited the expression of Bax and caspase-3, reducing ROS
production to prevent myocardial ischemia-reperfusion injury
(Wang et al, 2016). Yang L et al. Found that scutellarin could
improve mitochondrial dysfunction and inhibit apoptosis by
thereby attenuating OGD/R-induced
HT22 cells injury (Yang et al., 2024). In tubular cell, scutellarin

stimulating mitophagy,

could increase the expression of antioxidant enzyme HO-1, thereby
reducing the level of ROS. As a result, the degree of apoptosis in HK-
2 cells incubated under hypoxia/reoxygenation (H/R) conditions
was alleviated (Dai et al., 2022). Tubular cell apoptosis is a hallmark
of tubular injury in DKD. Mediating HIF-1a to regulate the hypoxic
response and alleviate tubular cell apoptosis might be an important
mechanism for scutellarin in treating DKD. For HIF-1a pathway,
scutellarin significantly upregulated HIF-1a transcriptional activity
by activating its domain especially CTAD. It also significantly
increased HIF-1a total protein fluorescence expression, similar to
the positive control DMOG. This finding aligned with previous
research. Bogacz et al. also found that scutellarin upregulated HIF-
la mRNA and thus reducing cell inflammation (Bogacz et al., 2021).

miR-210 was selected as the representative downstream target of
HIF-1a. HIF-1a VHL-mediated
degradation, accumulates in the nucleus, and transcriptionally

In hypoxic tissues. escapes

activates a battery of adaptive genes. Among these, miR-210 is

consistently and robustly induced: multiple solid tumours, ischaemic
heart tissue, and VHL-null renal carcinoma all show strong positive
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correlations between HIF-1a stabilisation and miR-210 upregulation
(Ivan and Huang, 2014). Chromatin-immunoprecipitation and
promoter-reporter assays further demonstrate direct binding of the
HIF-1a/ARNT heterodimer to a hypoxia-response element located
~40 bp upstream of the miR-210 precursor (Kulshreshtha et al,
2007a; Kulshreshtha et al., 2007b). Consequently, miR-210 is widely
regarded as a faithful downstream transcriptional read-out of HIF-1a
activity in both physiological and pathological settings.

However, we found that scutellarin has no significant effect on
the degradation of nuclear proteins. Its regulatory role consist in the
total protein level of HIF-la. The stability of HIF-la nuclear
translocation is affected by various environmental factors, and
the degradation rate is relatively fast. The scutellarin might
regulate the stability of cytoplasmic HIF-la protein through
processes such as enhancing the interaction between HIF-1la and
molecular chaperones like heat shock protein 90 (Hsp90), which can
prevent the recognition of HIF - 1a by E3 ubiquitin ligases and thus
delay its degradation (Isaacs et al., 2002). It might also inhibit the
activity of prolyl hydroxylase domain (PHD) enzymes that target
HIF-1a for hydroxylation and subsequent proteasomal degradation
(Fong and Takeda, 2008). The confirmation of the relevant
mechanism still requires further experimental verification.

The novelty of this study resided in its multi-layered strategy:
starting from bulk and single-cell transcriptomes, we leveraged state-
of-the-art machine-learning frameworks to progressively distill the
hypoxia- and apoptosis-centric circuitry underlying DKD This
pipeline ultimately nominated collecting-duct principal cells and
the
interrogation. Unlike previous investigations that often relied on a

HIF-1a protein as the primary targets for in vitro
single read-out, we interrogated scutellarin’s impact on HIF-la at
three complementary levels—nuclear translocation, total protein
abundance, and transcriptional output—thereby delineating a
nuanced map of how the compound reshaped tubular hypoxia
signaling. These findings provided a conceptual scaffold for future
mechanism-oriented studies of DKD pharmacotherapy.

Several limitations were acknowledged. First, although in silico
docking coupled with molecular-dynamics simulations offered
mechanistic hypotheses, scutellarin’s polyphenolic backbone
rendered it prone to the nonspecific membrane and protein
interactions characteristic of Pan-Assay Interference Compounds
(PAINS). Consequently, all computational predictions required
orthogonal validation by biophysical methods (SPR, ITC) and
functional cell-based assays before any pharmacological claim
could be asserted; such experiments were planned. Second, our
mechanistic evidence remained preliminary: precisely how
enhanced HIF-la transcriptional activity while

simultaneously curtailing its proteasomal degradation awaited

scutellarin

further biochemical dissection.

5 Conclusion

Through Network analysis, molecular docking, and single-
cell transcriptome analysis, it was found that HIF-la in the
DKD.
Scutellarin significantly reduced renal cell apoptosis under

hypoxic response pathway was a key gene for

high glucose and hypoxia by modulating HIF-1a and reducing
mitochondrial ROS release.

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1656409

Jiang et al.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

LJ: Formal Analysis, Data curation, Writing - original draft,
Resources, Conceptualization, Methodology, Writing - review and
editing, Investigation. JJ: Methodology, Writing - original draft,
Resources, Investigation. HZ: Visualization, Software, Validation,
Project administration, Writing - original draft. XW: Funding
Project administration, Resources,

acquisition, Supervision,

Writing - review and editing, Software, Writing — original draft.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported by
National High Level Hospital Clinical Research Funding, Elite
Medical Professionals Initiative of China-Japan Friendship Hospital
(No. ZRJY2025-QM10), Excellence & Innovation Initiative of China-
Japan Friendship Hospital (No. ZRZC2025-ZYC01) and the National
Natural Science Foundation of China (No. 82505310, No. 82374226).

Acknowledgments

All authors would like to thank the public and shared dataset
from the GEO database and express gratitude for the funding.

References

Barutta, F., Bellini, S., Canepa, S., Durazzo, M., and Gruden, G. (2021). Novel
biomarkers of diabetic kidney disease: current status and potential clinical
application. Acta Diabetol. 58 (7), 819-830. doi:10.1007/500592-020-01656-9

Bogacz, A., Mikolajczak, P. L., Wolek, M., Gorska, A., Szulc, M., Ozarowski, M., et al.
(2021). Combined effects of methyldopa and flavonoids on the expression of selected
factors related to inflammatory processes and vascular diseases in human placenta
Cells-An in vitro study. Molecules 26 (5), 1259. doi:10.3390/molecules26051259

Catrina, S. B,, and Zheng, X. (2021). Hypoxia and hypoxia-inducible factors in diabetes and
its complications. Diabetologia 64 (4), 709-716. doi:10.1007/s00125-021-05380-z

Chae, S. Y., Kim, Y., and Park, C. W. (2023). Oxidative stress induced by lipotoxicity
and renal hypoxia in diabetic kidney disease and possible therapeutic interventions:
targeting the lipid metabolism and hypoxia. Antioxidants (Basel) 12 (12), 2083. doi:10.
3390/antiox12122083

Chen, L., Zhang, Y. H.,, Wang, S., Huang, T., and Cai, Y. D. (2017). Prediction and
analysis of essential genes using the enrichments of gene ontology and KEGG pathways.
PLoS One 12 (9), €0184129. doi:10.1371/journal.pone.0184129

Chen, Y., Lee, K, Ni, Z., and He, J. C. (2020). Diabetic kidney disease: challenges,
advances, and opportunities. Kidney Dis. (Basel) 6 (4), 215-225. doi:10.1159/000506634

Courtois, E., Tubert-Bitter, P., and Ahmed, I. (2021). New adaptive lasso approaches
for variable selection in automated pharmacovigilance signal detection. BMC Med. Res.
Methodol. 21 (1), 271. doi:10.1186/s12874-021-01450-3

Dai, J., Li, C., Zhao, L., Guan, C., Yang, C., Zhang, N, etal. (2022). Scutellarin protects
the kidney from ischemia/reperfusion injury by targeting Nrf2. Nephrol. Carlt. 27 (8),
690-700. doi:10.1111/nep.14069

Deng, Y., Wang, J., Hu, Z, Cai, Y., Xu, Y., and Xu, K. (2022). Exploration of the
immune microenvironment of breast cancer in large population cohorts. Front.
Endocrinol. (Lausanne) 13, 955630. doi:10.3389/fendo.2022.955630

Frontiers in Pharmacology

16

10.3389/fphar.2025.1656409

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1656409/
full#supplementary-material

Ding, R, Qu, Y., Wu, C. H,, and Vijay-Shanker, K. (2018). Automatic gene annotation
using GO terms from cellular compound domain. BMC Med. Inf. Decis. Mak. 18 (Suppl.
5), 119. doi:10.1186/s12911-018-0694-7

Fine, L. G., and Norman, J. T. (2008). Chronic hypoxia as a mechanism of progression
of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 74(7):
867-872. doi:10.1038/ki.2008.350

Fong, G. H., and Takeda, K. (2008). Role and regulation of prolyl hydroxylase domain
proteins. Cell Death Differ. 15 (4), 635-641. doi:10.1038/cdd.2008.10

Handlogten, M. E., Hong, S. P., Westhoff, C. M., and Weiner, L. D. (2004). Basolateral
ammonium transport by the mouse inner medullary collecting duct cell (mIMCD-3).
Am. ]. Physiol. Ren. Physiol. 287 (4), F628-F638. doi:10.1152/ajprenal.00363.2003

Hauck, W. W., and Miike, R. (1991). A proposal for examining and reporting stepwise
regressions. Stat. Med. 10 (5), 711-715. doi:10.1002/sim.4780100505

Hoffmann, D., Kramer, B., Washio, T., Steinmetzer, T., Rarey, M., and Lengauer, T.
(1999). Two-stage method for protein-ligand docking. J. Med. Chem. 42 (21),
4422-4433. d0i:10.1021/jm991090p

Huang, B., Han, R, Tan, H,, Zhu, W,, Li, Y,, Jiang, F,, et al. (2023). Withdrawal:
scutellarin ameliorates diabetic nephropathy via TGF-B1 signaling pathway. Biol.
Pharm. Bull. 17, b23-00390. doi:10.1248/bpb.b23-00390

Isaacs, J. S., Jung, Y. J., Mimnaugh, E. G,, Martinez, A,, Cuttitta, F., and Neckers, L. M.
(2002). Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-
degradative pathway. J. Biol. Chem. 277 (33), 29936-29944. doi:10.1074/jbc.M204733200

Ivan, M., and Huang, X. (2014). miR-210: fine-tuning the hypoxic response. Adv.
Exp. Med. Biol. 772, 205-227. d0i:10.1007/978-1-4614-5915-6_10

Jiang, T., Bao, Y., Su, H., Zheng, R., and Cao, L. (2022). Mechanisms of Chinese herbal
medicines for diabetic nephropathy fibrosis treatment. Integr. Med. Nephrol. Androl. 9
(1), 11. doi:10.4103/2773-0387.353727

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphar.2025.1656409/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2025.1656409/full#supplementary-material
https://doi.org/10.1007/s00592-020-01656-9
https://doi.org/10.3390/molecules26051259
https://doi.org/10.1007/s00125-021-05380-z
https://doi.org/10.3390/antiox12122083
https://doi.org/10.3390/antiox12122083
https://doi.org/10.1371/journal.pone.0184129
https://doi.org/10.1159/000506634
https://doi.org/10.1186/s12874-021-01450-3
https://doi.org/10.1111/nep.14069
https://doi.org/10.3389/fendo.2022.955630
https://doi.org/10.1186/s12911-018-0694-7
https://doi.org/10.1038/ki.2008.350
https://doi.org/10.1038/cdd.2008.10
https://doi.org/10.1152/ajprenal.00363.2003
https://doi.org/10.1002/sim.4780100505
https://doi.org/10.1021/jm991090p
https://doi.org/10.1248/bpb.b23-00390
https://doi.org/10.1074/jbc.M204733200
https://doi.org/10.1007/978-1-4614-5915-6_10
https://doi.org/10.4103/2773-0387.353727
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1656409

Jiang et al.

Koyasu, S., Kobayashi, M., Goto, Y., Hiraoka, M., and Harada, H. (2018). Regulatory
mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer
Sci. 109 (3), 560-571. doi:10.1111/cas.13483

Kulshreshtha, R., Ferracin, M., Wojcik, S. E., Garzon, R., Alder, H., Agosto-Perez, F.].,
et al. (2007a). A microRNA signature of hypoxia. Mol. Cell Biol. 27 (5), 1859-1867.
doi:10.1128/MCB.01395-06

Kulshreshtha, R., Ferracin, M., Negrini, M., Calin, G. A., Davuluri, R. V., and Ivan, M.
(2007b). Regulation of microRNA expression: the hypoxic component. Cell Cycle 6 (12),
1425-1430. doi:10.4161/cc.6.12.4410

Liang, H., Jiang, K, Yan, T. A,, and Chen, G. H. (2021). XGBoost: an optimal machine
learning model with just structural features to discover MOF adsorbents of Xe/Kr. ACS
Omega 6 (13), 9066-9076. doi:10.1021/acsomega.1c00100

Liu, Y., Yang, X,, Gan, J.,, Chen, S., Xiao, Z. X,, and Cao, Y. (2022). CB-Dock2:
improved protein-ligand blind docking by integrating cavity detection, docking and
homologous template fitting. Nucleic Acids Res. 50 (W1), W159-W164. doi:10.1093/
nar/gkac394

Liu, D. F,, Chen, X. ., He, W. T, Lu, M., Li, Q,, Zhang, S., et al. (2024). Update on the
pathogenesis, diagnosis, and treatment of diabetic tubulopathy. Integr. Med. Nephrol.
Androl. 11 (4), €23-€29. doi:10.1097/IMNA-D-23-00029

Lépez-Blanco, J. R, Aliaga, J. I, Quintana-Orti, E. S., and Chacén, P. (2014). iMODS:
internal coordinates normal mode analysis server. Nucleic Acids Res. 42, W271-W276.
doi:10.1093/nar/gku339

Ma, L., Feng, Z. Y., and Li, P. (2024). New insights into the use of traditional Chinese
medicine for treating diabetic kidney disease by regulating DNA methylation. Integr.
Med. Nephrol. Androl. 11 (3), €24-00018. doi:10.1097/IMNA-D-24-00018

Nangaku, M. (2006). Chronic hypoxia and tubulointerstitial injury: a final common
pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17 (1), 17-25. doi:10.1681/ASN.
2005070757

National Pharmacopoeia Committee (2020). Pharmacopoeia of the People’S Republic
of China. Beijing: China Medical Science and Technology Press.

Nogales, C., Mamdouh, Z. M., ListSchmidt, MHHHW, and Casas, A. I. (2022).
Network pharmacology: curing causal mechanisms instead of treating symptoms.
Trends Pharmacol. Sci. 43 (2), 136-150. doi:10.1016/j.tips.2021.11.004

Polak, L., Skoda, P., Riedlova, K., Krivék, R., Novotny, M., and Hoksza, D. (2025).
PrankWeb 4: a modular web server for protein-ligand binding site prediction and
downstream analysis. Nucleic Acids Res. 53 (W1), W466-W471. doi:10.1093/nar/
gkaf421

Qi, X. M, Wu, G. Z, Wu, Y. G, Lin, H,, Shen, J. ], and Lin, S. Y. (2006).
Renoprotective effect of breviscapine through suppression of renal macrophage
recruitment in streptozotocin-induced diabetic rats. Nephron Exp. Nephrol. 104 (4),
el47-e157. doi:10.1159/000094966

Salt, D. W., Ajmani, S., Crichton, R., and Livingstone, D. J. (2007). An improved
approximation to the estimation of the critical F values in best subset regression.
J. Chem. Inf. Model 47 (1), 143-149. doi:10.1021/ci060113n

Sanz, H., Valim, C., Vegas, E,, Oller, J. M., and Reverter, F. (2018). SVM-RFE:
selection and visualization of the Most relevant features through non-linear kernels.
BMC Bioinforma. 19 (1), 432. doi:10.1186/s12859-018-2451-4

Frontiers in Pharmacology

17

10.3389/fphar.2025.1656409

Spencer, S., Wheeler-Jones, C., and Elliott, J. (2021). Hypoxia and chronic kidney
disease: possible mechanisms, therapeutic targets, and relevance to cats. Vet. J. 274,
105714. doi:10.1016/j.tvjl.2021.105714

Tanaka, T., and Nangaku, M. (2013). Angiogenesis and hypoxia in the kidney. Nat.
Rev. Nephrol. 9 (4), 211-222. doi:10.1038/nrneph.2013.35

Tarabanis, C., Kalampokis, E., Khalil, M., Alviar, C. L., Chinitz, L. A., and Jankelson,
L. (2023). Explainable SHAP-XGBoost models for in-hospital mortality after
myocardial infarction. Cardiovasc Digit. Health J. 4 (4), 126-132. doi:10.1016/j.
cvdhj.2023.06.001

Thangarajah, H., Vial, I. N, Grogan, R. H., Yao, D, Shi, Y., Januszyk, M., et al. (2010).
HIF-1alpha dysfunction in diabetes. Cell Cycle 9 (1), 75-79. doi:10.4161/cc.9.1.10371

Thomas, M. C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K. A. M.,
Zoungas, S., et al. (2015). Diabetic kidney disease. Nat. Rev. Dis. Prim. 1, 15018. doi:10.
1038/nrdp.2015.18

Wang, Y. F., and Chen, H. Y. (2022). Ferroptosis in diabetic nephropathy: a narrative
review. Integr. Med. Nephrol. Androl. 9 (1), pl. doi:10.4103/imna.imna_2_22

Wang, L, and Ma, Q. (2018). Clinical benefits and pharmacology of scutellarin: a
comprehensive review. Pharmacol. Ther. 190, 105-127. doi:10.1016/j.pharmthera.2018.05.006

Wang, Z., Yu, J., Wu, ], Qi, F., Wang, H., Wang, Z., et al. (2016). Scutellarin protects
cardiomyocyte ischemia-reperfusion injury by reducing apoptosis and oxidative stress.
Life Sci. 157, 200-207. doi:10.1016/j.1£s.2016.01.018

Wu, R, Liang, Y., Xu, M., Fu, K., Zhang, Y., Wu, L,, et al. (2021). Advances in chemical
constituents, clinical applications, pharmacology, pharmacokinetics and toxicology of
erigeron breviscapus. Front. Pharmacol. 12, 656335. doi:10.3389/fphar.2021.656335

Xu, X. X,, Zhang, W, Zhang, P., Qi, X. M., Wu, Y. G,, and Shen, J. J. (2013). Superior
renoprotective effects of the combination of breviscapine with enalapril and its mechanism in
diabetic rats. Phytomedicine 20 (10), 820-827. doi:10.1016/j.phymed.2013.03.027

Yang, L., Liu, X, Chen, S., Sun, J., Tao, Y., Ma, L., et al. (2024). Scutellarin ameliorates
mitochondrial dysfunction and apoptosis in OGD/R-insulted HT22 cells through
mitophagy induction. Biomed. Pharmacother. 179, 117340. doi:10.1016/j.biopha.
2024.117340

Yi, Y., Sun, D,, Li, P, Kim, T. K,, Xu, T., and Pei, Y. (2022). Unsupervised random
forest for affinity estimation. Comput. Vis. Media (Beijing). 8 (2), 257-272. doi:10.1007/
541095-021-0241-9

Zhang, P., Zhang, D., Zhou, W., Wang, L., Wang, B., Zhang, T., et al. (2023). Network
pharmacology: towards the artificial intelligence-based precision traditional Chinese
medicine. Brief. Bioinform 25 (1), bbad518. doi:10.1093/bib/bbad518

Zhao, H. L., Zhao, T., and Li, P. (2024). Gut microbiota-derived metabolites: a new
perspective of traditional Chinese medicine against diabetic kidney disease. Integr. Med.
Nephrol. Androl. 11(2):e23-e24. doi:10.1097/IMNA-D-23-00024

Zheng, X,, Narayanan, S., Xu, C,, Eliasson Angelstig, S., Griinler, J., Zhao, A, et al. (2022).
Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive
oxygen species production in diabetes. Elife 11, €70714. doi:10.7554/eLife.70714

Zhou, H., Mu, L., Yang, Z., and Shi, Y. (2023). Identification of a novel immune
landscape signature as effective diagnostic markers related to immune cell infiltration in
diabetic nephropathy. Front. Immunol. 14, 1113212. doi:10.3389/fimmu.2023.1113212

frontiersin.org


https://doi.org/10.1111/cas.13483
https://doi.org/10.1128/MCB.01395-06
https://doi.org/10.4161/cc.6.12.4410
https://doi.org/10.1021/acsomega.1c00100
https://doi.org/10.1093/nar/gkac394
https://doi.org/10.1093/nar/gkac394
https://doi.org/10.1097/IMNA-D-23-00029
https://doi.org/10.1093/nar/gku339
https://doi.org/10.1097/IMNA-D-24-00018
https://doi.org/10.1681/ASN.2005070757
https://doi.org/10.1681/ASN.2005070757
https://doi.org/10.1016/j.tips.2021.11.004
https://doi.org/10.1093/nar/gkaf421
https://doi.org/10.1093/nar/gkaf421
https://doi.org/10.1159/000094966
https://doi.org/10.1021/ci060113n
https://doi.org/10.1186/s12859-018-2451-4
https://doi.org/10.1016/j.tvjl.2021.105714
https://doi.org/10.1038/nrneph.2013.35
https://doi.org/10.1016/j.cvdhj.2023.06.001
https://doi.org/10.1016/j.cvdhj.2023.06.001
https://doi.org/10.4161/cc.9.1.10371
https://doi.org/10.1038/nrdp.2015.18
https://doi.org/10.1038/nrdp.2015.18
https://doi.org/10.4103/imna.imna_2_22
https://doi.org/10.1016/j.pharmthera.2018.05.006
https://doi.org/10.1016/j.lfs.2016.01.018
https://doi.org/10.3389/fphar.2021.656335
https://doi.org/10.1016/j.phymed.2013.03.027
https://doi.org/10.1016/j.biopha.2024.117340
https://doi.org/10.1016/j.biopha.2024.117340
https://doi.org/10.1007/s41095-021-0241-9
https://doi.org/10.1007/s41095-021-0241-9
https://doi.org/10.1093/bib/bbad518
https://doi.org/10.1097/IMNA-D-23-00024
https://doi.org/10.7554/eLife.70714
https://doi.org/10.3389/fimmu.2023.1113212
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1656409

	Scutellarin attenuated tubule cell apoptosis by modulating HIF-1α for the treatment of DKD: the insight integrating network ...
	1 Introduction
	2 Materials and methods
	2.1 Network analysis
	2.2 RNA transcriptome analysis
	2.3 The filter of geneset based on 8 machine learning algorism
	2.4 Single cell transcriptome analysis
	2.5 Molecular docking and dynamics simulation
	2.6 Cell culture
	2.7 Molecular experiment

	3 Result
	3.1 Network analysis showed that scutellarin might treat DKD by modulating hypoxic responses and apoptotic pathways
	3.2 DKD bulk RNA revealed eight differentially expressed genes related to hypoxia response and apoptosis pathway
	3.3 Machine learning identified HIF-1α and CASP3 as hub genes for DKD
	3.4 Single-cell transcriptome revealed CD-PC as the primary cell type for hub gene differential expression
	3.5 Molecular docking indicated potential binding capability of scutellarin with HIF-1α
	3.6 Scutellarin reduced apoptosis and ROS in collecting duct cells and upregulated HIF-1α transcriptional activity

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


