

OPEN ACCESS

EDITED BY

Catherine M. T. Sherwin, University of Western Australia, Australia

REVIEWED BY

Patricia Rodrigues, Lusofona University, Portugal Yuchao Zhang, Third Affiliated Hospital of Zhengzhou University, China

*CORRESPONDENCE

RECEIVED 28 June 2025 ACCEPTED 06 October 2025 PUBLISHED 27 October 2025

CITATION

Abdallah AM, Hussien AK, Alarfaj SJ, Elmasry TA, Kamal M, Sarhan H, Mosbeh MH and Sadek EM (2025) Comparative study between calcium gluconate with diosmin, cabergoline, and cabergoline with diosmin in prevention of ovarian hyperstimulation syndrome in high-risk women undergoing intracytoplasmic sperm injection (ICSI) procedures. Front. Pharmacol. 16:1655866. doi: 10.3389/fphar.2025.1655866

COPYRIGHT

© 2025 Abdallah, Hussien, Alarfaj, Elmasry, Kamal, Sarhan, Mosbeh and Sadek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Comparative study between calcium gluconate with diosmin, cabergoline, and cabergoline with diosmin in prevention of ovarian hyperstimulation syndrome in high-risk women undergoing intracytoplasmic sperm injection (ICSI) procedures

Aya M. Abdallah¹, Amal K. Hussien², Sumaiah J. Alarfaj³, Thanaa A. Elmasry^{4,5}, Marwa Kamal⁶*, Hatem Sarhan², Mohammed H. Mosbeh⁷ and Eman Mohamed Sadek¹

¹Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt, ²Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt, ³Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, ⁴Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt, ⁵Pharmacy Practice Department, Faculty of Pharmacy, Sinai University, Arish Branch, Arish, Egypt, ⁶Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt, ⁷Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia, Egypt

Background: Ovarian Hyper-stimulation Syndrome (OHSS) is the main iatrogenic problem linked to ovarian stimulation with reproductive medications. Increased vascular permeability is considered the cause of OHSS. It leads to excess fluid flowing from blood vessels into surrounding tissue. Serious consequences include imbalances in electrolytes and impairment of the heart, liver, and kidneys. **Objectives:** This study aims to the comparison of the efficacy of calcium gluconate and diosmin combination, cabergoline alone, and a combination of cabergoline and diosmin in preventing OHSS in high-risk individuals undergoing intracytoplasmic sperm injection (ICSI) procedures.

Methods: A prospective, randomized, single-blind, interventional study was carried out on 180 high-risk females for OHSS. They were divided into three groups, each with 60 women: Group A received IV infusion of calcium gluconate and diosmin. Group B received cabergoline alone. Group C received cabergoline and diosmin. Patients were regularly evaluated using clinical examinations and ultrasound to check for signs of OHSS. The main outcome was the frequency of moderate to severe OHSS. Secondary outcomes were the rates of clinical pregnancy, miscarriage, and live birth.

Results: The research demonstrated that there was no significant difference in the prevalence of mild OHSS among the three groups (p-value = 0.91for each). Nevertheless, the three groups showed a notable difference in the occurrence of moderate OHSS (p = 0.044) respectively. Notably, severe ovarian hyperstimulation syndrome wasn't observed in Group C. However, 13.3% of patients in Group B and 6.6% in Group A were affected with a highly significant difference

(p = 0.007). The chemical and clinical pregnancy rates across the three groups did not demonstrate any statistically significant differences (p-value of 0.53), (p-value of 0.17) correspondingly).

Conclusion: Our study found that using cabergoline and diosmin together in highrisk females undergoing ICSI procedures was significantly more successful in preventing OHSS compared to using calcium gluconate and diosmin or cabergoline alone. This combination did not impact miscarriage, pregnancy rate, or the likelihood of multiple pregnancy.

Clinical Trial Registration: identifier NCT06333691.

KEYWORDS

ovarian hyperstimulation, cabergoline, calcium gluconate, diosmin, hCG

1 Introduction

Ovarian hyperstimulation syndrome (OHSS) can occur during assisted reproduction as a potential complication of ovarian stimulation. Enlarged ovaries and the sudden movement of fluids from blood vessels to the abdominal cavity characterize it. This can result in bloating, increase the risk of blood clot formation, and reduce blood supply to organs (Tang et al., 2021). Moreover, severe complications such as imbalances in electrolytes and impairment of the heart, liver, and kidneys were observed (Hortu et al., 2021).

The incidence of OHSS was examined in two categories: dopamine agonists and calcium infusion. The meta-analysis found no discernible difference between the two groups (Tang et al., 2021). The infusion of calcium is utilized to reduce the occurrence of OHSS. Increased calcium levels in the blood impede renin release, triggered by cyclic adenosine monophosphate (cAMP), which leads to a decrease in the production of angiotensin-converting enzyme II & reduces vascular endothelial growth factor (VEGF) expression (Lotfalizadeh et al., 2024).

Dopaminergic agonists attach to dopaminergic receptors, which leads to the promotion of endocytosis of the VEGF receptor. This subsequently results in a reduction of neovascularization and vascular permeability (Palomba et al., 2023). Recent research showed that dopaminergic agonists are successful in preventing moderate to severe ovarian hyperstimulation syndrome when compared to no placebo & therapy (Tang et al., 2021).

Recently, diosmin has received a lot of focus due to its potency as a strong venotonic agent. It is a bioflavonoid that can be produced from hesperidin or extracted from various plants. It works by lowering vascular permeability by inhibiting the production of inflammatory agents such as thromboxane and prostaglandin E2 (Saad and Khalil, 2021). The study discovered that utilizing both cabergoline & diosmin in high-risk females with assisted reproductive technology (ART) was effective in preventing ovarian hyperstimulation syndrome compared to utilizing cabergoline alone (Saad and Khalil, 2021).

The current research aims to assess the efficacy of calcium gluconate-diosmin combination, cabergoline alone, and cabergoline-diosmin combination for the prevention of ovarian hyperstimulation in high-risk patients who underwent ICSI procedures.

2 Methods

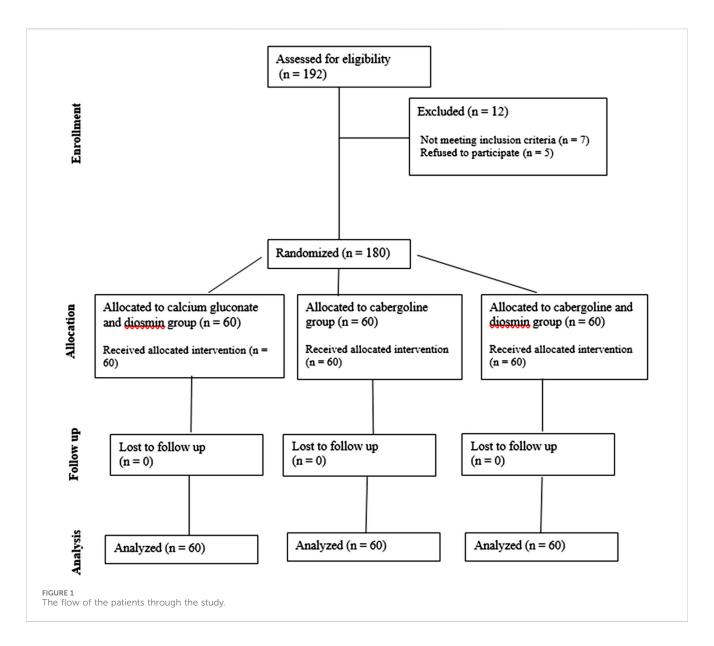
This prospective single blind (outcome assessor) interventional comparative study was carried out in the Nile Centre in Minia Government from October 2022 to February 2024. The study was

conducted per the standards of the Declaration of Helsinki and approved by the ethics committee of Minia University's Faculty of Pharmacy [Approval Number: MPEC (230110)]. The trial was registered on ClinicalTrials.gov with the identifier NCT0633369. Every participant received details about the study, and written informed consent was obtained from each individual.

2.1 Inclusion criteria

The participants in the study were women with infertility undergoing intracytoplasmic sperm injection (ICSI) therapy. These cases have been classified as being at high risk for developing ovarian hyperstimulation syndrome. A high-risk case for ovarian hyperstimulation syndrome is determined as a case who has previously had ovarian hyperstimulation syndrome or has more than twenty-four antral follicles in the ovaries throughout a baseline ultrasound (indicating polycystic ovary) or throughout ovarian induction, increased quantity of small follicles (8–12 mm), a high level of Anti-Müllerian Hormone (AMH), a rapidly rising level of serum Estradiol (E2), a high level of serum E2 at hCG trigger (>3,000 pg/mL), or presence of over twenty follicles observed during ultrasound examination on the day of retrieval or more than twenty oocytes retrieved.

2.2 Exclusion criteria


The exclusion criteria were patients with hypersensitivity to these agents, patients with endocrine illnesses, e.g., Cushing's disease, Diabetes Mellitus, asthmatic patients, congenital adrenal hyperplasia, patients with collagen vascular disease, hypercholesterolemic patients, and sickle cell anemia patients, and patients with cardiovascular diseases.

192 patient were evaluated for the eligibility to study (7 patients not meeting inclusion criteria, 5 patients refused to participate). One hundred eighty cases have been recruited for research, and the flow of the patients through the study is outlined in the CONSORT diagram (Figure 1).

2.3 Study design

2.3.1 Protocol of stimulation

All cases have been stimulated by a long stimulation protocol utilizing gonadotropin-releasing hormone agonist (GnRHa) (Saad and Khalil, 2021). All patients received:

- 1. A daily subcutaneous injection of 0.1 mL leuprorelin (Abbott, France) on day 20 of the preceding cycle (to suppress the pituitary),
- 2. Administering a highly purified form of follicle-stimulating hormone called (Fostimon, produced by IBSA in Switzerland), through an injection into the muscle on the second day of the menstrual cycle. The initial dose ranges from 150–300 μg and is modified daily based on the size of the follicles.
- A dose of highly pure hCG ten thousand international units (Choriomon, IBSA, Switzerland) was administered when more than two dominant follicles with a diameter of at least 18 mm were detected.

The oocyte was obtained using ultrasound-guided follicular puncture 36 h later. The serum estradiol level of all cases was assessed on the day of hCG administration, and patients with E2 levels 2,500–5,000 pg/mL and follicle size 16 mm or more were selected.

2.3.2 Protocol for OHSS prevention

- Group A: Women received IV infusion of calcium gluconate (Calcionate 10 mL of ten percent calcium gluconate, Memphis) in 200 mL saline within 30 min of ovum pickup and continued for the next 3 days in addition to diosmin two tablets (five hundred milligrams) three times a day for 2 weeks.
- Group B: Women received cabergoline (Dostinex 0.5 mg, Pfizer, Canada, Montreal) orally daily for 8 days after hCG triggering.
- Group C: Female cases were administered diosmin, two tablets (Daflon 500 mg, Servier, France), three times a day for a duration of 2 weeks. Additionally, they were given cabergoline, one tablet of 0.5 mg per day orally for a period of 8 days, starting on the same day as the hCG injection.

2.4 Diagnosis of OHSS

OHSS has been confirmed & graded according to the Royal College of Obstetricians & Gynecologists (RCOG, 2016) (Royal

College of Obstetricians and Gynaecologists RCOG, 2016) they range from mild to critical women.

- Mild OHSS was characterized by enlargement of ovaries on both sides, slight diarrhea, mild vomiting, or minor nausea.
- Moderate OHSS present with complaints of nausea, vomiting, enlarged ovaries larger than 5 cm, and the presence of ascites.
- Severe OHSS was characterized by tense ascites detected clinically or hydrothorax.
- Critical ovarian hyperstimulation syndrome has been identified based on the presence of tense ascites, significant hydrothorax, hematocrit levels exceeding 0.55, white blood cell count exceeding 25000/mL, anuria or oliguria, thromboembolism, & acute respiratory distress syndrome.

Severe or critical OHSS patients were hospitalized, while mild & moderate OHSS patients were managed in the outpatient setting.

The primary outcome was how often moderate to severe OHSS occurred, whereas the secondary outcome involved the rate of clinical pregnancy, rate of miscarriage, & rate of live birth.

2.5 Sample size calculation

The sample size was initially estimated based on prevalence data reported by Li et al. (Li et al., 2020), in which the intervention and control groups demonstrated prevalence rates of 6.8% and 19.4%, respectively. To ensure robustness, this estimation was subsequently confirmed using a priori power analysis with G*Power software (version 3.1.9.7). The calculation assumed a medium effect size (d = 0.4), a significance level of 0.05, statistical power of 0.80, and an allocation ratio of 1:1. The analysis indicated a total required sample size of 200 participants, which was adopted for the present study.

2.6 Statistical analysis

The data analysis software utilized was SPSS version 21. Normality was checked using the Shapiro–Wilk test. Depending on distribution, ANOVA or Mann–Whitney tests were applied, and Chi-square was used for categorical data. Significant ANOVA results were further examined using Tukey's post-hoc test, with p < 0.05 as the threshold for significance.

3 Results

The patients' demographic characteristics illustrated that there were insignificant variations in BMI, age, type, length, and etiology of infertility (Table 1). Moreover, there were insignificant differences among the 3 groups concerning basal FSH, LH, Estrogen level, prolactin, and AMH (Table 2).

It can be observed from Table 3 that there were statistically insignificant variations among the studied groups concerning the total number of gonadotropin ampules, stimulation duration, follicles retrieved, fertilization rate, & good-quality embryos.

The fertilization rate was determined by calculating the percentage of micro-injected oocytes that developed into two

pronuclei (Jawed et al., 2016), Embryos are typically classified as high quality when they achieve the blastocyst stage within 120 h after fertilization. In addition, they should have a fully developed trophectoderm encasing a large fluid-filled cavity and a densely packed group of inner cell mass cells (Ginsburg et al., 2014).

The data presented in Table 4 indicate that there were insignificant variances in the occurrence of mild ovarian hyper-stimulation syndrome among the 3 groups (p = 0.91 for each). However, the frequency of moderate ovarian hyper-stimulation syndrome was statistically significant between group A and B, A and C, B and C (p-value of 0.048, 0.04 and 0.01 respectively). Notably, severe ovarian hyper-stimulation syndrome was not observed in Group C. However, it affected 13.3% of patients in group B and 6.6% in group A, with a highly significant difference between group A and B, A and C, B and C (p = 0.047, 0.04 and 0.003 respectivley). Therefore, cabergoline and diosmin combination led to a considerable decrease in the occurrence of severe ovarian hyper-stimulation syndrome, as shown in Figure 2.

The 2ry outcomes (chemical pregnancy, clinical pregnancy, multiple pregnancy rate, & spontaneous abortion rate) across the three groups didn't demonstrate any statistically significant distinctions differences as shown in Table 5.

A chemical pregnancy is an early miscarriage that occurs within the first 5 weeks of gestation, prior to the pregnancy being visible on an ultrasound (Cleveland, 2025). A clinical pregnancy refers to a pregnancy that has continued for 6 weeks (or 42 days) following the start of the last menstrual period, and a hCG test verifies it (Wang et al., 2003).

4 Discussion

To our knowledge, this is the first clinical research to assess the efficacy of calcium gluconate with diosmin in the prevention of OHSS in ICSI procedure. The research found that the prevalence of mild OHSS was similar across all three groups, showing a p-value of 0.91 for each. However, there was a significant difference in the rates of moderate OHSS, with a p-value of 0.044. Additionally, severe OHSS was not present in Group C. In contrast, 13.3% of patients in Group B and 6.6% in Group A experienced severe OHSS with a highly significant difference, indicated by a p-value of 0.007.

Diosmin is an affordable, well-tolerated drug (Saad and Mohamed, 2017). During pregnancy, diosmin has a satisfactory safety profile. There have been no reports of embryotoxicity or other notable effects on reproductive function from using Diosmin during pregnancy. Additionally, the transfer of Diosmin through the placenta and into breast milk is minimal (Meyer, 1994). Research was undertaken involving 202 individuals who were susceptible to developing ovarian hyperstimulation during an in vitro fertilization (IVF) procedure. The cases were separated at random into two groups. Group I, consisting of ninety-eight cases, was given an intravenous calcium gluconate infusion, while Group II, consisting of 104 cases, was given cabergoline. The incidence of ovarian hyperstimulation syndrome was observed in only nine cases (9.2 percent) in the calcium infusion group, whereas sixteen cases (15.4 percent) of patients who received cabergoline had the condition. Nevertheless, the difference in the incidence of ovarian hyperstimulation syndrome between the two groups was found to be statistically insignificant. Out of nine cases in the calcium infusion group who had the problem, only one had severe ovarian hyperstimulation syndrome, two cases had moderate ovarian hyperstimulation syndrome,

TABLE 1 Demographic characteristics of women in the three studied groups.

5.4							
Demographic characteristics	Group A (calcium gluconate + diosmin) N = 60	Group B (cabergoline) N = 60	Group C (cabergoline + diosmin) N = 60	Test	P value		
Age (years) Mean ± SD	29.2 ± 5.75	29.5 ± 4.78	28.9 ± 5.36	F = 0.191	0.826		
BMI (Kg/m²) Mean ± SD	25.16 ± 2.1	24.73 ± 2.49	24.7 ± 3.08	F = 0.593	0.553		
Infertility duration (years) Mean ± SD	6.13 ± 4.16	6.5 ± 4.67	5.2 ± 2.9	F = 1.6992	0.185		
Type of infertility							
Primary	36 (60%)	30 (50%)	34 (56.7%)	$X^2 = 1.26$	0.53		
Secondary	24 (40%)	30 (50%)	26 (43.3%)				
Cause of infertility							
tubal	22 (36.7%)	24 (40%)	22 (36.7%)	X ² =	0.503		
Male factor	18 (30%)	18 (30%)	18 (30%)	5.318			
unexplained	10 (16.7%)	6 (10%)	14 (23.3%)				
more than one factor	10 (16.7%)	12 (20%)	6 (10%)				

P value >0.05: Not significant, P value <0.05 is statistically significant, p <0.001 is highly significant., SD, standard deviation; F, ANOVA test; X², Chi-square; BMI, body mass index.

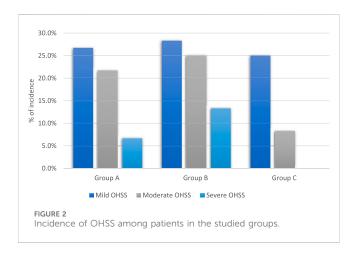
TABLE 2 Hormonal assay among patients in the studied groups.

Hormonal assay	Group A Mean <u>+</u> SD	Group B Mean <u>+</u> SD	Group C Mean <u>+</u> SD	Test	P value
FSH (mIU/mL)	7.57 ± 1.15	7.36 ± 1.39	7.2 ± 1.47	F = 1.144	0.320
LH (mIU/mL)	7.75 ± 1.78	7.32 ± 2.46	6.99 ± 1.38	F = 2.35	0.098
Prolactin (ng/mL)	16 ± 1.86	15 ± 2.8	15 ± 3.4	F = 2.854	0.075
AMH (ng/mL)	2.38 ± 1.15	2.14 ± 1.6	2.16 ± 1.2	F = 0.5997	0.550
Estrogen (E2) (pg/mL)	45 ± 3.15	46 ± 2.3	46 ± 2.6	F = 2.7307	0.067

TABLE 3 Outcome of ovarian stimulation among patients in the studied groups.

Outcome of ovarian stimulation	Group A N = sixty Mean <u>+</u> SD	Group B N = sixty Mean <u>+</u> SD	Group C N = sixty Mean <u>+</u> SD	Test	P value
Total dose of gonadotropin used (IU)	21.2 ± 0.84	20.9 ± 1.36	21.2 ± 1.5	F = 1.1238	0.32
Length of gonadotropin stimulation (days)	11.2 ± 0.8	10.93 ± 0.98	11.03 ± 0.96	F = 1.3299	0.267
Number of retrieved follicles	32.3 ± 6.5	30.3 ± 4.9	30.3 ± 7.15	F = 2.0446	0.132
Fertilization rate	70.1 ± 0.44	70.2 ± 0.28	70.1 ± 0.37	F = 1.4674	0.233
Number of good quality embryos	17.2 ± 3.68	16.7 ± 2.15	16.2 ± 3.59	F = 1.4491	0.237

and six cases had mild OHSS. In contrast, the cabergoline group had two females diagnosed with severe ovarian hyperstimulation syndrome, four cases with moderate ovarian hyperstimulation, and ten cases with mild OHSS. Each of the three women, according to both research groups, had severe ovarian hyperstimulation syndrome and had to be admitted to the hospital (Naredi and Karunakaran, 2013).


In addition, researchers performed an investigation including 170 cases, which were separated into two groups: the cabergoline group & the calcium gluconate group. The study revealed that six cases in the cabergoline group & eight cases in the calcium gluconate group had moderate ovarian hyperstimulation syndrome. Severe OHSS occurred in one patient from each group. There was an insignificant difference in moderate/severe ovarian hyperstimulation occurrence among the two groups (P value = 0.599) (Fouda et al., 2022).

A study conducted on 200 women who were at high risk for developing OHSS were randomly allocated into two groups. Group A

TABLE 4 Incidence of ovarian hyperstimulation (OHSS) syndrome among patients in the studied groups.

Incidence of ovarian hyperstimulation	Group A (calcium gluconate + diosmin) N = 60	Group B (cabergoline) N = 60	Group C (cabergoline + diosmin) N = 60	P value
Mild OHSS	16 (26.7%)	17 (28.3%)	15 (25%)	0.91
Moderate OHSS	13 (21.7%)	15 (25%)	5 (8.3%)	0.044 P1 = 0.048 P2 = 0.04 P3 = 0.01
Severe OHSS	4 (6.6%)	8 (13.3%)	0 (0%)	0.007 P1 = 0.047 P2 = 0.04 P3 = 0.003

P value >0.05: Not significant, P value <0.05 is statistically significant, p <0.001 is highly significant. P1: Group A vs. Group B, P2: Group A vs. Group C.

(Diosmin group, 100 women) and group B (Cabergoline group, 100 women) found that there was a statistically significant reduction (P = 0.005) in the incidence of OHSS in the diosmin group (12%) compared to cabergoline group (28%). The number of

severe OHSS cases in the cabergoline group (n=13) was significantly higher (P=0.003) than in the diosmin group (n=2) (Saad and Mohamed, 2017).

Calcium gluconate reduces renin secretion and subsequently lowers the levels of angiotensin II and VEGF (Lotfalizadeh et al., 2024). Diosmin has the advantage of prolonging the duration of contractions, even at high temperatures, enhancing venous tension. It specifically targets veins and does not impact the arterial system. Diosmin also decreases the adhesion and movement of leukocytes to vascular endothelial cells and restrains the release of inflammatory substances, thereby lowering capillary permeability (Li et al., 2020). Gurgan et al. investigated the effect of Calcium injections on the rates of ovarian hyperstimulation syndrome (OHSS) in women with polycystic ovary syndrome. The findings indicated that administering intravenous Calcium notably decreased both the occurrence and severity of OHSS, with just 3.6% of treated patients suffering from mild cases, in contrast to 16.2% in the control group. Additionally, no significant side effects were observed (Gurgan et al., 2011).

In addition, another study aimed to assess the efficacy of combining diosmin and cabergoline compared to using cabergoline

TABLE 5 Reproductive outcomes in ICSI cycles among patients in the study groups.

Reproductive outcomes in ICSI cycles	Group A (calcium gluconate + diosmin) N = 60	Group B (cabergoline) N = 60	Group C (cabergoline + diosmin) N = 60	Test	P value		
Chemical pregnancy							
Positive	32 (53.3%)	30 (50%)	36 (60%)	X ² =	0.53		
Negative	28 (46.7%)	30 (50%)	24 (40%)	1.254			
Clinical pregnancy							
Positive	26 (43.3%)	20 (33.3%)	30 (50%)	$X^2 = 3.462$	0.17		
Negative	34 (56.7%)	40 (66.7%)	30 (50%)	3.402			
Multiple pregnancy rate	5/60 (8.3%)	4/60 (6.6%)	4/60 (6.6%)	F = 2.6242	0.075		
Spontaneous abortion rate	7/60 (11.6%)	7/60 (11.6%)	6/60 (10%)	F = 2.5221	0.083		

P value >0.05: Not significant, P value <0.05 is statistically significant, p <0.001 is highly significant. SD, standard deviation; F, ANOVA test; X2, chi-square.

alone in preventing OHSS in high-risk cases completing assisted reproductive method cycles. One hundred women who were at a high risk of having OHSS participated in the trial. These females were divided into two groups: Group A, consisting of fifty women who received a combination of diosmin and cabergoline, & Group B, consisting of fifty women who received only cabergoline. The study findings showed a statistically significant decrease in ovarian hyperstimulation occurrence (P = 0.005) in the group receiving both diosmin & cabergoline compared to the group receiving only cabergoline (group B). Their findings indicated that the inclusion of diosmin along with cabergoline was more in its ability to avoid severe ovarian hyperstimulation syndrome & reduce the occurrence rates of ovarian hyperstimulation syndrome compared to cabergoline alone, particularly in high-risk cases (Saad and Khalil, 2021). Our study introduced a third group receiving calcium gluconate with diosmin to compare its efficacy with that of cabergoline and diosmin combination. We found that the combination of Cabergoline and diosmin is more effective in preventing OHSS in high-risk patients, followed by the combination of calcium gluconate and diosmin, and then Cabergoline alone.

Considering reproductive outcomes, research revealed that the implantation, clinical pregnancy, & ongoing pregnancy rates were similar in both groups (P = 0.736), which supports our results (p > 0.05 for each) (Fouda et al., 2022).

Also, another study reported that there was no significant difference in clinical pregnancy rate among both groups (diosmin+cabergoline) group and cabergoline group (P = 0.87) (Saad and Khalil, 2021).

Future research should directly compare the efficacy of calcium gluconate and cabergoline alone and with diosmin in a larger sample size to assess the efficacy of each group compared to others.

5 Conclusion

From the results of this investigation, it can be concluded that Cabergoline - Diosmin combination is more effective in preventing OHSS in high-risk patients undergoing ICSI procedures followed by Calcium gluconate - Diosmin combination, then Cabergoline alone without affecting miscarriage, pregnancy rate, or multiple pregnancy. We recommend conducting further studies on a large scale to confirm our results.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Approval number: MPEC (230110), Faculty of pharmacy, Minia university. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author contributions

AMA: Investigation, Data curation, Formal Analysis, Methodology, Writing – original draft. AKH: Conceptualization, Project administration, Supervision, Writing – review and editing. SJA: Project administration, Resources, Validation, Writing – review and editing. TAE: Resources, Validation, Visualization, Writing – review and editing. MK: Conceptualization, Investigation, Software, Writing – review and editing. HS: Investigation, Methodology, Writing – original draft. MHM: Conceptualization, Investigation, Methodology, Writing – review and editing. EMS: Data curation, Project administration, Software, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article.

Acknowledgments

We greatly appreciate the support of Princess Nourah bint Abdulrahman University in funding this research through: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R167), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

The authors would like to thank Mona Saber for her kind assistance and support, and appreciate the support provided by the Faculty of Pharmacy at Minia University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

 $\label{lem:cleveland} C.~(2025).~\textit{Chemical pregnancy: causes, symptoms and treatment.}~\textit{A} \textit{Vailable online at: https://my.clevelandclinic.org/health/diseases/22188-chemical-pregnancy.}$

Fouda, U. M., Elshaer, H. S., Youssef, G. G., Hanafy, A., Mehrem, W. M., Youssef, M. A., et al. (2022). Cabergoline versus calcium infusion in the prevention of ovarian hyperstimulation syndrome: a randomised controlled study. *J. Obstetrics Gynaecol.* 42, 122–126. doi:10.1080/01443615.2020.1870944

Ginsburg, E. S., and Racowsky, C. (2014). "Chapter 31 - assisted reproduction," in *Yen and Jaffe's reproductive endocrinology*. Editors J. F. Strauss and R. L. Barbieri Seventh Edition (Philadelphia: W.B. Saunders), 734–73.e12.

Gurgan, T., Demirol, A., Guven, S., Benkhalifa, M., Girgin, B., and Li, T. C. (2011). Intravenous calcium infusion as a novel preventive therapy of ovarian hyperstimulation syndrome for patients with polycystic ovarian syndrome. *Fertil. Steril.* 96, 53–57. doi:10. 1016/j.fertnstert.2011.04.094

Hortu, I., Karadadas, E., Ozceltik, G., Tavmergen, E., Tavmergen Goker, E. N., Yigitturk, G., et al. (2021). Oxytocin and cabergoline alleviate ovarian hyperstimulation syndrome (OHSS) by suppressing vascular endothelial growth factor (VEGF) in an experimental model. *Arch. Gynecol. Obstet.* 303, 1099–1108. doi:10.1007/s00404-020-05855-1

Jawed, S., Rehman, R., Ali, M. A., Abdullah, U. H., and Gul, H. (2016). Fertilization rate and its determinants in intracytoplasmic sperm injection. *Pak. J. Med. Sci.* 32, 3–7. doi:10.12669/pjms.321.8329

Li, T., Zhu, W., Liu, G., Fang, C., and Quan, S. (2020). Diosmin for the prevention of ovarian hyperstimulation syndrome. *Int. J. Gynaecol. Obstet.* 149, 166–170. doi:10.1002/ijgo.13100

Lotfalizadeh, M., Khadem, N., Sadeghi, T., Jahanpak, N., Mahmoudinia, M., Faraji, P., et al. (2024). The effect of intravenous calcium gluconate on the prevention of ovarian hyperstimulation syndrome. (A randomized clinical trial). *J. Gynecol. Obstetrics Hum. Reproduction* 53, 102850. doi:10.1016/j.jogoh.2024.102850

Meyer, O. C. (1994). Safety and security of daflon 500 mg in venous insufficiency and in hemorrhoidal disease. Angiology 45, 579–584. doi:10.1177/000331979404500614

Naredi, N., and Karunakaran, S. (2013). Calcium gluconate infusion is as effective as the vascular endothelial growth factor antagonist cabergoline for the prevention of ovarian hyperstimulation syndrome. *J. Hum. Reproductive Sci.* 6, 248–252. doi:10.4103/0974-1208.126293

Palomba, S., Costanzi, F., Nelson, S. M., Caserta, D., and Humaidan, P. (2023). Interventions to prevent or reduce the incidence and severity of ovarian hyperstimulation syndrome: a systematic umbrella review of the best clinical evidence. *Reproductive Biol. Endocrinol. RB&E* 21, 67. doi:10.1186/s12958-023-01113-6.

Royal College of Obstetricians and Gynaecologists (RCOG) (2016). The management of ovarian hyperstimulation syndrome: Green-top guideline.

Saad, A. S., and Khalil, A. (2021). Evaluation of the efficacy of the addition of Diosmin to cabergoline for the prevention of ovarian hyperstimulation syndrome in high-risk women undergoing assisted reproductive technology. *Hong Kong J. Obstetrics Gynaecol.* 4, 9–13.

Saad, A. S., and Mohamed, K. A. A. (2017). Diosmin versus cabergoline for prevention of ovarian hyperstimulation syndrome. *Middle East Fertil. Soc. J.* 22, 206–210. doi:10. 1016/j.mefs.2017.02.004

Tang, H., Mourad, S. M., Wang, A., Zhai, S. D., and Hart, R. J. (2021). Dopamine agonists for preventing ovarian hyperstimulation syndrome. *Cochrane Database Syst. Rev.* 4, Cd008605. doi:10.1002/14651858.CD008605.pub4

Wang, X., Chen, C., Wang, L., Chen, D., Guang, W., and French, J. (2003). Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. *Fertil. Steril.* 79, 577–584. doi:10.1016/s0015-0282(02) 04694-0