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inhibiting the PI3K/AKT/ABCB1
signaling axis
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Introduction: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-
related mortality worldwide. Although targeted therapies and immunotherapies
have improved treatment outcomes, the development of drug resistance
continues to limit clinical efficacy. This study aims to explore the potential
therapeutic effects and molecular mechanisms of pine needle oil and its key
bioactive component, bornyl acetate (BA), in NSCLC.

Methods: The anti-cancer activity of BA was evaluated in vitro using two NSCLC
cell lines, A549 and NCI-H460. Cell proliferation, invasion, migration, colony
formation, and apoptosis were assessed. Mechanistic studies focused on the
PI3K/AKT signaling pathway and ABCB1 expression levels. The AKT agonist SC79
was used to rescue phenotypic effects. In vivo, subcutaneous xenograft models
generated with NCI-H460 and A549 cells were employed to examine the
antitumor efficacy of BA.

Results: BA significantly inhibited proliferation, invasion, migration, and colony
formation in A549 and NCI-H460 cells and promoted apoptosis. Mechanistically,
BA suppressed the PI3K/AKT pathway, leading to downregulation of ABCB1. The
AKT activator SC79 partially reversed BA-induced inhibition of invasion and
migration. In vivo, BA treatment markedly attenuated the growth of both A549
and NCI-H460 xenograft tumors.

Discussion: These results demonstrate that BA exerts potent anti-tumor effects in
NSCLC by inhibiting the PI3K/AKT/ABCB1 axis. The findings provide a mechanistic
rationale for the development of BA and other natural product-based therapies,
particularly for the treatment of drug-resistant NSCLC.
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1 Introduction

Non-small cell lung cancer (NSCLC) accounts for approximately
85% of all lung cancer cases and is one of the leading causes of cancer-
related death worldwide (Siegel et al., 2025). Although the progression
of targeted therapies (e.g., epidermal growth factor receptor tyrosine
kinase inhibitors, EGFR-TKIs; anaplastic lymphoma kinase inhibitors,
ALK inhibitors) and immunotherapies (e.g, programmed death-1/
programmed death-ligand 1 inhibitors, PD-1/PD-L1 inhibitors) has
improved survival outcomes for patients, the development of resistance
has severely impaired clinical efficacy (Ramalingam et al., 2020; Golding
et al,, 2018) (Lahiri et al., 2023; Xia et al,, 2019; Liu et al,, 2022a). For
example, MET amplification, a key resistance mechanism in EGFR
mutant NSCLC, often results in patients not responding (Lu et al., 2021;
Remon et al., 2023; Wang et al,, 2019) to standard therapy, and even in
cases with high PD-L1 expression, the benefit of chemotherapy or
immunotherapy combination regimens is limited. Resistance
mechanisms involve genetic mutations (e.g, MET exon 14 skipping
mutations), epigenetic alterations, and tumor microenvironment
adaptation changes (Bukowski et al,, 2020), and new strategies are
urgently needed to overcome these barriers.

Among these mechanisms, the overexpression of ATP-binding
cassette (ABC) transporters, particularly ABCB1 (also known as
Multidrug Resistance Protein 1 (MDRI1) or P-glycoprotein (P-gp)),
is a major contributor to multidrug resistance (MDR) in NSCLC.
ABCBI effluxes a wide range of chemotherapeutic agents (e.g.,
paclitaxel, docetaxel, vinorelbine), leading to treatment failure.
Critically, high ABCB1 expression is frequently observed in
NSCLC tumors and is clinically associated with poor response to
chemotherapy and reduced overall survival (Liu et al., 2022b).
Therefore, targeting ABCB1 represents a promising strategy to
reverse MDR and improve therapeutic outcomes.

The expression and function of ABCBI are tightly regulated by
oncogenic signaling pathways. Notably, the hyperactivated PI3K/
AKT pathway, a common feature in NSCLC, has been
mechanistically linked to ABCBI1 upregulation. Activation of
PI3K/AKT signaling can promote the nuclear translocation of
transcription factors such as NF-kB, which subsequently binds to
the ABCBI1 promoter to enhance its transcription, thereby directly
establishing a molecular axis driving chemoresistance (Sun et al.,
2019; Huang et al., 2020).

Natural products have always been an important source of
anticancer drugs (Naeem et al, 2022). For example, paclitaxel
(derived from Taxus) (Pi et al, 2022; Wang et al, 2022) and
vinorelbine (derived from Catharanthus) (Ohe et al., 2007; Zhong
et al, 2021) are cornerstone drugs for NSCLC chemotherapy.
Preclinical studies have further demonstrated that compounds
such as curcumin (Liu et al, 2023; Tang et al, 2022) and
epigallocatechin gallate (EGCG) (Zheng et al., 2024; Wang et al.,
2024) have potential in modulating apoptosis and reversing drug
resistance. Notably, beyond polyphenols like curcumin and EGCG,
terpenoids—a vast class of plant-derived natural products that
includes monoterpenes such as borneol acetate—have also
demonstrated potent activity in overcoming ABCBI1-mediated
resistance. Several terpenoids have been shown to inhibit
ABCBI function and synergize with conventional chemotherapy,
highlighting their potential as resistance-reversing agents (Laiolo
et al., 2024; Fang et al., 2018). These components often have multi-

Frontiers in Pharmacology

02

10.3389/fphar.2025.1653461

target effects, making them ideal candidates for tackling complex
resistance pathways. However, monoterpenes from plant sources,
such as borneol acetate, have not been sufficiently studied
in NSCLC.

Pine needle oil is a traditional medicinal extract containing
bioactive components such as a-pinene, B-pinene and borneol
acetate, and has anti-inflammatory, antioxidant and antibacterial
properties (Ankney et al., 2022; Clark et al., 2014). Recent studies
have revealed broader anticancer effects: pine needle oil exhibits
antiproliferative and proapoptotic activity in liver cancer and breast
cancer models by regulating cell cycle progression and inhibiting
angiogenesis (Chen et al., 2015) (Ren et al., 2018). Notably, borneol
acetate inhibits the PI3K/AKT and MAPK/ERK pathways, which are
often abnormal in drug-resistant cancers. However, there have been
no studies exploring the role of pine needle oil or its constituents,
such as borneol acetate, in NSCLC.

In this study, we found that bornyl acetate suppresses NSCLC
through  PI3K/AKT/
ABCBI inhibition. These findings provide preclinical evidence for

progression in vitro and in vivo
natural product-based combination strategies, offering potential
synergistic efficacy with reduced toxicity profiles. By addressing
this research gap, we advance plant-derived adjuvant development

for drug-resistant NSCLC.

2 Materials and methods
2.1 Chemicals and compounds

The following compounds were used: Pine needle oil (PNO)
(MACKLIN, P905670), a-Pinene (P854547), p-Phellandrene
(P816047), B-Caryophyllene (C832338), D-Limonene (D887405),
Bornyl acetate (BA) (B909156), Camphene (C804854), and a-
Terpinene  (T819532). All
from MACKLIN.

compounds  were  obtained

2.2 Cell lines

Human NSCLC cell lines A549 and NCI-H460 were acquired
from the American Type Culture Collection (ATCC, Manassas,
VA). Cell line authentication was performed using short tandem
repeat Short Tandem Repeat (STR profiling), with genetic lineages
matching ATCC reference databases. Mycoplasma contamination
was routinely excluded using PCR-based detection.

A549 cells were maintained in DMEM/F12 (Gibco, 11330032),
while NCI-H460 cells were cultured in RPMI-1640 (Gibco,
11875093). Both cell media (CM) were supplemented with 10%
FBS (Gibco, 10270106) and 1% penicillin-streptomycin (Gibco,
15140122). Cells were incubated at 37 °C under 5% CO, and
subcultured at 80%-90% confluency using 0.25% trypsin-EDTA
(Gibco, 25200056).

2.3 Cell viability assay

Cell viability was assessed using a Cell Counting Kit-8 (CCK-8)
(ApexBio, K1018). Cells (1 x 10*/well) were seeded in 96-well plates

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1653461

Wu et al.

(n = 5 replicates/group) and allowed to adhere for 24 h. Following
48-h treatments with specified compounds, CCK-8 reagent was
added and incubated for 1 h. Absorbance was measured at
450 nm using a SpectraMax microplate reader (Molecular
Devices). Three independent experiments were performed. In
Cell Viability Assay experiments, an ethanol vehicle control
group was included. The concentration of ethanol was matched
to the highest concentration present in the BA or PNO
treatment groups.

2.4 Transwell assay

Cell migration and invasion were evaluated using Transwell
chamber assays (LABSELECT, China) with polycarbonate
membranes (8-um pore size), as previously described with minor
modifications.

For the migration assay, briefly, A459 and NCI-H460 cells were
harvested after trypsinization, washed with phosphate-buffered
(PBS), and
Subsequently, 1 x 10> cells in 200 pL of serum-free medium were

saline resuspended in serum-free medium.
seeded into the upper chamber of a 24-well Transwell insert. The
lower chamber was filled with 500 uL of complete culture medium
containing 10% FBS as a chemoattractant.

For the invasion assay, the upper chamber membranes
were pre-coated with 50 pL of Matrigel (BD Biosciences, San
Jose, CA, United States) diluted in serum-free medium (1:8 ratio)
and allowed to polymerize for 4-6 h at 37 °C. The same
cells seeding procedure as for the migration assay was
then followed.

After incubation for 24 h at 37 °C in a 5% CO, atmosphere,
non-migratory or non-invasive cells on the upper surface of the
membrane were carefully removed using a cotton swab. Cells
that had migrated or invaded to the lower surface were fixed with
4% paraformaldehyde for 20 min, stained with 0.1% crystal
violet for 15 min, and then rinsed gently with PBS. Five
randomly selected fields per chamber were imaged under an
inverted microscope, and cells were counted using Image]
software. Each experimental group was set up in triplicate,
and the assay was repeated three times independently. An
ethanol vehicle control group was included, with ethanol
concentrations matching the highest levels used in the BA or
PNO treatment groups.

2.5 Wound healing assay

Cell migration was assessed using a wound healing assay. Cells
in the logarithmic growth phase were seeded into 6-well plates at a
density of 3 x 10> per well and cultured until they reached 90%-
100% confluence. A uniform scratch was created in the center of
each well using a sterile 200 pL pipette tip, perpendicular to the plate
surface. The wells were gently rinsed three times with PBS to remove
dislodged cells. Serum-free medium containing the specified
concentrations of compounds was added, and the plates were
returned to the incubator. Images of the same field were
captured at 0, 24, and 48 h under an inverted microscope. The
scratch width was measured using Image] software, and cell
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migration was calculated as follows: Migration rate = (0 h scratch
width-scratch width at time point)/(0 h scratch width) x 100%. The
experiment was independently repeated three times. An ethanol
vehicle control was included in all assays, with ethanol
concentrations consistent with the highest levels present in the
BA or PNO treatment groups.

2.6 Western blot

The employed primary antibodies are as follows: anti-AKT
(CST, #9272), anti-Phospho-Akt (Ser473) (CST, #4060), anti-PI3
Kinase p85 (CST, #4257), anti-Phospho-PI3Kinasep85 (Tyr458)/
p55 (Tyr199) (CST, #4228), anti-ABCBI1(CST, #13978), anti-
caspase-3(CST, #14220) and anti-GADPH  (Servicebio,
#GB15004). Cell lysates containing target proteins were
subjected to electrophoretic separation in sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The
to PVDF
membrane. After transfer, the membrane was blocked with

separated protein was transferred from gel
protein-free flash blocking solution (Servicebio, #G2052) for
25 min at room temperature. Then they were treated with
either of the above primary antibodies and the corresponding
horseradish peroxidase (HRP) labeled secondary antibody
(Servicebio, #GB23303). In Western blot experiments, the
negative control (NC) group served as the ethanol vehicle
control group. The ethanol concentration in this group was
consistent with the highest ethanol concentration present in
the BA or PNO treatment groups.

2.7 Colony formation assay

A549 and NCI-H460 cells were seeded in 6-well plates at a
density of 1,000/well. After 24-h adherence, medium was
replaced  with  0.1%
synchronization. Following 48-h treatments

FBS-containing ~ medium  for

with  bornyl
acetate or pine needle oil, cells were cultured for 10-14 days
(media refreshed every 72 h). Colonies were fixed with 4% PFA
(Servicebio, G1101), stained with 0.1% crystal violet (Solarbio,
G1063), and quantified using ImageJ. Triplicate experiments
were conducted. In Colony formation assay experiments, an
ethanol vehicle control group was included. The concentration
of ethanol was matched to the highest concentration present in

the BA or PNO treatment groups.

2.8 RNA sequencing and GO and KEGG
pathway assessment

Total RNA was extracted from A549 cells (control and BA-
treated) using TRIzol reagent. RNA integrity was verified (RIN >8.0,
Agilent Bioanalyzer 2,100). Libraries were prepared with poly(A)
selection and sequenced (Illumina NovaSeq 6,000; 150-bp paired-
end) by PTM Bio (Hangzhou). Differentially expressed genes
(JlogoFC| > 1, FDR < 0.05) were analyzed via GO enrichment
(Gene Ontology Consortium) and KEGG pathway mapping
(KEGG PATHWAY Database).
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FIGURE 1

Analysis of pine needle oil and its eight active components. (A) Gas chromatogram of pine needle oil showing component separation. Distinct peaks
represent individual chemical constituents. Abscissa: retention time (min); Ordinate: response intensity. (B) Chemical structures of the eight identified
active components: Bornyl acetate, D-Limonene, p-Phellandrene, Caryophyllene, a-Pinene, Camphene, p-Pinene, a-Terpinene. (C) Analytica
parameters of active components, including retention time, compound name, molecular formula, molecular weight, retention factor, and

relative content.

2.9 Mouse tumour experiments

Animal studies were conducted and reported in accordance with
the ARRIVE guidelines. All animal experiments were approved by the
Institutional Animal Care and Use Committee of Guizhou Medical
University (Protocol No.2400397) and performed in compliance with
international standards for laboratory animal welfare. For in vivo
injections, BA and PNO were first dissolved in a small volume of
absolute ethanol. This solution was then emulsified by brief

Frontiers in Pharmacology

sonication in saline containing ethanol to form a homogeneous
suspension. The final concentration of ethanol in the injectate was
0.04%. The vehicle control for in vivo experiments consisted of the
same formulation (saline with 0.04% ethanol) without BA or PNO.
2 x 10° NCI-H460-luciferase cells/200 pL or 2 x 10° A549 cells/200 pL
media were subcutaneously introduced to nude mice. After tumor
formation, mice were injected intravenously with Bornyl acetate and
Pine needle oil. We carefully monitored tumor progression with
bioluminescence imaging (BLI) and recorded tumor fluorescence
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Inhibitory effects of pine needle oil and its eight active components on NSCLC cell proliferation. (A,B) Cell viability assessment and IC50 calculation
for cisplatin-treated A549 cells cultured under monotherapy conditions () or co-treated with varying concentrations of Bornyl acetate, D-Limonene, p-

Phellandrene, Caryophyllene, a-Pinene, Camphene, p-Pinene, a-Terpinene,

or ethanol vehicle. Data represent mean + SD (n = 3). (C,D) Cell viability

assessment and IC50 calculation for cisplatin-treated NCI-H460 cells under identical treatment conditions. Data represent mean + SD (n = 3).

intensity. The tumor volume was calculated as follows: V (mm?®) = a x
b*/2, where a and b represent the long and short diameters,
respectively. Post-experiment, all procedures in mice used
isoflurane (induction: 3%-5%, maintenance: 1%-3%), with doses
validated for murine physiology, and then tumors were excised for
imaging. Tumor tissues were processed into paraffin sections to
perform: (i) Terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling (TUNEL) for apoptosis assessment, (ii)
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Immunofluorescence (IF) staining of Ki-67 to evaluate cellular
proliferation, and (iii) Hematoxylin and eosin (H&E)
histopathological analysis. Major organs (heart, liver, spleen, lungs,
and kidneys) were similarly sectioned for H&E staining. Serum was
collected to assess hepatotoxicity by measuring alanine transaminase
(ALT) and aspartate transaminase (AST) levels, and nephrotoxicity
via blood urea nitrogen (BUN) and serum creatinine (Cr)
quantification.
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Bornyl acetate inhibits invasion, migration, and clonogenicity in NSCLC cells. (A) Transwell assay assessing migration and invasion in A549 and NCI-
H460 cells treated with BA (115 pg/mL), PNO (400 pg/mL), or ethanol vehicle. CM served as co-culture control. (B) Migratory and invasive A549 cells after
24-h co-culture. Scale bar: 200 um. (C) Quantification of migrating and invading cells. Data represent mean + SD (n = 3; ****p < 0.0001). (D) Migratory
and invasive NCI-H460 cells after 24-h co-culture. Scale bar: 200 pm. (E) Quantification of migrating and invading cells. Data represent mean + SD

(n = 3; ****p < 0.0001). (F,G) Wound healing test in PNO- or BA-treated A549 and NCI-H460 cells at O, 24, and 48 h (dashed lines indicate wound
margins). Scale bar: 200 pm. (H) Quantification of wound healing rate. Data represent mean + SD (n = 3; ****p < 0.0001). (I) Representative crystal violet-
stained colonies from clonogenic assays. (J) Quantification of colony formation. Data represent mean + SD (n = 3; ****p < 0.0001). (K,L) Cleaved/total
caspase-3 ratio in PNO- or BA-treated A549 and NCI-H460 cells, respectively.

2.10 Statistical analyses

All data analyses were conducted using Excel 2016. Before
statistical evaluation, normality and homogeneity of variance
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were assessed. Results are presented as mean + SD or mean *
SEM, and comparisons between groups were made using two-tailed
t-tests. A p-value of less than 0.05 was considered statistically
significant.
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3 Results

3.1 Bornyl acetate constitutes a component
of pine needle oil

PNO,
compositional profiling of PNOwas performed via silica gel

To  comprehensively — characterize comprehensive
chromatography coupled with structural characterization. The total
ion chromatogram (TIC) revealed distinct separation profiles of
individual constituents (Figure 1A). Structural elucidation identified
key compounds including D-limonene, BA, pB-phellandrene, -
caryophyllene, a-pinene, camphene, (-pinene, and a-terpinolene
(Figure 1B). Quantitative analysis demonstrated BA as a definable
and consistent constituent, comprising 3.1% of total PNO (retention
time: 27.562 min; molecular formula: C,H,,O,; Figure 1C).

3.2 Bornyl acetate exhibits potent
cytotoxicity against NSCLC cells

The cytotoxic effects of PNO and eight of its active components on
human NSCLC cells (A549 and NCI-H460) were evaluated using CCK-
8 assays. At equivalent concentrations, PNO and its components
differentially inhibited A549 cell viability, with bornyl acetate (BA)
showing the most pronounced effect and the lowest Half-Maximal
Inhibitory Concentration (ICs) values (A549: 106.9 pg/mL; P < 0.0001
vs. other compounds) (Figures 2A,B). Similarly, BA exhibited the
strongest suppression of NCI-H460 cell growth and the lowest ICs,
values (NCI-H460: 109.7 pug/mL; P < 0.0001 vs. other compounds)
(Figures 2C,D). Dose-response curves and comparative histograms
confirm that BA possesses optimal anti-proliferative activity against
NSCLC cells among PNO constituents. The ethanol vehicle, at this
concentration, exhibited no significant inhibitory effect on the
proliferation of either A549 or NCI-H460 cells.

3.3 Bornyl acetate suppresses invasion,
migration, and clonogenicity in NSCLC cells

We further assessed the antitumor effects of BA and PNO on
A549 and NCI-H460 cells. Transwell assays showed that BA and
PNO significantly inhibited cell invasion and migration versus
controls and solvent (ethanol, ETH) (P < 0.0001; Figures 3A-E).
Wound-healing assays corroborated BA- and PNO-induced
suppression of migration (P < 0.0001; Figures 3F-H). Colony
formation was also markedly reduced by BA and PNO (P <
0.0001; Figures 31,]). Western blotting revealed elevated cleaved-
caspase 3 levels in BA- or PNO-treated cells (Figures 3K,L),
indicating apoptosis induction. These results demonstrate that
BA mediates significant antitumor effects by inhibiting invasion,
migration, and clonogenicity.

3.4 Bornyl acetate suppresses PI3K/AKT/
ABCBL1 signaling

To elucidate the molecular mechanism of BA in NSCLC, we
used RNA sequencing to analyze transcriptome changes in
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A549 cells before and after BA treatment. RNA sequencing of
BA-treated A549 cells identified significant downregulation of
ABCBI1 (Figures 4A,B). KEGG pathway enrichment implicated
ABC transporters in BA’s mechanism (Figure 4C). Previous
studies have demonstrated that the PI3K/AKT signaling pathway
can activate the expression of the ABCB1 (Wu et al., 2024). Given
established PI3K/AKT regulation of ABCB1, Western blot analysis
confirmed BA-mediated suppression of p-PI3K(Tyr458), p-AKT
(Ser473), and ABCBI in A549 and NCI-H460 cells (Figures 4D,E).

To pharmacologically reverse the effects of BA, we applied the
specific AKT agonist SC79 (10 puM). Western blot analysis was
performed to evaluate the expression levels of PI3K, p-PI3K, AKT,
p-AKT, and ABCBI in A549 and NCI-H460 cells treated with
SC79 in combination with BA. The results indicated that co-
treatment with SC79 and BA led to an upward trend in p-AKT
and ABCBI expression (Figures 4F,G).

To further examine the involvement of the PI3K/AKT pathway in
BA-induced ABCBI suppression, we treated A549 and NCI-H460 cells
with the AKT inhibitor Capivasertib (5 uM), either alone or in
combination with BA, along with the AKT agonist SC79 plus BA.
Western blot analysis revealed that Capivasertib alone downregulated
ABCB1 expression, while its combination with BA produced a
synergistic inhibitory effect. Conversely, activation of AKT by
SC79 effectively reversed the suppressive effect of BA (Figures 4H,I).

In parallel, we used the PI3K agonist 740 Y-P (20 uM), both
alone and in combination with BA. Western blot results
demonstrated that 740 Y-P alone significantly elevated the
protein levels of p-PI3K, p-AKT, and ABCBI1. Moreover, PI3K
BA-mediated
under

counteracted the
and ABCBI1

activation ~ markedly

downregulation of p-AKT combined
treatment (Figures 4],K).

Additionally, treatment with the PI3K inhibitor LY294002
(10 uM), either alone or together with BA, resulted in significant
reduction of p-PI3K, p-AKT, and ABCBI levels. The combination of
LY294002 and BA synergistically enhanced this inhibitory effect,
indicating that PI3K inhibition mimics the cellular actions of BA
(Figures 4L,M). In conclusion, BA modulates the PI3K/AKT
signaling axis leading to downregulation of ABCBI, thereby
exerting its functional effects.

Rescue experiments with AKT agonist SC79 partially reversed BA-
induced inhibition of invasion (P < 0.00I), migration (P < 0.001), and
clonogenicity (P < 0.001) (Supplementary Figure S1A-H). Western blot
was used to detect the expression levels of PI3K, p-PI3K, AKT, p-AKT
and ABCBI in A549 and NCI-H460 cells treated with different doses of
AKT agonist (SC79). The results showed increased expression of
p-AKT and ABCBI, indicating successful activation of AKT by
SC79 (Supplementary Figure S1LJ). Caspase3 and cleaved-caspase
3 expression was also examined, and cleaved-caspase 3 expression
was elevated in the presence of SC79 and BA (Supplementary Figure
SIK,L). These demonstrates functional dependence on PI3K/AKT
signaling for BA’s anti-tumor effects.

3.5 Bornyl acetate inhibits NSCLC tumor
growth in vivo

To evaluate the in vivo antitumor efficacy of BA and PNO, 2 x
10° NCI-H460-luciferase cells were subcutaneously injected into the
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flanks of nude mice. Subsequently, mice received intravenous
injections of either 11.5 mg/kg BA, 40 mg/kg PNO, or saline
(control group; Figure 5A). Tumor progression was monitored
closely using BLI, and tumor fluorescence intensity was recorded.
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tumors were

excised

The results demonstrated a significant reduction in fluorescence
intensity in both BA- and PNO-treated groups compared to the
saline control group (P < 0.0001; Figures 5B,C). At the experimental
endpoint,

for histological and
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FIGURE 5

Borneol acetate inhibits NCI-H460 tumor growth in vivo. (A) Experimental schema: Nude mice received subcutaneous injections of 2 x 10° NCI-
H460-luciferase cells. Vehicle, PNO, or BA were administered via tail vein. Tumor progression was monitored by bioluminescence imaging (BLI); tumors
and organs were harvested terminally. (B) BLI pseudocolor images on days 8, 15, and 22. (C) Quantified fluorescence intensity. Data represent mean + SD
(*p < 0.001, p < 0.0001). (D) Excised tumors. Reduced BA group volume demonstrates tumor suppression. (E) Tumor weight quantification (p <
0.0001). (F) H&E-stained tumor sections. (G) Immunofluorescence staining of tumor sections: ABCBL1 (blue, resistance marker), Ki67 (green, proliferation
marker), TUNEL (red, apoptosis marker). Scale bar: 50 pm. (H) Quantified immunofluorescence intensity. Data represent mean + SD (**p < 0.01, ***p <
0.001, ****p < 0.0001). (1) H&E staining of liver, spleen, lung, and kidney sections. (J) Liver/kidney function indices (ns p > 0.05).

immunofluorescence analyses. BA and PNO treatment significantly =~ Immunofluorescence staining for ABCB1, Ki-67, and TUNEL
reduced both tumor size and tumor weight (Figures 5D,E).  showed that BA treatment downregulated ABCBI expression,
Hematoxylin and eosin (H&E) staining revealed a greater  decreased Ki-67 expression, and increased TUNEL expression
number of necrotic foci within tumor tissues in the treatment (P < 0.0001; Figures 5G,H). H&E staining of major organs
groups compared to the control group (Figure 5F).  (heart, liver, spleen, lung, and kidney) revealed relatively normal
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FIGURE 6

Borneol acetate inhibits A549 tumor growth in vivo. (A) Experimental schema: Nude mice received subcutaneous injections of 2 x 10° A549-
luciferase cells. Treatments identical to Figure 5A. (B) Excised tumors. Reduced BA group volume indicates tumor suppression. (C) Tumor weight
quantification (****p < 0.0001). (D) H&E-stained tumor sections. (E,F) Immunofluorescence staining of tumor sections (markers as in Figure 5G). Scale
bar: 50 pm. (G) H&E staining of major organs. (H) Liver/kidney function indices (ALT, AST, BUN, Cr; ns: p > 0.05).

tissue architecture, indicating no obvious histopathological toxicity
(Figure 5I). Assessment of liver and kidney function showed no
(ALT) aspartate
aminotransferase (AST) levels in BA- or PNO-treated groups.

increase in alanine aminotransferase or
While blood urea nitrogen (BUN) levels were slightly elevated,
this change was not statistically significant. Creatinine (Cr) levels
remained unchanged (Figure 57).

Consistent results were observed in the A549 xenograft models.

BA and PNO treatment significantly reduced tumor size and weight
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(P < 0.0001; Figures 6A-C). H&E staining again indicated increased
necrotic foci in tumors from treated mice relative to controls
(Figure 6D). Immunofluorescence analysis confirmed that BA
treatment downregulated ABCBI expression, decreased Ki-67
expression, and increased TUNEL expression (P < 0.0001;
Figures 6E,F). H&E examination of vital organs (heart, liver,
spleen, lungs, and kidneys) showed relatively normal structures
and no significant histopathological toxicity (Figure 6G). Liver
and kidney function tests revealed no increase in ALT or AST
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levels, a slight but statistically non-significant decrease in BUN levels
(Note: Direction change to match Figure 6H description), and no
increase in Cr levels in the BA- or PNO-treated groups (Figure 6H).
These findings collectively demonstrate that BA and PNO effectively
inhibit NSCLC growth and has no significance toxicity in vivo. Our
findings demonstrated that BA exerts potent anti-NSCLC effects by
targeting the PI3K/AKT/ABCBI axis (Figure 7).

4 Discussion

NSCLC remains a formidable clinical challenge due to the frequent
development of multidrug resistance (MDR), often driven by the
overexpression of efflux transporters like ABCBI/P-glycoprotein.
Natural products offer a rich source of multi-target agents to
overcome MDR. Here, we identify BA, a key monoterpenoid
component of PNO, as a potent inhibitor of NSCLC progression.
We demonstrate that BA suppresses proliferation, invasion, migration,
and induces apoptosis in vitro, and inhibits tumor growth in vivo.
Critically, through comprehensive pharmacological modulation (using
PI3K inhibitor LY294002, activator 740Y-P, AKT activator SC79 and
inhibitor Capivasertib), we establish that BA exerts these effects
primarily through inhibition of the PI3K/AKT/ABCBI signaling
axis. Although targeted therapies (e.g., EGFR-TKIs, ALK inhibitors)
(Cooper et al, 2022) and immunotherapies (e.g, PD-1/PD-
L1 inhibitors) (Chen et al, 2020) have made progress in recent
years, the development of drug resistance has severely limited their
clinical efficacy. Resistance mechanisms driven by genetic alterations
(such as MET amplification), epigenetic modifications, and tumor
microenvironment adaptation greatly reduce therapeutic efficacy (Lu
et al,, 2021). Therefore, there is an urgent need for new drugs that can
overcome multidrug resistance. Natural products are an important
source of such drugs, exemplified by paclitaxel (Pi et al,, 2022) and
vinorelbine (Ohe et al,, 2007) in current NSCLC treatment regimens.

Previous studies have shown that bornyl acetate (BA), a key
monoterpenoid in PNO, exhibits antitumor activity in liver cancer
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and breast cancer models by inhibiting proliferation and
angiogenesis through inhibition of PI3K/AKT and MAPK/ERK
pathways (Chen et al, 2015; Ren et al.,, 2018). However, its role
in NSCLC has not been explored. This study fills this critical gap and
demonstrates that BA, as a key active component of PNO, exerts a
powerful antitumor effect in NSCLC. BA significantly inhibited
viability, invasion, migration and colony formation of A549 and
NCI-H460 cells, and induced apoptosis through caspase-3 cleavage.

The PI3K/AKT pathway is a central driver of tumor survival,
proliferation, and treatment resistance in NSCLC (Shi et al., 2022;
McDaid et al., 2024). Crucially, this pathway regulates ATP-binding
cassette (ABC) transporters, including ABCB1 (P-glycoprotein)
(Wu et al, 2024), which mediate chemotherapy resistance
through drug efflux (Skinner et al, 2023). Consistent with
previous reports, we demonstrate that activation of PI3SK/AKT
promotes ABCB1 expression. Our RNA-seq analysis showed BA
downregulates ABCB1 gene expression, while Western blotting
showed simultaneous and
ABCBI1 protein levels. Functional rescue experiments using the

suppression of p-PI3K, p-AKT,

AKT agonist SC79 provided initial confirmation of this axis’s
involvement. To further establish causality, we utilized a panel of
pharmacological ~ tools. ~ Notably, the PI3K inhibitor
LY294002 mimicked the effect of BA by reducing p-AKT and
ABCBI levels, whereas the PI3K activator 740Y-P markedly
attenuated BA-induced downregulation of these proteins. These
findings offer direct functional evidence that PI3K acts as a key
upstream mediator of BA’s action. Moreover, the AKT inhibitor
Capivasertib alone downregulated ABCBI, and its combination with
BA produced a synergistic effect, underscoring the central role of
AKT in this regulatory cascade.

An interesting comparison emerged from the efficacy profiles of
PNO and BA. The ICs, value for PNO was approximately 500 pg/mL,
compared to ~100 ug/mL for BA. Given that BA constitutes only 3.1%
of PNO, its theoretical ICsp—should it be the sole active
component—would be around 15.5 pg/mL (500 pg/mL x 3.1% =
155 pg/mL). The experimentally determined ICs, of BA is
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substantially higher than this calculated value, suggesting that although
BA is the most potent constituent identified, it is likely not the only
active compound in PNO. The significant tumor suppression observed
with PNO in vivo may result from additive or synergistic interactions
between BA and other components, such as 3-pinene, camphene, or
other monoterpenes, which have documented anticancer properties
(Kamran et al,, 2022). This discrepancy underscores the complexity of
natural extracts and implies that whole extracts may possess therapeutic
benefits over single compounds. Further studies are needed to
systematically examine the interactions between BA and other major
constituents of PNO to fully elucidate its composition—activity
relationship.

Despite these compelling results, our study has several limitations.
First, although pharmacological evidence strongly supports the
involvement of the PI3K/AKT/ABCBI pathway, genetic gain- and
loss-of-function studies are required to establish definitive causality.
Second, while we observed ABCB1 downregulation at the protein level,
we did not functionally assess reduced pump activity using methods
such as calcein-AM accumulation assays. Third, the in vitro models
used (A549 and NCI-H460) do not directly represent EGFR-mutant or
ALK-fusion-positive contexts, where overcoming TKI resistance is most
clinically relevant. Fourth, the semi-quantitative nature of our GC-MS
analysis and the unexamined bioavailability of BA highlight important
areas for future pharmaceutical development. Finally, although BA
induced apoptosis, its potential effects on other cell death mechanisms
(e.g., autophagy) or DNA damage response remain unexplored.

Although pharmacological modulators of PI3K (LY294002 and
740Y-P) robustly demonstrate that BA suppresses the PI3K/AKT/
ABCBI1 pathway, this approach does not constitute direct target
validation. Specifically, our study lacks direct measurement of PI3K
kinase activity to conclusively prove that BA inhibits PI3K
enzymatically. Thus, while our data strongly implicate PI3K as
an upstream effector, we cannot exclude the possibility that BA
inhibits AKT phosphorylation via an alternative target. Future
studies using direct enzymatic assays and genetic manipulations
(e.g., PI3K overexpression or siRNA knockdown) will be essential to
confirm causality and account for potential off-target effects.

Beyond mechanistic insights, the translational potential of a new
compound must be rigorously assessed. Although tools such as the
AKT agonist SC79 and the PI3K activator.

740 Y-P were valuable for pathway validation, they are
unsuitable for therapeutic use due to known off-target effects
(e.g., SC79’s induction of nitric oxide synthesis). Moreover, the
clinical development of BA faces considerable challenges. Critical
parameters including its bioavailability, pharmacokinetic profile,
optimal formulation, and safety window in humans remain
largely unknown. These aspects represent essential prerequisites
that must be thoroughly investigated before BA can be seriously
considered for therapeutic applications.

5 Conclusion

In conclusion, our study offers robust pharmacological evidence
that BA, a principal bioactive constituent of PNO, inhibits NSCLC
progression by targeting the PI3K/AKT signaling pathway and
downregulating ABCB1 expression. The consistent anti-tumor effects
observed across both in vitro and in vivo models strongly supports this
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mechanism. These results not deepen the understanding of BA’s anti-
cancer properties, but also establish a basis for further research into
ABC transporter regulation in therapy-resistant NSCLC. Future studies
employing genetic manipulations and functional transporter assays will
be crucial to fully delineate this pathway and evaluate its therapeutic
relevance. This work provides the first evidence of the effectiveness of
BA in NSCLC and elucidates a novel mechanism for reversing
resistance. Our findings position BA as a promising combination
therapy candidate with the potential to enhance efficacy while
reducing toxicity in drug-resistant NSCLC. Future studies will need
to optimize delivery systems and assess the efficacy of BA in
combination with standard chemotherapy drugs.
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