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Sirtuin-3 (SIRT3) is a mitochondrial deacetylase highly expressed in the nervous
system, known to regulate mitochondrial homeostasis, energy metabolism,
neuroinflammation, apoptosis, and oxidative stress, suggesting its potential
neuroprotective role in central nervous system (CNS) disorders. Recent studies
indicated that SIRT3 improves neuronal survival by reducing oxidative damage,
alleviating neuroinflammation, and modulating autophagy. Therefore, it is
imperative to conduct more in-depth and extensive investigations into the
mechanisms underlying SIRT3 in central nervous system disorders. This review
summarized current research advances on SIRT3, including its fundamental
molecular structure, key downstream targets, and mechanisms of action in
certain CNS diseases. It further analyzed the potential pharmacological
mechanisms of several SIRT3 agonists and explored their therapeutic value in
improving CNS disorders. Based on existing evidence, SIRT3 emerges as a
promising therapeutic target, offering novel strategies for treating neurological
diseases.
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1 Introduction

In recent years, research on the pathological mechanisms of central nervous system
(CNS) diseases has increasingly focused on the regulatory network of mitochondrial
dysfunction and oxidative stress imbalance (Rakshe et al, 2024; Lautrup et al, 2019).
The mitochondrial deacetylase Sirtuin-3 (SIRT3) has been identified as a critical regulator of
metabolic systems, demonstrating its essential function in sustaining mitochondrial
efficiency and coordinating cellular bioenergetics (Trinh et al., 2024). SIRT3 governs
key physiological processes including mitochondrial quality control, oxidative stress
resistance, energy metabolism, and apoptosis by mediating protein deacetylation (Meng
et al.,, 2019). By activating superoxide dismutase 2 (SOD2), SIRT3 reduces reactive oxygen
species (ROS) accumulation, thereby suppressing neuroinflammation and oxidative
damage to enhance neuronal survival (Tyagi and Pugazhenthi, 2023). Furthermore,
SIRT3 regulates mitophagy by activating downstream signaling pathways, including
peroxisome proliferator-activated receptor y coactivator-la (PGC-la), to promote

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphar.2025.1652296/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1652296/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1652296/full
https://orcid.org/0009-0009-2541-3534
https://orcid.org/0000-0003-3071-295X
https://orcid.org/0009-0006-0268-759X
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1652296&domain=pdf&date_stamp=2025-09-03
mailto:arthasdxl@163.com
mailto:arthasdxl@163.com
mailto:huangxw@ccucm.edu.cn
mailto:huangxw@ccucm.edu.cn
https://doi.org/10.3389/fphar.2025.1652296
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1652296

Hong et al.

mitochondrial biogenesis and maintain mitochondrial homeostasis
(LiY.etal,2018). Additionally, SIRT3 modulates the NAD*/NADH
ratio to enhance the tricarboxylic acid cycle and oxidative
phosphorylation, ensuring neuronal energy supply and slowing
disease progression (Cheng et al, 2021; Zhang et al, 2023).
Notably, SIRT3 with
advancing age, correlating with increased neurodegenerative

expression  progressively — decreases
disease susceptibility (Munteanu et al., 2024). Evidence from
animal study demonstrated that exogenous upregulation of
SIRT3 effectively ameliorated cognitive dysfunction in transgenic
mouse models of Alzheimer’s disease (AD) (Yin et al., 2018a). These
findings highlighted that SIRT3 emerged as a druggable target with
significant clinical potential, while pharmacological activation of this
mitochondrial deacetylase may represent a novel therapeutic avenue
for treating CNS disorders. Therefore, further investigation of the
upstream regulatory mechanisms of SIRT3 and its interactions with
other cellular signaling pathways will enhance comprehension of the
pathological mechanisms underlying CNS diseases while providing
innovative conceptual frameworks for developing preventive and
therapeutic strategies.

2 Physiological basis of SIRT3
2.1 Structure

SIRT3 is a mitochondrial NAD*-dependent deacetylase that
plays critical roles in cellular energy metabolism, oxidative stress
response, and apoptosis regulation (Shen et al., 2020). The gene of
SIRT3 is located on human chromosome 11p15.5, encoding a 399-
amino acid protein with a full-length molecular weight of
approximately 44 kDa. Upon mitochondrial translocation, the
mitochondrial targeting sequence (MTS) is cleaved, yielding
mature SIRT3 with a molecular weight of about 28 kDa (Lescai
etal., 2009; Donadini et al., 2013). The protein structure comprises a
large domain and a small domain connected by a flexible loop
region, forming a stable catalytic core. The large domain contains a
Rossmann fold responsible for NAD* binding and providing
fundamental structural elements for catalytic activity, while the
small domain stabilizes NAD* binding and regulates substrate
access to the catalytic pocket (Zhang J. et al,, 2020). Additionally,
the C-terminal region mediates protein-protein interactions to
enhance substrate specificity or modulate enzymatic activity (Jin
2009a). The
SIRT3 underpins its multifunctional roles.

et al, intricate structural architecture of

2.2 Cellular localization and catalytic
properties

SIRT3 primarily localizes to the mitochondrial matrix, and its
sub-cell localization is tightly regulated by the MTS, transmembrane
transport systems, post-translational modifications (PTMs), and
intracellular signaling pathways (Zhang et al, 2015). The mRNA
of SIRT3 is translated by free ribosomes in the cytoplasm, producing a
precursor protein containing the MTS. This sequence, approximately
30 amino acids in length and enriched in arginine and lysine, confers
mitochondrial affinity (Bao et al., 2010; Jin et al., 2009a). Besides, it can
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be recognized by the translocase of the outer mitochondrial
membrane and translocase of the inner mitochondrial membrane
complexes, mediating the transmembrane transport of SIRT3 (Zhang
J. et al,, 2020). Upon entering the mitochondrial matrix, the MTS of
SIRT3 is cleaved by mitochondrial processing peptidase (MPP) at
residues Arg31 and Ala32, forming a mature protein with intact
catalytic 2017).  The
SIRT3 predominantly anchors to mitochondrial matrix protein

activity  (Ansari et al, mature
complexes and stabilizes through interactions with mitochondrial
matrix proteins such as heat shock protein 60 and heat shock protein
70 (Yang et al.,, 2011; Hu et al,, 2022) (Figure 2b).

SIRT3 exhibited higher catalytic efficiency compared to Sirtuin-
1 (SIRT1) and Sirtuin-2 (SIRT2). Firstly, mitochondria serve as the
central hub for cellular energy metabolism and oxidative stress
responses. Meanwhile, due to the hydrophobic pocket within the
catalytic domain of SIRT3, SIRT3 can recognize complex groups
(Zhang et al., 2019) (Figure 1), thereby enabling it to react with more
substrates. Secondly, the catalytic activity of SIRT3 relies on NAD+
and involves multiple key amino acid residues, with His-248 serving
as the core catalytic residue (Jin et al., 2009b). SIRT3 participates in
physiological ~or processes
deacetylation of diverse biological macromolecules (Lambona

pathological by mediating the
et al, 2024). Studies demonstrated that the enzymatic activity of
SIRT3 is directly regulated by NAD + concentration and increasing
proportionally with elevated NAD+/NADH ratios (Lambona et al.,
2024; Feldman et al., 2015; Anderson et al., 2017).

2.3 Expression

The expressions of SIRT3 are regulated at multiple levels,
including gene transcription, mRNA stability, PTMs, protein
stability, and enzymatic activity. These mechanisms work
synergistically under diverse physiological and pathological
conditions to maintain mitochondrial metabolic homeostasis and
cellular energy balance. For example, the promoter region of the
SIRT3 gene contains multiple transcription factor binding sites. It is
positively regulated by nuclear factor erythroid 2-related factor 2
(Nrf2), while hypoxia-inducible factor lalpha (HIF-1a) suppress its
transcription under hypoxic or stress conditions (Loboda et al.,
2009; Yao et al., 2022) (Figure 2a). Metabolic regulatory signals also
influence the transcriptional level of SIRT3. Chronic exposure to
biochemical stress or mitochondrial metabolic abnormalities can
accumulate ROS intracellularly, generating excessive superoxide,
hydrogen peroxide, and hydroxyl radicals (Albano, 2006). These
sequentially activate the phosphorylation of adenosine
monophosphate-activated protein kinase (AMPK) and PGC-1a,
thereby enhancing SIRT3 transcription (Wang Y. et al, 2025;
Wang et al, 2022). On the other hand, nuclear-localized
SIRT1
SIRT3 expression by deacetylating PGC-1a in the nucleus (Zhang

et al., 2021; Rodgers et al., 2005) (Figure 2d).

also participates in the positive regulation of

2.4 Function and related pathways

SIRT3 modulates energy metabolism, antioxidant responses,
and mitochondrial homeostasis by deacetylating specific sites on
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a. The structure of SIRT1.

1262-263, 286-288, 32:

b. The structure of SIRT2.

319-321, 344-346)

c. The structure of SIRT3.

FIGURE 1

(a) The active site, Zn* binding site, and NAD*-binding site of SIRT1 are labeled red, green, and blue. (b) The active site, Zn?* binding site, and NAD*
binding site of SIRT2 are labeled pink, orange, and yellow. (c) The active site, Zn®* binding site, and NAD* binding site of SIRT2 are labeled cyan, gray, and
orange, respectively. SIRT3 specifically recognizes the p-hydroxy group and chiral center (preferring the S-configuration) of p-hydroxybutyrylation
modification (Kbhb) through a hydrogen bond network in its active pocket, which is composed of residues H248, Q228, and V292. Meanwhile, the
hydrophobic environment formed by F180, F294, 1230, and V324 accommodates the acyl chain of Kbhb. Additionally, the hydrogen bond system
consisting of E296, G295, and E325 forces the substrate peptide chain to adopt a p-sheet conformation, which, due to the entropic penalty effect, repels

glycine flanking sites.

key metabolic enzymes (Table 1). SIRT3 enhances the activity of
long-chain acyl CoA dehydrogenase (LCAD) through deacetylation,
accelerating fatty acid B-oxidation and promoting the generation of
more acetyl-CoA. Via the tricarboxylic acid cycle, this process boosts
ATP production (Hirschey et al., 2010). For glutamatergic neurons,
this step helps enhance synaptic transmission efficiency. On the
other hand, deacetylation of ATP synthase B by SIRT3 strengthens
its catalytic activity, improving the ATP synthesis efficiency at the
terminal of the mitochondrial electron transport chain and
increasing the availability of ATP in the cytoplasm to maintain
synaptic vesicle cycling and neuronal electrical activity (Zhang et al.,
2016). The increased ATP production also activates the protein
kinase A/cAMP-response element binding protein (PKA/CREB)
pathway, leading to CREB phosphorylation and promoting the
expression of neurotrophic factors such as brain-derived
neurotrophic factor (BDNF), which can enhance neuronal
survival and plasticity (Mo et al., 2024) (Figure 2c).

As previously mentioned, elevated ROS in the cytoplasm can
increase SIRT3 expression by activating the AMPK/PGC-la
pathway. In turn, SIRT3 deacetylates SOD2 and isocitrate
dehydrogenase 2 (IDH2), significantly enhancing their enzymatic
activity to inhibit ROS (Dikalova et al., 2017; Zou et al.,, 2017). On
the other hand, SIRT3-mediated deacetylation of forkhead box O3
(FoxO3a) in mitochondria activates FoxO3a-dependent gene

expression (Jacobs et al., 2008). This not only regulates SOD2 to
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inhibit ROS but also enhances the activity of catalase, achieving
clearance of hydrogen peroxide and reducing oxidative stress.
Overall, SIRT3 plays a critical role in maintaining intracellular
ROS homeostasis (Figure 2d).

Optic atrophy 1 (OPA1) is a critical regulatory protein involved
in maintaining mitochondrial inner membrane fusion and the
formation of mitochondrial cristae structures (von der Malsburg
et al,, 2023). The regulation of OPA1 by SIRT3 facilitates the repair
and functional recovery of mitochondrial structures, preventing
mitochondrial fragmentation (Chen et al, 2024b; Samant et al,
2014). The opening of the mitochondrial permeability transition
pore (mPTP) is a hallmark of mitochondrial dysfunction, which is
closely associated with excessive acetylation of cyclophilin D (CypD)
(Dikalova et al., 2024). By deacetylating CypD, SIRT3 modulates
mPTP activity to inhibit the release of cytochrome C, which
suppresses the activation of Caspase-3 and ultimately inhibiting
apoptosis (Yan et al.,, 2022; Poppe et al., 2001) (Figure 2e).

3 Role of SIRT3 in central neurons

SIRT3 is widely distributed across various types of central
neurons, and its expression and function are cell specific. Current
research primarily focuses on glutamatergic neurons, GABAergic
neurons, dopaminergic neurons, and astrocytes (Figure 3).
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FIGURE 2

(a) SIRT3 expression and activity are regulated at multiple levels, including gene transcription, mRNA stability, post-translational modifications,
protein stability, and enzyme activity regulation. (b) The MTS within the SIRT3 precursor is a critical fragment recognized and transported by TOM and TIM.
After entering the mitochondria, the SIRT3 precursor undergoes cleavage to form mature SIRT3. (c) SIRT3 influences neuronal stability and information
transmission by regulating ATP production. (d) SIRT3 plays a significant role in oxidative stress, and this article only illustrates one pathway through
which SIRT3 modulates intracellular ROS homeostasis. (€) The cytoprotective effects of SIRT3 are also associated with its regulation of mitochondrial
homeostasis. (Abbreviation: MT: mitochondria; SIRT3: Sirtuin-3; HIF-1a: hypoxia-inducible factor lalpha; Nrf2: nuclear factor erythroid 2-related factor 2;
MTS: mitochondrial targeting sequence; TOM: translocase of the outer mitochondrial membrane; TIM: translocase of the inner mitochondrial
membrane; LCAD: long-chain acyl CoA dehydrogenase; ATP5B: ATP synthase B; Glu: glutamic acid; PKA: protein kinase A; CREB: cAMP-response
element binding protein; BDNF: brain-derived neurotrophic factor; OPAL: optic atrophy 1; CypD: cyclophilin D; Cas-3: caspase-3; ROS: reactive oxygen
species; SOD2: superoxide dismutase 2; IDH2: isocitrate dehydrogenase 2; FoxO3a: forkhead box O3; CAT: catalase; AMPK: adenosine monophosphate-
activated protein kinase; PGC-1a: peroxisome proliferator-activated receptor y coactivator 1 a).

TABLE 1 Specific sites of key metabolic enzymes involved in deacetylation of SIRT3.

Protein substrate Deacetylation site Function References
LCAD K42 Promote fatty acid oxidation Hirschey et al. (2010)
ATP5B K485 Synthesize ATP Zhang et al. (2016)
SOD2 K68, K122 Enhance antioxidant stress ability Dikalova et al. (2017)
IDH2 K413 Promote NADPH generation Zou et al. (2017)
FoxO3a K271, K290 Regulate mitochondrial oxidative stress Wang J. et al. (2025)
CypD K166 Regulate mPTP activity Yan et al. (2022)
OPA1 K926, K931 Regulate mitochondrial fusion Samant et al. (2014)

Abbreviation: SIRT3: Sirtuin-3; LCAD: long-chain acyl CoA dehydrogenase; ATP5B: ATP, synthase p; SOD2: superoxide dismutase 2; IDH2: isocitrate dehydrogenase 2; FoxO3a: forkhead box
03; CypD: cyclophilin D; OPAI: optic atrophy 1; NADPH: nicotinamide adenine dinucleotide phosphate; mPTP: mitochondrial permeability transition pore.
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SIRT3 exerts distinct physiological functions in different types of cells. Glutamatergic neurons and GABAergic neurons serve as representative
excitatory and inhibitory neurons, and the roles of SIRT3 in these 2 cell types contribute to maintaining excitatory-inhibitory homeostasis. Mitochondrial
damage induced by reduced SIRT3 expression accelerates the degeneration of dopaminergic neurons, which may serve as a potential pathogenesis of
Parkinson’s disease. As for neuroglia in the central nervous system, SIRT3 achieves neuroprotective effects through intracellular regulatory
mechanisms. (Abbreviation: SIRT3: Sirtuin-3; Glu-N: Glutamatergic Neurons; GABA-N: GABAergic Neurons; Dop-N: Dopaminergic Neurons).

3.1 Glutamatergic neurons

Glutamate is the main excitatory neurotransmitter in the

vertebrate brain. Its excessive release triggers membrane
depolarization through receptor-mediated Na* and Ca*" influx,
increasing neuronal mitochondrial oxidative phosphorylation and
superoxide production (Rueda et al., 2016). A study on cortical
mitochondria of SIRT3 knockout (KO) mice showed that the lack
of SIRT3 affected the subcellular regulation of Ca®* after glutamate
induced Ca** influx and confirmed through neuronal cell and mouse
running experiments that glutamatergic signaling mediates the
upregulation of SIRT3. The bidirectional regulatory effect between
SIRT3 and glutamatergic neurons enhanced the resistance to
degeneration in hippocampal and cortical neurons (Cheng et al.,
2016). The reduced incorporation of [1,6-13C]glucose-derived
carbon into all isotopomers of glutamate, glutamine, Y-
aminobutyric acid (GABA), and aspartate in SIRT3 knockout
brains demonstrated diminished mitochondrial metabolic activity
and tricarboxylic acid cycle flux in both neuronal and astrocytic

compartments (Kristian et al., 2021). Continuous high levels of Ca**
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activated protein phosphatase 4, leading to high doses of glutamate
inhibiting the AMPK/PGC-1a/SIRT3 pathway, while brief increased
in Ca®* levels could activate this pathway, providing important
insights for precise regulation of glutamate and SIRT3 levels to
alleviate brain related diseases (Gu et al.,, 2023). There are gender
differences between glutamate and SIRT3. It was reported that the lack
of SIRT3 significantly increased the expression of N-methyl-D-
aspartate  (NMDA) receptor in the hippocampus of female
SIRT3 KO mice only. Excessive upregulation of NMDA receptor
2B could enhance glutamatergic excitotoxicity, affecting primary
neural development and synaptic plasticity (Allen et al, 2023).
Based on the complex relationship between glutamate and SIRT3,
further exploration of strategies to balance their expression may
provide novel therapeutic directions for neurological diseases.

3.2 GABAergic neurons

GABA is an inhibitory neurotransmitter that has effects on
learning, sleep, memory, and muscle movement. Dysfunction and

frontiersin.org


mailto:Image of FPHAR_fphar-2025-1652296_wc_f3|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1652296

Hong et al.

degeneration of GABAergic lead to abnormal

hyperexcitability of neural circuits, also causing degeneration of

neurons

glutamatergic neurons (Palop and Mucke, 2016). After treatment
with diazepam, the activation of GABA receptors significantly
SIRT3*"~
AppPsl mice. The experiment also showed that the loss of

reduced seizures induced by kainic acid in
GABAergic neurons and the exacerbation of neural network
overexcitation were caused by a decrease in SIRT3 (Cheng et al.,
2020). Intermittent fasting improves multiple health indicators and
can slow down the progression of diabetes, vascular disorders, and
AD (Mattson et al., 2018). Experiment on SIRT3 KO mice
demonstrated that SIRT3 was essential for enhancing GABAergic
synaptic transmission adaptability and counteracted anxiety during
intermittent fasting (Liu et al., 2019). In rats with middle cerebral
artery occlusion, the neuroprotective effects of wogonoside in
cerebral ischemia-reperfusion injury were mediated through
regulating GABAergic amino acid metabolism, mitochondrial
bioenergetics, and glutathione biosynthesis pathways, which
collectively preserved redox equilibrium while suppressing
oxidative damage through attenuation of reactive oxygen species
overproduction (Xu et al., 2024). In summary, GABAergic neurons
not only ameliorate neurological disorders through interactions
with  SIRT3  but exhibit

glutamatergic neurons.

also complex interplay with

3.3 Dopaminergic neurons

Midbrain dopaminergic neurons have been a focal point of
intensive research. The nigrostriatal dopamine system is crucial for
coordinating fine motor skills and maintaining movement balance.
The degeneration of dopaminergic neurons in the substantia nigra
is an important pathological mechanism of Parkinson’s disease
(PD) (Arenas et al., 2015). It was reported that SIRT3 KO mice
exhibited significantly elevated acetylation levels of manganese
superoxide dismutase (MnSOD) on lysine 68 in substantia nigra
pars compacta dopaminergic neurons compared to wild-type
(WT) mice, alongside its mitochondrial MnSOD activity was
significantly lower than that of WT mice. This proves that in
mouse substantia nigra pars compacta dopaminergic neurons,
SIRT3 deacetylates MnSOD on lysine 68 to increase its activity
and reduce mitochondrial oxidative stress (Shi et al., 2017). In vitro
experiments using MN9D cells revealed that SIRT3 promoted
mitochondrial autophagy while inhibiting activation of the
nucleotide-binding  oligomerization =~ domain-like  receptor
protein 3 (NLRP3) inflammasome in dopaminergic neurons
(Jiang et al., 2022). Additionally, SIRT3 also mitigated oxidative
stress-induced neurotoxicity in dopaminergic neurons (Lee et al.,
2021). For instance, SIRT3 directly deacetylated SOD2 and
adenosine triphosphate (ATP) synthase P in dopaminergic
neurons to prevent cell death (Zhang et al., 2016). In the rat
model of subarachnoid hemorrhage, dopamine-D2-agonists were
shown to inhibit mitochondrial fission mediated by dynamin-
related protein 1, via activating mitofusin 2 and optic atrophy
1. On the other hand, dopamine-D2-agonists regulated PGC-1a/
SIRT3 pathway by restricting cytochrome C in mitochondria,
which could improve mitochondrial dysfunction and exert
neuroprotective effects (Rehman et al, 2025). To summarize,
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these highlighted the bidirectional

interactions between SIRT3 and dopaminergic neurons, which

findings regulatory

collectively maintain neuronal homeostasis.

3.4 Astrocytes

Astrocytes are widely distributed in the mammalian brain, and
involve in maintaining the neurovascular unit, facilitating synaptic
network formation, regulating ionic balance, regulating synaptic
neurotransmitter concentrations, and synthesizing bioactive
molecules that influence neuronal activity (Khakh and Deneen,
2019). Cell experiments showed that hyperglycemic conditions
significantly enhanced the susceptibility of SIRT3 to recurrent
low glucose, inducing mitochondrial structural abnormalities in
astrocytes. However, overexpression of SIRT3 demonstrated
preservation of mitochondrial bioenergetics while decreasing
oxidative damage biomarkers induced by recurrent low glucose.
Meanwhile, SIRT3 inhibited the transformation of astrocytes into
neuroinflammatory A1 like reactive phenotype (Gao R. et al., 2022).
It was also reported that SIRT3 could modify astrocyte activation by
regulating the Notchl/NF-kB pathway, alleviating inflammatory
responses following status epilepticus (Zhu et al., 2024). As for
ischemic stroke, SIRT3 exerted a protective effect by regulating the
HIF-1a/VEGF pathway in astrocytes (Yang X. et al, 2021).
Furthermore, SIRT3 prevents astrocyte Al polarization and
associated neurotoxicity under chronic hypoxia by inhibiting
phosphorylation and nuclear translocation of the transcription
factor signal transducer and activator of transcription 3 (STAT3)
(Hu et al, 2023). Research indicated that caffeine improved
astrocyte-mediated  protein Tau (Tau) neurotoxicity via
modulation of the EGRI/SIRT3 pathway (Gao et al, 2024). In
total, the roles of SIRT3 in astrocytes are complex and critical,
demonstrating its potential to mitigate astrocyte injury and protect
CNS targets.

3.5 Other neuron types

Astrocytes, oligodendrocytes, and microglia are the main glial
cells in CNS. The main functions of oligodendrocytes include
wrapping around axons, forming myelin sheaths, assisting in the
efficient transmission of biological electrical signals, and
maintaining the normal function of neurons (Emery and Wood,
2024). Microglia, characterized by their multipolar morphology
and plasticity, are immune effector cells in CNS and play critical
roles in physiological processes (Colonna and Butovsky, 2017).
Studies demonstrated enhanced expression of SIRT3 in astrocytes,
oligodendrocytes, and microglia within the white matter of
hypoxic newborn rats. Meanwhile, early hypoxia induced
intense SIRT3 expression in microglia (Li X. et al., 2018).
Quantitative PCR analyses across neuron subtypes revealed that
SIRT3 exhibits the highest expression in primary neurons,
followed by astrocytes, while oligodendrocytes and microglia
show the lowest levels. PGC-1a altered the expression level of
SIRT3 in neurons. Among different types of cells in PGC-1a KO
mice, the expression level of SIRT3 was highest in astrocytes but
lower than in WT mice (Buck et al., 2017).
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TABLE 2 SIRT3 activators that could improve ischemic stroke found in nearly a decade.
Activator Mechanism

Silbene glycoside Modulate SIRT3/AMPK pathway

10.3389/fphar.2025.1652296

References

Li et al. (2021)

Trilobatin Modulate SIRT3/TLR4/Nrf2 pathway Gao et al. (2020)
LanCL1 Modulate Akt-PGC-1a-SIRT3 pathway Xie et al. (2018)
Icariside II Modulate Nrf2/SIRT3 pathway Feng et al. (2018)
Luteolin Modulate SIRT3/AMPK/mTOR pathway Liu et al. (2020)

Notoginseng Leaf Triterpenes Modulate SIRT1/2/3-FoxO3a-MnSOD/PGC-1a pathway

Genipin Modulate UCP2-SIRT3 pathway

Xie et al. (2020)

Zhao et al. (2019)

4'-O-methylbavachalcone Modulate SIRT3-PARP-1 pathway
Honokiol Modulate SIRT3/Drpl pathway

AFPR Modulate SIRT3/Pink1/Parkin pathway

Chen et al. (2024d)
Zheng et al. (2023)

Wei et al. (2023)

Abbreviation: SIRT3: Sirtuin-3; AMPK: Adenosine 5'-monophosphate (AMP)-activated protein kinase; TLR4: Toll-like receptor 4; Nrf2: nuclear factor erythroid 2-related factor 2; LanCL1:
lanthionine synthetase C-like protein 1; Akt: protein kinase B; PGC-1a: proliferator-activated receptor y coactivator-la; mTOR: mammalian target of rapamycin; FoxO3a: forkhead box O3;
MnSOD: superoxide dismutase; UCP2: uncoupling protein 2; PARP-1: Poly (ADP-ribose) polymerase-1; Drpl: dynamin-related protein 1; AFPR: active fraction of Polyrhachis vicina (Roger);

PINK1: PTEN, induced putative kinase 1; Parkin: Parkin protein.

4 SIRT3 in central nervous
system diseases

4.1 Ischemic stroke

Ischemic stroke is primarily caused by cerebral blood flow
interruption due to large-vessel atherosclerosis, small-vessel
lacunar infarction, or cardioembolism (Sommer, 2017), which
makes the brain starve of oxygen and glucose, leading to
neuronal energy metabolism failure and secondary cell damage
(Qin et al., 2022). Recent studies demonstrated that SIRT3 could
repair mitochondrial ultrastructure and membrane composition,
promote mitochondrial biogenesis, and alleviate mitochondrial
dysfunction by upregulating the expression and activity of optic
atrophy 1 (Chen et al., 2024b). Besides, SIRT3 also inhibited the
expression of voltage-dependent anion channel 1 and adenine
nucleotide translocase 1, preventing abnormal opening of the
mitochondrial permeability transition pore and reducing
mitochondrial apoptosis during ischemic injury (Yang Y. et al,
2021). Metabolomic analysis showed a significant increase in GABA
and glutathione levels in the brain after wogonoside treatment,
confirming that SIRT3 not only had ability to mitigate oxidative
stress but also alleviated excitotoxicity caused by excessive glutamate
release (Xu et al,, 2024). Also, SIRT3 protects the integrity of the
blood-brain barrier (BBB) in ischemic stroke mice by regulating the
HIF-1a/VEGF pathway in astrocytes, reducing inflammatory
responses and neuronal apoptosis (Yang X. et al, 2021).
SIRT3 can also promote the migration of microglia in ischemic
stroke by increasing the expression of CX3C chemokine receptor 1
(Cao et al,, 2019). Furthermore, SIRT3 promoted PINK1/Parkin
mediated mitochondrial autophagy, increased microvascular
density and the expression of VEGF A, and reduced neuronal
apoptosis in cerebral ischemia-reperfusion model rats (Wei et al.,
2023). On the other hand, overexpression of SIRT1 can improve
mitochondrial respiratory chain dysfunction by enhancing the
deacetylation activity of SIRT3, reflecting the synergistic effect of
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the two in restoring mitochondrial structure and function (Chen
et al.,, 2024c). However, the direct molecular interaction between
SIRT1 and SIRT3 is not yet clear, and the synergistic effect lacks
causal validation through gene knockout or dual intervention
experiments. In general, intervention studies validated the
therapeutic potential of SIRT3 for ischemic stroke (Table 2), but
it is still necessary to explore its targeting ability and provide new
directions for clinical treatment.

Diabetic cerebral ischemia-reperfusion injury (CIRI) refers to the
secondary brain tissue damage caused by the restoration of cerebral
blood flow after ischemic interruption in diabetic patients, leading to
more severe neurological dysfunction (Zhou et al., 2025). Its main
pathological mechanisms include enhanced inflammatory responses,
exacerbated oxidative stress, and mitochondrial dysfunction
(Przykaza, 2021). It was found that in diabetic CIRI rats, the
levels of SIRT1/SIRT3 are significantly reduced, accompanied by
decreased levels of mitochondria-regenerating proteins such as PGC-
la, nuclear respiratory factor 1 (NRF1), and transcription factor A
(TFAM). This suggests that diabetes may hinder mitochondrial
regeneration by inhibiting the SIRT1/SIRT3-PGC-la-NRF1-
TFAM signaling pathway, thereby exacerbating cerebral ischemia-
reperfusion injury in rats (Xin et al., 2025). Although research on this
topic is limited, existing data still confirms the critical protective role
of SIRT3 in CIRI. For example, melatonin can alleviate CIRI in
diabetic mice by activating the protein kinase B (Akt)/SIRT3/
SOD2 pathway and improving mitochondrial damage. However,
when SIRT3 upregulation is suppressed by 3-TYP, these protective
effects are attenuated, confirming that SIRT3 plays a key role in
diabetic cerebral ischemia-reperfusion injury (Liu L. et al, 2021).
Further studies have demonstrated that rapamycin can maintain
mitochondrial dynamic balance by regulating the SIRT3-dynamin-
related protein 1 (DRP1)/OPAl signaling pathway, thereby
improving CIRI in diabetic rats (Hei et al., 2023). Given all that,
exploring the synergistic interactions of SIRT3 and its differential
expression in various neuron types will provide strong support for
precise treatment of CIRI. Additionally, as a comorbidity of diabetes,
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clarifying the mechanism of SIRT3 in diabetes is of great significance
for halting the further progression of neurological damage.

4.2 Dementia

4.2.1 Vascular dementia

Vascular dementia (VD) is characterized by ischemic or
hemorrhagic damage to brain tissue caused by cerebrovascular
lesions, manifesting as multiple lesions, white matter lesions,
neuronal loss, and disrupted neural networks (Kuang et al,
2021). In central neurons, SIRT3 alleviates neuroinflammation
and mitochondrial dysfunction following ischemic hypoxic brain
injury by inhibiting the activation of pro-inflammatory microglia
(Yan et al., 2025). Gastrodin, an active component extracted from
the root of Gastrodia elata Bl., has the ability to ameliorate brain
tissue injury through multiple pathways (Xiao et al., 2023). It was
shown that gastrodin increased SIRT3 expression in VD model rats
and deacetylated mitochondrial TFAM at K5, K7, and K8 site,
reversing mitochondrial dysfunction, alleviating oxidative stress,
and reducing aging (Chen et al,, 2024¢). Additionally, gastrodin
enhanced ATP production, superoxide dismutase activity, and
glutathione levels via SIRT3 regulation, further mitigating
mitochondrial dysfunction in VD (Shi et al, 2024). As
mentioned earlier, SIRT3 inhibited Al polarization in astrocyte
by regulating STAT3 to reduce oxidative stress and subsequent
synaptic damage (Hu et al.,, 2023). Autophagy plays an important
role in the progression of VD. DL-3-n-butylphthalide improved
learning and cognitive impairment in VD mice by inhibiting the
Nrf2/SIRT3 pathway, which reduced autophagy and apoptosis (Gao
L. etal,, 2022). SIRT3 also reduced neuronal apoptosis by regulating
BDNF expression and synaptic plasticity (Guo et al.,, 2021).

Future studies may integrate blood or cerebrospinal fluid
biomarkers to monitor SIRT3 activity and downstream molecular
changes. Exploring the expression characteristics of SIRT3 in
different brain cells such as neurons, astrocytes, and endothelial
cells using single cell sequencing technology, and clarifying the
feasibility of SIRT3 as a therapeutic target in VD may be also a
potential research direction. Notably, cerebral small vessel disease
(CSVD), recognized for its unique clinical and imaging features,
progresses to vascular cognitive impairment or coexists with AD.
The pathological feature of CSVD includes BBB disruption (Duering
et al., 2023). Recent studies revealed that SIRT3, as a core effector
molecule in the NAD*/SIRT3 axis, maintains BBB integrity by
regulating mitochondrial metabolism, autophagy, and antioxidant
defense (Zhan et al., 2025). Therefore, further research into potential
pathways of SIRT3 in BBB regulation hold significant clinical value
for developing targeted therapies against CSVD.

4.2.2 Alzheimer's disease

The core pathological features of AD include deposition of -
amyloid protein (A{), abnormal phosphorylation of microtubule
associated Tau, and synaptic dysfunction (Spires-Jones and Hyman,
2014). SIRT3 regulates electron transport chain activity, stabilizes
mitochondrial membrane potential, and enhances antioxidant
Reduced ~ SIRT3
mitochondrial metabolic dysregulation, making neurons more

capacity. expression ~may  accelerate

susceptible to the effects of AP and Tau, finally accelerating
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neuronal apoptosis (Yin et al, 2018b). SIRT3 deficiency in
GABAergic neurons exacerbates cell loss, leading to excessive
hyperexcitability of neural networks and epileptiform activity.
That caused the increasing mortality of AD model mice (Cheng
et al, 2020). A study on APP/PS1/SIRT3”" mice revealed a
significant decrease in insulin-degrading enzyme (IDE) levels in
the brain compared to APP/PS1 mice. However, activation of
SIRT3 by nicotinamide riboside upregulated IDE expression in
normal mice, which was facilitating AB degradation. This study
suggested SIRT3 may be a potential target for treating AD (Tyagi
etal.,, 2022). Furthermore, SIRT3 activated the FoxO3a-SOD2 axis to
mediate mitochondrial antioxidant defense system. It could reduce
oxidative stress damage induced by AB. In AD patients, the
dysfunction of this pathway may exacerbate neurodegenerative
changes (Jesko et al, 2017). In SIRT3 KO mice, the
mitochondrial membrane potential of hippocampal neurons and
synaptic density both decreased, and learning and memory abilities
of mice were impaired. However, overexpression of SIRT3 could
reduce AP deposition, enhance synaptic plasticity, and improve
cognitive function (Yao et al, 2022). Also, SIRT3 improved
neural stem cell neurogenesis via regulation of the DVL/GSK3/
ISL axis, providing a theoretical basis for its clinical application (Dai
et al, 2024). In chronic unpredictable mild stress mice,
SIRT1 improves mitochondrial disorder and GABAergic function
via SIRT1/PGC-1a/SIRT3 pathway, demonstrating their parallel
contributions to neuroprotection
(Tabassum et al., 2023).

Clinical studies confirmed that NAD" precursors such as

against brain diseases

nicotinamide riboside could enhance mitochondrial metabolism
by restoring SIRT3 activity, partially improving cognitive
function in AD patients (Wang et al, 2021). In recent years,
multiple drugs and compounds were proved to mitigate AD
pathology by targeting SIRT3 (Table 3). Curcumin is a bioactive
polyphenolic compound extracted from the rhizome of Curcuma
Longa L. It could significantly improve cognitive impairment in
APP1 mice and alleviate neuronal metabolic dysfunction induced
by AP, though regulating the NAD*/NADH ratio and activating
SIRT3 (Zia et al, 2021; Liu M. et al,, 2021). Resveratrol, a non-
flavonoid polyphenol, which not only can be extracted from the
rhizome and root of Polygonum cuspidatum Sieb. et Zucc., but also
can be synthesized in grape leaves and skins, were widely reported to
improve AD by activating the SIRT1 pathway (Surya et al., 2023).
However, whether resveratrol slows down AD progression via
SIRT3 activation remains to be explored. Although the important
role of SIRT3 in the progression of AD has been widely recognized,
targeted therapies based on SIRT3 are still in the exploratory stage.
Future research should focus on discovering SIRT3 regulatory
mechanisms and developing precise interventions to target its
activity, offering new therapies for AD patients (Lee et al., 2018).

4.3 Movement disorders

4.3.1 Parkinson’s disease

The main symptoms of PD include tremors, bradykinesia, and
muscle rigidity. Degeneration of dopaminergic neurons in the
substantia nigra, abnormal aggregation of a-synuclein (a-Syn),
neuroinflammation  are

mitochondrial  dysfunction, and
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TABLE 3 SIRT3 activators that could improve Alzheimer’s disease found in nearly a decade.

Activator Mechanism References
Honokiol Enhance mitochondrial SIRT3 expression and activity Li H. et al. (2018)
Trilobatin Modulate SIRT3/SOD2 pathway Gao J. et al. (2022)
Salidroside Modulate Nrf2/SIRT3 pathway Yao et al. (2022)
Kai-Xin-San Modulate SIRT3/NLRP3 pathway Su et al. (2023)
ESP Modulate Mst1/Nrf2/SIRT3 pathway Yang et al. (2025)
PL171 Activate SIRT3 against ABs,O Li et al. (2020)
3,14,19-Triacetylandrographolide Modulate SIRT3/FoxO3a pathway Zhou et al. (2024)

Abbreviation: SIRT3: Sirtuin-3; SOD2: superoxide dismutase 2; Nrf2: nuclear factor erythroid 2-related factor 2; NLRP3: nucleotide-binding oligomerization domain-like receptor-related
protein 3; ESP: the phenylpropanoid components of Eleutherococcus senticosus (Rupr. and maxim.) maxim; Mstl: mammalian sterile 20-like kinase 1; AP4,O: amyloid-p,,, oligomers; FoxO3a:

forkhead box O3.

TABLE 4 SIRT3 activators that could improve Parkinson’s disease found in nearly a decade.

Activator Mechanism

s-viniferin Modulate SIRT3/FoxO3 pathway

References

Zhang S. et al. (2020)

Theacrine Direct activation of the SIRT3/SOD2 pathway Duan et al. (2020)
Icarim Enhanced SIRT3 activity Zeng et al. (2019)
P7C3 Modulate Nrf2/Sirt3 pathway Chen et al. (2024f)
Canagliflozin Modulate PGC-1a/SIRT3 pathway Abdelaziz et al. (2025)

Ginsenoside Rkl Modulate SIRT3/Nrf2/HO-1 pathway

Ren et al. (2023)

Abbreviation: SIRT3: Sirtuin-3; FoxO3a: forkhead box O3; SOD2: superoxide dismutase 2; Nrf2: nuclear factor erythroid 2-related factor 2; PGC-1a: proliferator-activated receptor y

coactivator-1o; HO-1: heme oxygenase-1.

pathological features of the disease (Trinh et al.,, 2023). Reduced
SIRT3 expression in nigral neurons of PD patients disrupted
mitochondrial function and autophagy regulation, impairing the
clearance of damaged mitochondria. This resulted in a-Syn
accumulation and exacerbated oxidative stress damage (Trinh
et al, 2023). The abnormal expressions of SIRT3, PINKI, and
TFAM in PD patients prevented neurons from mitochondria
turnover and maintaining mitochondrial protein. That would
aggravate oxidative phosphorylation defects and age-related
oxidative stress, leading to neuronal degeneration (Chen et al,
2023). Furthermore, low SIRT3 expression cause mitophagy via
PINK1/Parkin pathway, which could accelerate neuronal death, and
worse PD symptoms (Gleave et al., 2017). SIRT3 knockout in 1-
methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated PD
mice exacerbated nigral neuronal degeneration and significantly
reduced the expression of tyrosine hydroxylase. This process
affected the
movement disorders of PD (Zhang et al, 2016). Conversely,

synthesis of dopamine and exacerbated the
SIRT3 overexpression enhanced nigral neuronal survival, restored
dopamine levels, and improved movement function (Gleave et al.,
2017). It was reported that NAD* metabolism regulation strategies
could improve mitochondrial function and alleviate movement
symptoms in PD patients (Radenkovic et al., 2020). The research
on SIRT3 activators for improving PD was listed in Table 4.
Electroacupuncture was commonly used in traditional Chinese
medicine as a complementary and alternative medicine therapy for
neurodegenerative diseases with minimal side effects (Zheng et al.,
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2021). It was shown that electroacupuncture could repair neuronal
damage in PD model rats by regulating the SIRT3/NLRP3/GSDMD
pathway, mitigating mitochondrial damage by clearing abnormal a-
Syn accumulation in the substantia nigra (Wang et al., 2024).
Additionally, electroacupuncture could activate the SIRT3/
PINK1/Parkin  pathway hydroxylase
expression. The aggregation of a-Syn was reduced in the MPTP-

to enhance tyrosine
treated PD mice, and their exercise ability was improved (Zhang
et al., 2024).

Notably, multiple system atrophy-parkinsonian type exhibits
parkinsonian symptoms, while late-stage patients may develop
cerebellar ataxia and cognitive dysfunction, with pathological
features including a-Syn aggregation (Laferriere et al., 2022).
However, no literature was retrieved on the relationship between
SIRT3 and multiple system atrophy (MSA). Further exploration is
warranted to clarify whether SIRT3 plays a role in MSA
pathogenesis.

4.3.2 Huntington’s disease

Huntington’s disease (HD) is a hereditary neurodegenerative
disorder caused by mutations in the huntingtin protein gene.
Degeneration of medium spiny neurons, synaptic dysfunction,
and increased glutamate excitotoxicity are the main pathological
changes, leading to choreiform movements, cognitive impairment,
and psychiatric symptoms (Bates et al., 2015). Studies showed that
SIRT3 expression could significantly decrease in the brains of HD
patients, which correlates with overactivation of NMDA receptors
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mediated by NMDA receptor 2B, mitochondrial dysfunction, and
impaired synaptic plasticity (Buck et al., 2017; Someya et al., 2010).
Low expression of SIRT3 imbalanced excitatory synaptic,
accelerating synaptic degeneration and neuronal death (Kim
et al, 2019). It was reported that in models relevant to HD,
SIRT3-deficient mice got worse movement dysfunction. The
synaptic density of the mice decreased, while excessive activation
of NMDA receptors significantly increased glutamate excitotoxicity
(Cheng et al., 2016). Additionally, in HD cell models treated with the
SIRT3 activator viniferin, the acetylation of SOD2 was reduced and
mitochondrial function and antioxidant capacity was enhanced by
activating the AMPK pathway (Fu et al., 2012). Clinical research also
focuses on exploring SIRT3 as a potential therapeutic target for HD.
The NAD* metabolic regulation strategy was proved to improve the
energy metabolism level and enhance the movement and cognitive
functions of HD patients (Naia et al., 2021; Reiten et al., 2021).
Furthermore, SIRT1 could active BDNF in HD striatal-like neurons,
which could improve neurodegeneration and neuronal dysfunction
(Duan, 2013). Thus, the synergistic roles of SIRT3 and SIRT1 in HD
pathogenesis may be valuable to discover.

4.4 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease affecting spinal a-motor neurons, characterized by muscle
atrophy, loss of movement function, and respiratory failure.
of ALS
dysfunction, ROS accumulation, and protein misfolding (Suk and

Pathological ~mechanisms include  mitochondrial
Rousseaux, 2020). The decrease in SIRT3 expression affected
mitochondrial electron transport chain function in anterior horn
motor neurons of ALS patients. This leads to insufficient energy
supply to neurons, exacerbating oxidative stress damage (Hor et al.,
2021). Low SIRT3 expression reduced neuronal tolerance to metabolic
stress and accelerated neuronal death and muscle atrophy though
AMPK/PGC-1la axis (Kuczynska et al., 2021). SIRT3 KO ALS mice
showed decreased muscle strength, decreased survival rate of motor
neurons, significant axonal atrophy, and myelin sheath degeneration,
while the overexpression of SIRT3 attenuated neuronal damage and
delayed muscle atrophy progression (Buck et al., 2017). Additionally,
NAM could improve movement function and antioxidant capacity in
ALS animal models (Hor et al., 2021). It was also shown that NAD*
precursors enhance mitochondrial bioenergetics in ALS patients and
improve muscle control and movement function (Obrador et al.,
2021). Although previous studies suggested that the activation of
SIRT3 could reverse metabolic defects in motor neurons and alleviate
symptoms, no clinical trials targeting SIRT3 were conducted in
human patients to date. Future studies should advance clinical
trials to explore SIRT3-targeted therapies in ALS patients.

4.5 Multiple sclerosis

Multiple sclerosis (MS) is a chronic demyelinating disease of the
The
inflammatory demyelination, axonal transection, and progressive

central nervous  system. neuropathology ~ comprises

neurodegeneration. Clinically, it manifests as movement disorders,
sensory disturbances, visual impairment, and progressive cognitive
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decline (Woo et al., 2024). It was found that SIRT3 plays a critical
role in maintaining energy metabolism and antioxidant defense in
oligodendrocytes. Low SIRT3 expression decreased the activity of
electron transport chain, promoted ROS accumulation, exacerbated
neuroinflammation, and impaired remyelination capacity (Singh
et al., 2018; Khodaei et al., 2019). For MS mice treated with ellagic
acid, both myelin regeneration ability and movement function were
improved, suggesting that SIRT3 may slow down MS progression by
enhancing mitochondrial function and antioxidant capacity
(Khodaei et al, 2019). Furthermore, SIRT3 regulated myelin
homeostasis via the Nrf2-mediated antioxidant pathway. For MS
patients, decreased expression of SIRT3 could impair myelin
regeneration ability, weaken axonal protection mechanisms, and
lead to disease progression (Theodosis-Nobelos and Rekka, 2022).
As a potential therapeutic target for MS, intervention in its
regulation strategy is expected to provide new treatment ideas for
MS patients. This is beneficial for improving remyelination, slowing
down disease progression, and improving patients’ quality of life.

4.6 Epilepsy

Epilepsy, a chronic brain disorder, arises from excessive
synchronous neuronal activity in the central nervous system,
by disrupted
neurotransmitter homeostasis, and inflammatory cascades as core

accompanied mitochondrial ~ impairment,
pathophysiological hallmarks (Milligan, 2021). A prospective
observational study reported that SIRT3 levels were significantly
decreased in epilepsy patients, and even lower in drug-resistant
epilepsy cases (Hu et al., 2024). Research showed that blocking
MciroRNA-134-5p activity preserved neuronal integrity against
kainic acid neurotoxicity via SIRT3-dependent mechanisms that
maintain mitochondrial homeostasis (Lin et al., 2021). Additionally,
SIRT3 regulated astrocyte activation via the Notchl/NF-kB
pathway, which helps alleviate the inflammatory response after
epilepsy (Zhu et al, 2024). And the regulation of the NLRP3/
BDNF/SIRT3 axis could reduce inflammation and oxidative stress
during seizures, improving cognitive impairment caused by seizure
(Fawzy et al., 2025). On the other hand, citric acid treatment in
epileptic rats increased SIRT3 expression, which promoted
mitochondrial autophagy and reduced hippocampal oxidative
stress and apoptosis (Wu et al., 2020). It is worth noting that
SIRT3 could enhance autophagy by regulating the AMPK/mTOR
pathway to exert a protective effect against epilepsy induced brain
damage (Chen et al. 2024a). The probability of epilepsy in patients
with diabetes is significantly higher than that in normal people.
Insulin could activate the SIRT1/PGC-1a/SIRT3 pathway,
prolonging seizure latency, reducing seizure severity, reversing
mitochondrial dysfunction, and lowering oxidative stress levels
(Cheng et al, 2021). The discovery of anticonvulsant effects
mediated by insulin revealed innovative strategies for health
management in diabetic populations (Chou et al., 2016).

5 Conclusion

CNS diseases often lead to irreversible cognitive, motor, and
functional impairments. Currently, these diseases generally lack
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effective curative therapies, making the exploration of novel
neuroprotective strategies a critical direction in current research.
We reviewed the core roles of SIRT3 in CNS neurons and diseases,
including its critical contributions to energy metabolism, anti-
oxidative stress, mitophagy, and neuroinflammation regulation.
Existing studies have confirmed that the deacetylation activity of
SIRT3 plays a key role in maintaining cellular homeostasis. The
functions of SIRT3 may exhibit certain preferences across different
types of neurons, and reduced SIRT3 activity has been observed in
various CNS diseases. Therefore, it is necessary to develop SIRT3-
targeted therapeutics for CNS diseases by targeting relevant
pathways. However, we did not identify any clinically applicable
SIRT3-targeted treatment, which may be related to the challenges in
the development of BBB-penetrating drug carriers. Secondly,
SIRT3 exhibits higher catalytic efficiency. Further exploring of
the catalytic properties of SIRT3 is also significant. Thirdly, most
current studies still focus on in vitro models and animal studies,
SIRT3
pharmacological activation. The clinical applicability of these

where is activated via genetic overexpression or
approaches remains to be further validated. Notably, studies on
intermittent fasting and electroacupuncture activating SIRT3 inspire
us that non-pharmacological therapies may also serve as highly
promising complementary alternative treatments for CNS diseases.
Furthermore, since SIRT3 is expressed in major organs such as the
brain, heart, and kidneys, research on SIRT3 may provide insights
into the mechanisms and treatment of comorbidities such as stroke
with diabetes and stroke combined with coronary heart disease. In
the future, interventions targeting SIRT3, including NAD*
supplements, small-molecule activators, and gene modulation
strategies, require systematic preclinical investigations, and their
therapeutic potential in CNS diseases must be evaluated through
rigorous clinical trials. In the future, interventions for SIRT3,
including NAD" supplements, small molecule activators, and
followed by
scientifically designed clinical trials to evaluate their therapeutic

potential in CNS.

gene regulation strategies, restrictedly and
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Glossary
CNS central nervous system
SIRT3 Sirtuin-3
SOD2 superoxide dismutase 2
ROS reactive oxygen species
PGC-1a proliferator-activated receptor y coactivator-la
NAD+ nicotinamide adenine dinucleotide
NADPH  nicotinamide adenine dinucleotide phosphate
AD Alzheimer’s disease
MTS mitochondrial targeting sequence
PTM post-translational modifications
FoxO3a forkhead box O3
Nrf2 nuclear factor erythroid 2-related factor 2
AMPK Adenosine 5'-monophosphate (AMP)-activated protein kinase
FoxO1 forkhead box O1
KO knockout
GABA y-aminobutyric acid
NMDA N-methyl-D-aspartate
PD Parkinson’s disease
MnSOD superoxide dismutase
WT wild-type
NLRP3 nucleotide-binding oligomerization domain-like receptor protein 3
ATP adenosine triphosphate
NF-xB nuclear factor-kB
HIF-1a hypoxia inducible factor-1la
VEGF vascular endothelial growth factor
STAT3 signal transducer and activator of transcription 3
Tau protein Tau
EGR1 early growth response 1
PINK1 PTEN induced putative kinase 1
Parkin Parkin protein
VD vascular dementia
TFAM transcription factor A
BDNF brain-derived neurotrophic factor
CSVD cerebral small vessel disease
BBB blood-brain barrier
Ap B-amyloid protein
IDE insulin-degrading enzyme
a-Syn a-synuclein
mPTP mitochondrial permeability transition pore
MPTP 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine
GSDMD  Gasdermin D
MSA multiple system atrophy
HD Huntington’s disease
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MS

mTOR

Multiple sclerosis

mammalian target of rapamycin
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