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Introduction: The evolving landscape of artificial intelligence in drug discovery
necessitates increasingly sophisticated approaches to predict drug-target
interactions (DTls) with high precision and generalizability. In alignment with
the current surge of interest in Al-driven pharmacological modeling and
integrative biomedical data analysis, this study introduces a multimodal
framework for enhancing DTl prediction by fusing heterogeneous data
sources. While conventional methods typically rely on unimodal inputs such
as chemical structures or protein sequences, they fall short in capturing the
complex, multi-faceted nature of biochemical interactions and are often limited
in adaptability across different tasks or incomplete datasets. These limitations
impede the model's capability to generalize beyond narrow benchmarks and
reduce interpretability when modalities are missing or noisy.

Methods: To address these challenges, we propose a comprehensive multimodal
learning pipeline composed of three principal innovations. The Unified
Multimodal Molecule Encoder (UMME) jointly embeds molecular graphs,
textual descriptions, transcriptomics, protein sequences, and bioassay data
using modality-specific enc followed by a hierarchical attention-based fusion
strategy. This encoder is capable of aligning intra- and inter-modal
representations while retaining high-level semantic features critical for
interaction prediction. We introduce a robust training strategy named Adaptive
Curriculum-guided Modality Optimization (ACMO), which dynamically prioritizes
more reliable or informative modalities during early training and gradually
incorporates less certain data via a curriculum mechanism. This allows the
model to maintain strong performance even when faced with modality
absence or noise, thereby mimicking realistic drug screening conditions. We
employ a novel cross-modal contrastive alignment loss and modality dropout
scheduling, which together enforce consistency and encourage generalization
across diverse data settings.

Results: Experiments on multiple benchmark datasets demonstrate that our
framework achieves state-of-the-art performance in drug-target affinity
estimation and binding prediction tasks, particularly under conditions of partial
data availability.

Discussion: Ablation studies confirm the effectiveness of both UMME and ACMO
components in improving accuracy and robustness.

multimodal learning, drug-target interaction, molecular encoding, curriculum learning,
biomedical data fusion

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphar.2025.1639979/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1639979/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1639979/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1639979&domain=pdf&date_stamp=2025-11-19
mailto:pasemhannay@hotmail.com
mailto:pasemhannay@hotmail.com
https://doi.org/10.3389/fphar.2025.1639979
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1639979

Chen and Sun

1 Introduction

In recent vyears, the accurate prediction of drug-target
interactions (DTIs) has emerged as a critical research objective in
computational biology and drug discovery. With the explosion of
biological data and chemical information, there is an increasing need
for methods that can efficiently integrate heterogeneous sources of
information (Lin et al., 2024). Traditional single-modal approaches
are often limited in their capacity to capture the complex nature of
biological systems (Han et al, 2024). In contrast, multimodal
learning provides a framework that not only integrates diverse
data types such as molecular structures, protein sequences, and
biological networks, but also enhances the robustness and
generalizability of DTI models (Wei and Hu, 2024). By
combining complementary information from various modalities,
multimodal learning not only enables better understanding of
biological mechanisms, but also facilitates drug repurposing and
accelerates the discovery of novel therapeutics (Peng et al., 2022).

Earlier efforts to predict DTIs relied on interpretable inference
mechanisms grounded in chemical heuristics and sequence-based
descriptors (Hu et al, 2023). These models were typically
constructed by defining similarity measures or interaction scores
based on manually engineered molecular or protein features (Zong
etal,, 2023). While they offered biological insight and were relatively
easy to interpret, their expressiveness was often constrained by
simplistic assumptions and fixed rules (Xu et al, 2022). As a
result, they struggled to generalize in scenarios involving noisy
data or novel compounds with unknown structural variations
(Xu et al, 2023). Subsequent progress in DTI prediction came
from models capable of learning patterns from data more
adaptively through statistical optimization and algorithmic
flexibility. Approaches such as kernel-based classifiers, ensemble
learners, and factorization-based systems began to replace static
rule-based pipelines (Wang et al., 2023). These techniques improved
performance by leveraging more informative combinations of
features, offering better scalability and less dependence on
handcrafted descriptors (Wei et al., 2023). Nevertheless, they still
exhibited limited depth in capturing the sequential and relational
complexity embedded in molecular and biological inputs, often
requiring extensive preprocessing steps and manual curation of
input features (Hao et al, 2022). Their representational power,
while stronger than early methods, was not sufficient for fully
modeling the intricate biochemical interactions in DTI tasks
(Song et al., 2023).

The
architectures capable of directly consuming high-dimensional raw
inputs and extracting multilevel abstractions (Zhang et al., 2023).

most recent advances have incorporated neural

Neural models such as graph-based encoders, convolutional

extractors, and sequence—attention mechanisms are now

frequently deployed to capture structural and contextual
dependencies within and across molecules and proteins
(Martinez-Maldonado et al., 2023). These architectures enable
end-to-end learning pipelines and support transferability via
pretraining on large biological corpora. However, many of these
models still operate within single-input modalities and often
sacrifice transparency for performance (Joseph et al, 2023). To
move beyond these limitations, recent trends have begun integrating

multimodal strategies with neural backbones, allowing for both
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hierarchical feature learning and biological relevance through
cross-modal interactions (Zhou et al., 2023). This evolution sets
the stage for more comprehensive and interpretable DTI prediction
systems (Zhao et al., 2023).

To address the aforementioned limitations of single-modal and
deep learning-based DTI models, we propose a novel multimodal
learning framework that integrates diverse biological and chemical
modalities in a unified architecture. This approach is designed to
leverage complementary features from multiple sources, including
molecular graphs, protein sequences, 3D structures, and biological
interaction networks. By jointly modeling these data types, our
framework aims to capture both local interaction patterns and
global biological context. Furthermore, cross-modal attention
strategies enable the
dynamically prioritize the most informative features, improving

mechanisms and fusion model to
both prediction accuracy and interpretability. This integrative
strategy not only enhances robustness against data sparsity but
also opens new avenues for identifying off-target effects and
repositioning existing drugs. Through rigorous benchmarking on
multiple DTI datasets, we demonstrate that our multimodal method
consistently outperforms state-of-the-art baselines and generalizes
well to novel drug-target pairs, validating the effectiveness of the
proposed framework.
The proposed method has several key advantages:

e We introduce a novel multimodal fusion module that enables
the integration of heterogeneous biological and chemical data
in a unified representation space.

e The method features adaptive attention mechanisms that
dynamically weight different modalities, allowing for

efficient,  context-aware  prediction across  diverse
biological scenarios.

e Extensive experiments on benchmark DTI datasets show
superior performance over existing methods, achieving
improvements in both precision and recall, particularly in
low-resource settings.

2 Related work

2.1 From single-modal encoding to
multimodal integration

Traditional drug-target interaction (DTI) prediction models
largely rely on unimodal inputs such as molecular fingerprints or
protein descriptors (Shi et al., 2022; Bayoudh et al., 2021). These
approaches, though interpretable, offer limited expressiveness due to
their inability to model the intricate interactions across biological
and chemical domains. With the emergence of deep learning, data-
driven architectures like graph neural networks (GNNs) for
molecular graphs (Lian et al, 2022) and convolutional neural
networks (CNNs) or recurrent neural networks (RNNs) for
protein sequences (Ma et al, 2021) have improved the
performance of DTI models. Methods such as DeepDTA and
WideDTA introduced sequence-level fusion via concatenated
embeddings (Zhang et al, 2022), but still treated drugs and
targets independently during early encoding stages. In recent
years, multimodal learning frameworks have been developed to
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address these limitations by integrating multiple sources of
data—ranging from SMILES and 3D
conformations to gene expression profiles and assay results. For
instance, the MDTips framework developed by Xia et al. titled
MDTips: a multimodal-data-based — drug-target
prediction system fusing knowledge, gene expression profile, and
structural data (Xia et al, 2023), and the MFFDTA model
proposed by Wang et al., in 2024, titled MFFDTA: A Multimodal
Feature Fusion Framework for Drug-Target Affinity Prediction

biomedical strings

interaction

(Wang et al., 2024), integrate diverse data modalities into unified
prediction pipelines, thereby improving representational fidelity and
predictive robustness. These models demonstrate that fusing
structural, expression-based, and knowledge-driven features leads
to significantly improved generalization and performance in drug-
target affinity tasks.

2.2 Hierarchical and attention-based fusion
strategies

Attention mechanisms play a pivotal role in recent multimodal
DTI prediction architectures by enabling dynamic weighting of
heterogeneous inputs. Unlike static fusion schemes, co-attention
and self-attention mechanisms can capture the contextual relevance
of each modality during inference (Du et al., 2022). Examples such as
AttentionDTA and MONN (Fan et al,, 2022; Chango et al., 2022)
show that modeling mutual attention between drug and protein
sequences effectively uncovers interaction-specific substructures.
More recent designs utilize hierarchical attention to model both
dependencies, leading to better
interpretability and scalability (Tian et al, 2024). Transformer-

intra- and inter-modal
based encoders have also been successfully adapted from natural
language processing to biomedical settings. GraphTransformer and
MolTrans, for example, leverage multi-head self-attention to jointly
reason over molecular and protein contexts (Ektefaie et al., 2022).
However, the increased model complexity brings potential
cost, particularly
dimensional or sparse data settings (Yan et al, 2022). To

overfitting and computational in  high-
mitigate these risks, newer models adopt curriculum-guided
fusion, as in CCL-ASPS (Tian et al, 2024), which gradually

introduces modalities during training based on their reliability.

2.3 Contrastive learning and pretrained
representation alignment

Pretrained models offer a powerful solution for capturing
biochemical semantics from large-scale unlabeled datasets.
ChemBERTa and GROVER (Zong et al, 2024) are commonly
used for encoding molecular graphs or SMILES, while ProtBERT
and ESM (Zhang D.-E. et al, 2025) provide protein sequence
signals. These
pipelines,
significantly enhance the performance of DTI prediction.

representations enriched with evolutionary

embeddings, when integrated into multimodal
Nevertheless, aligning latent spaces across modalities remains
challenging due to representational mismatches. To address this,
models like DrugBAN and BioTrans

contrastive learning objectives (Xing et al., 2021), while others

employ cross-modal
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apply projection layers or distance-based regularization
techniques (Xing et al., 2017). The work by Zhu Sidan and Luo
Dixin in 2024, titled Enhancing Multi-modal Contrastive Learning
via Optimal Transport-Based Consistent Modality Alignment (Zhu
and Luo, 2024), further extends this idea by incorporating optimal
transport-based regularization to ensure consistent cross-modal
alignment. Moreover, strategies such as task-conditioned
attention modulation and uncertainty-aware scheduling have
proven effective in dynamically weighting each modality’s
contribution (Wang et al., 2024). Such mechanisms ensure that
noisy or sparse data sources do not overwhelm the learning process,
which is particularly valuable in real-world clinical scenarios where
modality availability can vary.

Despite the notable progress in multimodal DTI prediction,
several key challenges remain unresolved. First, most existing
models assume the availability of complete modalities during
training and inference, which is often not the case in real-world
biomedical settings where some inputs may be missing or noisy.
Second, there is limited incorporation of uncertainty modeling and
modality-specific reliability, making many architectures sensitive to
modality imbalance or degradation. Third, while hierarchical or
transformer-based fusion strategies have been explored, they are
often static and lack adaptability to task-specific or sample-specific
conditions. These limitations motivate the core design objectives of
the present study. The proposed UMME (Unified Multimodal
Molecule Encoder) introduces hierarchical attention to support
flexible intra- and inter-modality representation learning, while
ACMO (Adaptive Curriculum-guided Modality Optimization)
dynamically regulates modality contribution based on uncertainty
and training progression. Together, these components address the
gap between rigid fusion pipelines and the need for robust, adaptive,
and interpretable multimodal models, particularly in the presence of
incomplete or unreliable data. This integration positions the
proposed framework to offer both practical scalability and

enhanced biological fidelity in DTT prediction tasks.

3 Methods
3.1 Overview
Multimodal drug discovery represents a new paradigm in

that data
sources to enable more accurate, robust, and generalizable

pharmaceutical research leverages heterogeneous
predictive modeling for tasks such as molecular property
prediction, drug-target interaction analysis, and lead compound
optimization. Traditional drug discovery pipelines often rely on
unimodal data—typically molecular graphs, chemical structures, or
omics data—limiting their capacity to capture the complex, high-
dimensional relationships underlying drug mechanisms. In contrast,
the multimodal approach diverse

synergistically integrates

modalities, such as molecular graphs, textual chemical
descriptions, biological assay profiles, structural data, and even
biomedical images, to enable richer representation learning and
improved downstream performance. This section introduces the
methodology proposed in this paper, which builds upon the recent
success of multimodal representation learning in computational

biology. We divide our method section into three integral
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components that work in concert to construct a robust,
interpretable, and scalable framework for drug discovery.

In Section 3.2, we the formal problem setting and provide the
mathematical foundation necessary to understand the multimodal
integration problem. We define the types of modalities considered,
the notational conventions, and the inter-modality alignment
mechanisms, which set the stage for the subsequent architectural
innovations. This section also outlines the rationale for multimodal
learning in the context of biological data, highlighting the types of
statistical dependencies that can emerge when combining modalities
such as gene expression and molecular structure. In Section 3.3, we
detail the design and implementation of our novel model
architecture, named Unified Multimodal Molecule
(UMME). UMME is built upon a joint encoder-decoder
paradigm, in which modality-specific encoders are used to

Encoder

project each input type into a shared latent space, followed by a
modality fusion module that aggregates cross-modal signals into a
cohesive representation. This representation is subsequently used
for downstream tasks such as drug-target affinity prediction, toxicity
classification, and bioactivity estimation. The architecture is
characterized by hierarchical attention, cross-modal contrastive
loss, and alignment-aware embeddings, allowing it to capture
both intra-modal semantic features and inter-modal relational
structure. In Section 3.4, a novel strategy is described for robust
training and generalization under the constraints of missing
modalities and noisy data, termed Adaptive Curriculum-guided
Modality Optimization (ACMO). This strategy is designed to
address a central challenge in multimodal learning: the
incomplete observation of modalities across datasets. ACMO
dynamically adjusts the importance of each modality during
training, gradually increasing fusion complexity as learning
progresses. The curriculum-inspired design ensures that simpler
unimodal representations are mastered before higher-order
multimodal interactions are introduced, thereby improving
convergence stability and resilience to missing data. Through the
combination of these components, our proposed framework
achieves state-of-the-art performance on multiple benchmarks for
ablation studies

multimodal drug discovery. Furthermore,

demonstrate the complementary contributions of modality
alignment, hierarchical fusion, and adaptive curriculum strategies.
Collectively, this section offers a comprehensive introduction to the
algorithmic core of our approach and lays the groundwork for

detailed discussion in the following sections.

3.2 Preliminaries

In this section, we provide a formal foundation for the problem
of multimodal drug discovery, by constructing a symbolic
framework that encapsulates the central modeling objectives, data
characteristics, and inter-modality dependencies. We aim to
formulate the multimodal setting in a way that captures the
inherent heterogeneity, alignment challenges, and predictive tasks
relevant to drug development pipelines.

Let D= {(xl(i),xz("),...,xl(é),y(i))}f\:]1 denote the multimodal
dataset, where x,ii) € My is the i-th sample from the k-th
modality, and y@ is the supervised label, such as drug efficacy,
toxicity, or binding affinity.
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Our goal is to learn a function F: M — R? that maps a
multimodal input tuple to a prediction space, such that Equation 1:

70 = F(x0x0, . x0) 6y

To enable this, we define a modality-specific encoder
¢p: My — R% that transforms raw input x; into a latent
representation zj = ¢, (xx). The full latent representation is the
concatenation or aggregation (Equation 2):

Z =Y (21,23 ...,2x), Wwherez; = ¢, (xi) (2)

¥ may be a simple concatenation W¥(zi,...,zx)=
[z1llz2]l---lzx] or a learned cross-modal fusion operator.

Given the multimodal input structure, the challenges lie in
the heterogeneity, incomplete modality observation, and
semantic alignment across modalities. We now formalize
these notions.

Molecular graphs are defined as G = (V, E), where each node
v € V has a feature vector x, € R% and each edge (u,v) € E has a
bond-type feature e,, € R%. We denote the graph embedding by

Equation 3:

z1 = ¢, (G) = AGGREGATE, .y (fmde (%) +

Z fedge (euv)>

ueN (v)
€)

Here, frode and fdge are learnable functions and NV (v) denotes
the neighborhood of node v.

For SMILES strings S = [sy, s, ..
T: 5 — R™% and encode it via a transformer 7y (Equation 4):

.,5,], we define a tokenizer

2y = ¢,(S) = Pooling (7'4(7 (9))) (4)

Similarly, protein sequences P = [pi, ps,...,Ppm] € A" are
mapped via a pretrained language model over protein space

(Equation 5):
z4 = ¢, (P) = Pooling (BERT ot (P)) (5)
High-dimensional numeric modalities, such as transcriptomic

data T € R and assay data B € R%, are directly embedded via fully
connected transformations (Equations 6, 7):

23 = ¢,(T) = o (WrT + br) (6)
z5 = ¢ (B) = 0 (WgB + bp) (7)
To enforce alignment between representations across

modalities, we define an auxiliary pairwise alignment operator
A R% xRY S5 R (Equation 8):

T
22

il - Izl

Az 2;) (8)

Given a reference modality z; and a support modality zj, we
require (Equation 9):

EwaplA(znzi)] 27 9)
where 7 is a tunable alignment margin.
Once individual modalities are embedded, we define a fusion

function ¥: R* x---x R% — R? and a predictor Fg: R — RY
such that Equation 10:
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FIGURE 1

Schematic diagram of the Unified Multimodal Molecule Encoder (UMME) framework. The model consists of three main modules: Flexible Modality-
Specific Encoders for handling different biomedical inputs (molecular graphs, SMILES sequences, and omics profiles); Hierarchical Cross-Modal Fusion,
which aggregates semantically grouped modalities via local anxd global attention; and Modality Robustness and Alignment module, which introduces
stochastic masking and contrastive alignment loss to ensure robustness under partial modality settings.

Z=Y(z1,22,...,2x), ¥y =Fg(2) (10)

In practice, ¥ may use attention or gating mechanisms
(Equation 11):

exp (w'zy)

— 7 (11)
Y exp(sz]-)

K
Z = Z K Zes A =

Textual descriptions used in this framework include various types of
structured and unstructured annotations that accompany chemical
and biological entities. For chemical compounds, these descriptions
comprise IUPAC names, mechanism of action summaries,
pharmacological class labels, and clinical usage indications as
curated in DrugBank and ChEMBL databases. For proteins, the
textual input may include functional summaries, subcellular
localization notes, and disease associations derived from UniProt
and Gene Ontology annotations. Free-text metadata such as

compound warnings, side-effect narratives, and therapeutic

summaries extracted from biomedical literature are included
when available. These textual fields are tokenized using a
domain-specific tokenizer and subsequently encoded via a
pretrained transformer-based language model (BioBERT or
SciBERT). This modality is designed to provide contextual and
semantic background information that complements the structural
features of molecular graphs and the sequential features of proteins

or SMILES strings. Textual inputs play a particularly important role

Frontiers in Pharmacology

in scenarios where explicit structural or assay data may be sparse or
noisy. By incorporating this modality, the model gains access to
curated expert knowledge and published biomedical insights that
may not be encoded in purely numerical or symbolic forms.

3.3 Unified Multimodal Molecule
Encoder (UMME)

We propose the Unified Multimodal Molecule Encoder
(UMME), a novel neural framework for encoding heterogeneous
biomedical data into a unified latent representation. UMME is
designed to flexibly handle diverse data types—including

molecular graphs, sequences, and numeric profiles—while
supporting missing modality scenarios. Below, we highlight three
primary innovations of the UMME architecture. Figure 1 illustrates
the overall architecture of the UMME framework, where molecular
graphs, protein sequences, and omics profiles are independently

encoded and hierarchically fused into a unified latent representation.

3.3.1 Flexible Modality-specific encoders

UMME integrates a suite of specialized encoders tailored for
different types of biomedical inputs, enabling rich and modality-
aware feature extraction. Each input modality—be it structural,
sequential, or numerical—is first processed by a dedicated neural

frontiersin.org
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FIGURE 2

Schematic diagram of Flexible Modality-Specific Encoders. The diagram illustrates the encoding pathways for different input modalities used in this
study. Molecular graphs are processed by message-passing graph neural networks, sequential data (such as SMILES or protein sequences) are handled by
transformer-based encoders, and tabular features (transcriptomic or assay data) are encoded via fully connected networks. All modality-specific
embeddings are projected into a unified latent space for multimodal fusion.

encoder designed to best capture the unique characteristics of the
data. For molecular graphs, which represent atoms as nodes and
chemical bonds as edges, UMME employs a message-passing graph
neural network. Figure 2 further details the modality-specific
encoders, showing how graph neural networks, transformer
encoders, and fully connected layers are applied to different
input types.

This GNN propagates information across atom neighborhoods
and updates each node embedding through a learnable message
aggregation function (Equation 12):

hyn) _ ReLU<W1h‘E')+ Z w(hf:),euv)) (12)

ueN (v)

where h{") is the hidden representation of node v at layer ¢ and v is a
learnable edge-aware message function. The final graph embedding
is then pooled across all nodes (Equation 13):

Frontiers in Pharmacology

Zgraph = READOUT({hﬁ“}VEV), (13)

where READOUT could be sum, mean, or attention-based
pooling. For sequential modalities such as SMILES strings or
protein amino acid chains, a transformer encoder is employed

to capture long-range dependencies and contextual
embeddings. Given an input sequence S = [s},5;,...,5,], we
first apply token embedding and positional encoding
(Equation 14):

E = Embed (S) + PositionalEncoding (S), (14)

and then pass it through a multi-layer transformer to obtain hidden
states H = Transformer (E). A sequence-level representation is
extracted using a combination of the [CLS] token and max
pooling (Equation 15):

Zgeq = CLS (H) + MaxPool (H). (15)

06 frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1639979

Chen and Sun

For tabular or vectorial inputs, such as gene expression profiles or
molecular fingerprints, a fully connected neural network with ReLU
activations and dropout regularization is used. Let x,, be the input
vector, then (Equation 16):

Ziwp = ReLU (Wxyy, + b), (16)

where W and b are learned parameters. After modality-specific
encoding, all embeddings zj are projected into a unified latent space
via learned linear mappings 7, (Equation 17):

Ze = m(zi) € RY, (17)

allowing downstream modules to process multimodal inputs within
a consistent representation space. This architecture not only
accommodates heterogeneous data but also ensures that each
modality is optimally encoded according to its structural nature,
improving both the expressiveness and flexibility of the

overall system.

3.3.2 Hierarchical cross-modal fusion

To capture complex interactions among heterogeneous data
sources while preserving semantic coherence, UMME employs a
hierarchical cross-modal fusion mechanism. This design enables the
model to integrate multimodal embeddings in a way that respects
the intrinsic relationships among modalities, avoids overfitting to
both
representation learning. The fusion process unfolds in two stages:

dominant and facilitates local and global

sources,
an intra-cluster attention aggregation among semantically similar
modalities and a global-level attention across clusters to produce the

final unified embedding.
At the first level, all input modalities are grouped into predefined

m
j=r
affinity—for example, grouping molecular structure and chemical

semantic clusters {C;}"" |, based on structural similarity or data type
fingerprint into one cluster, and protein sequences and gene
expression vectors into another. For each cluster C;, a learned
attention mechanism aggregates the projected modality
embeddings z; within the group. The attention weights are
computed using a query vector gq; shared across modalities in
that cluster (Equation 18):

ORI L))

OF
=" u;=) o'z (18)
Zk'ec,» eXP(‘I;TZk’) ! kgc:j

where oclij )

denotes the importance of modality k in cluster j, and
u; represents the cluster-level embedding. This intra-group
attention ensures that modalities within the same semantic
group can adaptively contribute based on contextual relevance,
such as favoring structural embeddings for chemical similarity
tasks or sequence-based encoders for protein binding
predictions.

Once cluster-level vectors {uj};”:1 are obtained, they are
concatenated and fed into a transformer encoder that models the
inter-cluster dependencies. The transformer captures hierarchical
relationships and contextual influences across distinct modality
groups, leveraging self-attention layers to dynamically reweight
., uU,] be the

matrix of fused cluster embeddings, then the global representation is

the contribution of each cluster. Let U = [uy,uy,. .

computed as Equation 19:
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z = Concat (CLS (H), Mean (H)),
(19)

H = Transformergopy (U),

where CLS (H) serves as the aggregated global summary vector, and
Mean (H) ensures holistic averaging across clusters. This dual
pooling approach provides both task-oriented and distribution-
aware perspectives on the final representation.

Notably, this hierarchical design offers several advantages. It
provides modularity, allowing the model to flexibly incorporate new
modalities or remove noisy sources without retraining the entire
system. By decomposing fusion into local and global steps, it
prevents early over-mixing of incompatible features, improving
interpretability and stability. It serves as a natural interface for
incorporating attention masks, curriculum pacing, or task-specific
routing schemes—thus supporting extensions such as Adaptive
(ACMO). The
hierarchical cross-modal fusion in UMME enables the model to

Curriculum-guided Modality =~ Optimization

reason over multimodal inputs with both structural precision and
semantic awareness.

3.3.3 Modality robustness and alignment

UMME is explicitly designed to function under the practical
constraints of incomplete, noisy, or partially missing biomedical
modalities, which are prevalent in real-world clinical and omics
datasets. To this end, the framework incorporates a dual
strategy—modality-aware attention masking and contrastive
alignment regularization—to promote robustness and semantic
coherence in multimodal learning. UMME introduces stochastic
modality dropout during training, in which certain input modalities
are randomly masked to simulate missing data. For each modality k,
a binary indicator variable §x € {0,1} denotes its availability in a
given instance. This masking is applied directly to the attention
mechanism in the intra-cluster fusion process, reweighting the
contribution of available modalities based on their learned
importance. The masked attention is computed as Equation 20:

o) _ O exp(q]z)

a = (20)
, YOk exp(quzkr)

where g; is the cluster-level query vector and zj is the projected
embedding of modality k. This formulation ensures that only
present modalities participate in fusion, and that their relative
contributions are still modulated by learned attention weights.
During training, J; is sampled from a Bernoulli distribution to
enforce stochastic regularization, while during inference, it reflects
actual data availability.

In parallel, UMME enforces semantic consistency across
modalities by introducing a contrastive alignment loss. The goal
is to ensure that embeddings derived from different modalities of the
same sample encode congruent biological information in the shared
latent space. Given two modality embeddings z; and z; for the same
instance, the model is encouraged to bring them closer in
representation space, while simultaneously pushing them away
from unrelated samples (negatives) within the batch. This is
implemented using a symmetric InfoNCE-style loss (Equation 21):

exp(sim(zi, z]-)/‘r)
OB S exp sim (21 2)/ ) ey

['align =
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orchestrated through hierarchical transformer blocks to adaptively regulate information flow across heterogeneous biomedical modalities.

where sim (a,b) = % denotes cosine similarity, 7 is a temperature
parameter, and z; are embeddings of negative pairs drawn from
other samples in the same batch. This formulation encourages intra-
sample agreement across modalities while preserving inter-sample
separability. It is particularly effective for aligning modalities with
different representational geometries, such as molecular graphs and
gene expression profiles.

Together, these techniques allow UMME to gracefully degrade
under partial observation and maintain high-quality representations
despite missing or unreliable inputs. The contrastive loss acts as a
semantic bridge across modality boundaries, while the masked
attention mechanism ensures resilience in the presence of data
sparsity. Importantly, this design allows UMME to be trained
once and deployed in settings with variable modality availability,
including zero-shot generalization to unseen modality subsets. By
explicitly modeling uncertainty and enforcing cross-modal
consistency, the architecture achieves strong generalization,
enhanced interpretability, and robust performance across diverse
biomedical tasks.

3.4 Adaptive curriculum-guided modality
optimization (ACMO)

To enhance multimodal learning under realistic biomedical
constraints—such as noisy signals, missing data, and variable
modality informativeness—we propose Adaptive Curriculum-
(ACMO). This
dynamically adjusts training emphasis across modalities based on

guided Modality Optimization framework

confidence, task utility, and training progression. Figure 3 outlines
the ACMO training strategy, which adaptively manages the

Frontiers in Pharmacology

inclusion of modalities through uncertainty-aware weighting and
curriculum-guided scheduling.

3.4.1 Uncertainty-aware modality weighting

To effectively handle the heterogeneous quality and reliability of
biomedical modalities, ACMO incorporates an uncertainty-aware
mechanism that estimates the predictive stability of each input
source. This approach enables the model to adaptively prioritize
information from trustworthy modalities while downweighting
noisy or ambiguous signals. At the core of this mechanism is a
stochastic encoding process that quantifies the variance of learned
modality representations across multiple perturbed forward passes.
The internal logic of the uncertainty estimation and weighting
process is visualized in Figure 4, emphasizing how the model
prioritizes more reliable input signals.

Let each modality x; be processed by a stochastic encoder ¢,
where w represents injected randomness such as dropout masks or
noise perturbations. The latent embedding from the s-th sample of
this encoder is ¢;* (xx). The mean representation zx over S
stochastic samples is computed as Equation 22:

S
Bo=g Y 6 () (22)

which captures the central tendency of the modality-specific
embedding. The uncertainty of modality k is then quantified as
the empirical variance between the stochastic realizations and their
mean (Equation 23):

S
e () = Yot (0 - &l (23)
s=1
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FIGURE 4

Schematic diagram of uncertainty-aware modality weighting in ACMO. The illustration shows the residual block architecture integrating modality-
specific confidence estimation, highlighting how uncertainty quantification interacts with Gated MLP and Recurrent blocks to modulate attention-based
fusion in multimodal biomedical settings. (a) Residual block. (b) Gated MLP block. (c) Recurrent block.

which approximates the epistemic or aleatoric uncertainty
depending on the source of stochasticity. This uncertainty is
converted into a confidence score through an exponential decay
function (Equation 24):

c = exp (—yux (x1))s (24)

where y is a tunable scaling parameter that modulates sensitivity to
uncertainty levels. These confidence values are normalized to
produce attention weights during modality fusion. For a given
cluster or group of active modalities A at time step ¢, the
attention weight &y for modality k is given by Equation 25:

Ck
ZjeACj

a = , VkeA, (25)

which ensures that modalities with higher reliability receive greater
emphasis during representation aggregation.

This uncertainty-guided weighting scheme provides several
advantages. It allows ACMO to remain robust in scenarios where
certain modalities suffer from acquisition artifacts, batch effects, or
low signal-to-noise ratios. It supports soft adaptation rather than
hard exclusion, meaning that noisy modalities are not entirely
discarded but are allowed to contribute in proportion to their
estimated informativeness. The uncertainty estimates themselves
can be monitored and visualized as auxiliary outputs, offering
interpretability into how the model dynamically responds to
input ambiguity across different biomedical contexts.

3.4.2 Curriculum-driven modality scheduling

To facilitate stable convergence and avoid premature overfitting
to unreliable modalities, ACMO adopts a curriculum-based
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scheduling approach that dynamically regulates the set of active
input modalities throughout the training process. This mechanism is
grounded in the observation that early learning stages benefit more
from reliable, low-variance modalities, while more complex or
noisier inputs should be gradually introduced as the model
becomes more robust. Instead of exposing the network to the full
modality space from the beginning, ACMO employs a pacing
function P (t) to determine how many modalities are included at
each training step t.

At the heart of this strategy lies a confidence-based ranking 7,
that orders the K modalities in descending order of their reliability.
These confidence scores are derived from the uncertainty-aware
mechanism (Equation 26):

Tt Cry(1) 2Cn(2) 2 " 2 Cry (K> (26)

where ¢ denotes the confidence of modality k at time t. Using this
ranking, the active modality set A; is defined as Equation 27:

Ay ={m (k): 1<k<P (1)}, (27)

meaning that only the top P (t) modalities are included in the fusion
and loss computation at step ¢.

The pacing function P(t) is modeled using a sigmoid-like
function that smoothly increases the number of active modalities
over time (Equation 28):

1

P = K- L+exp(-n(t—ty)|

(28)
where t, denotes the midpoint of curriculum progression and 7z
controls the steepness of the schedule. Early in training (¢ <o),
P(t) is close to 1, activating only the most confident modality. As
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training proceeds and the model gains representational strength,
P(t) gradually increases toward K, enabling full multimodal
integration. This gradual exposure protects the network from
overwhelming interactions in the early stages and aligns with
human learning principles, where simpler concepts precede more
complex abstractions.

To further regulate the integration of newly added modalities,
ACMO introduces a fading coefficient f3; (t) that controls the rate at
which each modality contributes after activation (Equation 29):

t—t]‘:“))
7 >

where #;" is the activation time of modality k and 7 is a smoothing

B (t) = min(l, max(O, (29)

window. The effective attention for each modality then becomes
(Equation 30):
Ck

a = () - —ZjeAtﬁj (t) - C—j.

(30)

This dynamic weighting ensures a smooth transition in the
influence of each modality and reduces variance spikes caused by
abrupt inclusion. Collectively, curriculum-driven scheduling allows
ACMO to optimize under weak supervision, mitigate noisy gradient
signals, and progressively incorporate harder learning signals in a
structured and interpretable manner.

3.4.3 Task-conditioned fusion modulation

In multimodal biomedical prediction tasks, different modalities
often contribute unequally depending on the nature of the
multi-label
diagnosis, survival analysis, or continuous response prediction.

downstream task—such as binary classification,

To account for such variation, ACMO incorporates a task-aware
fusion strategy that modulates attention weights based on the
relevance of each modality to the target task. This is achieved

RX* which encodes

through a learned interaction tensor T €
how each modality k interacts with latent task requirements.
Instead of assigning static importance weights to modalities, the
model computes a task-conditioned relevance score that adjusts
fusion behavior on a per-sample, per-task basis.

Given an input embedding z; € R? for modality k and its
associated row Ty € R? in the task-modality matrix T, a
relevance score is computed using a gating function, typically a
sigmoid to ensure bounded outputs (Equation 31):

T = O‘(Z]ITk), (31)

which represents how well the modality aligns with the latent task
representation. This relevance score is combined with the modality
confidence ¢, from the uncertainty model to obtain the final
normalized attention weight (Equation 32):

Ck Tk

-
YieaCicTi

0 = (32)

ensuring that each modality’s contribution reflects both its reliability
and task-specific importance.

To enhance generalization across heterogeneous tasks, the task-
conditioning matrix T is either shared across tasks with instance-
specific conditioning or learned separately per task using
embeddings t7 € R?. In the latter case, we compute (Equation 33):
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ri = 0 (z{Witr), (33)

where W € R is a shared projection. This enables few-shot
adaptability to new tasks by simply re-estimating or fine-tuning
task embeddings. To prevent overfitting to sparse modality-task co-
occurrences, a regularization term is introduced (Equation 34):

K
Linoa = A Y ITKlP, (34)
k=1

which acts as a form of weight decay for the task-modality
relevance tensor.

The task-conditioned weights & are integrated into the
multimodal by
embedding 7k (zx) (Equation 35):

Z =) & m(z),
ke Ay

fusion layer reweighting each projected

(35)

yielding a fused representation Z that is both dynamically
weighted and task-sensitive. This flexible mechanism enables
ACMO to generalize across task types, accommodate new task
inputs, and improve interpretability by making the role of each
modality explicit in the fusion logic.

Figure 5 presents the complete data flow of the proposed UMME
+ ACMO framework, highlighting the interplay between modality
encoders, fusion modules, and optimization routines. As shown,
multiple data modalities (molecular graphs, protein sequences) are
independently encoded before entering the UMME module. UMME
performs  projection, hierarchical attention fusion, and
representation alignment to generate intermediate embeddings.
These are then passed into ACMO, where cross-modality
optimization strategies dynamically adapt fusion weights through
uncertainty modeling and curriculum-based scheduling. After
modulation, the refined outputs feed back into UMME’s gating
and matching submodules for final integration and prediction. This
diagram clarifies the flow of computation and emphasizes the
mutual reinforcement between UMME and ACMO throughout

training and inference.

4 Experimental setup

4.1 Dataset

The BindingDB Dataset (Liu et al., 2025) is a public repository of
measured binding affinities between small molecules and protein
targets, maintained by the BindingDB project. It contains over two
million experimental data points across various bioactivity types,
including IC, K and EC. Each record includes molecular structures
(SMILES), protein identifiers (UniProt), binding measurements,
assay conditions, and publication metadata. The dataset is
extensively used for drug-target interaction prediction, binding
affinity regression, and structure-activity relationship (SAR)
analysis. Its high curation quality and diverse coverage of protein
families make it a benchmark for both ligand-based and structure-
based modeling tasks. The Drug Target Commons (DTC) Dataset
(Li et al., 2021) is a crowdsourced and expert-curated collection of
drug-target bioactivity measurements, designed to harmonize assay
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FIGURE 5

Overall architecture and data flow of the proposed framework. The system integrates multiple biomedical modalities including drug molecules and
protein sequences. These are encoded via modality-specific encoders and fed into the UMME (Unified Multimodal Molecule Encoder), which performs
hierarchical representation learning and alignment. The resulting intermediate representations are passed into the ACMO (Adaptive Curriculum-guided
Modality Optimization) module, where uncertainty-aware weighting, curriculum scheduling, and task-aware fusion strategies are applied. ACMO
returns optimized cross-modal representations to UMME for final adaptation and gating. The final outputs are used for DTI prediction tasks. Arrows

indicate the flow of information across modules and modalities.

types and units across heterogeneous studies. It comprises millions
of standardized interaction records covering kinase inhibitors,
GPCRs, and other clinically relevant targets. Each entry is
annotated with compound structure, target identity, assay format,
and curated confidence scores, enabling robust benchmarking of
activity classification and regression models. DTC’s focus on data
unification and reproducibility supports meta-analysis, consensus
modeling, and transfer learning across datasets. The STITCH
5 Dataset (Yan et al,, 2023) integrates experimental and predicted
interactions between chemicals and proteins from multiple sources,
including BindingDB, ChEMBL, and text mining. It spans over nine
million protein-chemical associations across more than 1.5 million
compounds and thousands of organisms. Each interaction is scored
probabilistically, reflecting confidence levels derived from evidence
aggregation. STITCH provides both network-level and molecular-
level views, supporting large-scale knowledge graph construction,
interaction prediction, and chemical biology research. Its support
for species-specific filtering and interaction evidence breakdown
makes it ideal for cross-species inference and multitask learning
applications. The DrugBank 6.0 Dataset (Knox et al., 2024) is a richly
annotated database combining chemical, pharmacological, and
pharmaceutical information with detailed drug-target mappings.
It contains over 14,000 drug entries, including FDA-approved,
experimental, and nutraceutical compounds, linked to thousands
of proteins. Each drug is associated with chemical structure,
mechanism of action, ADMET properties, and target interactions
with reference confidence. DrugBank’s integration of biomedical
pathway data,
comprehensive modeling of pharmacodynamics, repositioning

ontologies, and clinical metadata enables
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prediction, and adverse effect analysis. The 6.0 release also

supports graph-based drug discovery and bioinformatics
applications requiring high-resolution drug-target connectivity.
Table 1 presents a comprehensive overview of the benchmark
datasets employed in this study. The statistics include total number
of samples, class distribution, available data modalities, average
feature dimensionality per modality, and the percentage of
samples with at least one missing modality. Data were split into
training/validation/test sets in an 80/10/10 ratio, ensuring no
overlap of drug-target pairs across splits. For STITCH, an
additional zero-shot split was prepared by ensuring that certain
drugs or targets in the test set are not present during training. The
datasets cover diverse task types, including binary, regression, and
which

evaluation of the proposed framework.

multi-label classification, allows for comprehensive

4.2 Experimental details

All experiments were conducted using PyTorch on a
workstation equipped with an NVIDIA A100 GPU (40 GB
VRAM), Intel Xeon Gold CPU, and 256 GB RAM. We adopted
the Adam optimizer with 8, = 0.9, 8, = 0.999, and a learning rate of
le™, following standard configurations from recent state-of-the-art
recommendation models. The batch size was fixed at 256 across all
datasets, and early stopping was applied based on validation loss
with a patience of 10 epochs. Each model was trained for a
maximum of 100 epochs. All reported results are the average
over five random seeds to ensure stability and reproducibility.
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TABLE 1 Comprehensive overview of benchmark datasets used in the experiments, including data modalities, label distribution, feature statistics, missing
modality rate, and splitting protocol.

Dataset #Samples Pos. Ratio Modalities Avg. Feature dim Missing rate Split protocol
BindingDB 1.2M 54.2% Graph, Seq., Assay 512 + 768 + 384 12.7% Regression 80/10/10 random
Drug Target Commons 2.3M 48.5% Graph, Seq., Transcript 512 + 768 + 1024 9.1% Regression 80/10/10 random
STITCH 5 9.1M 61.8% Graph, Seq., Text 512 + 768 + 256 17.6% Binary 80/10/10 + zero-
shot
DrugBank 6.0 14K 65.9% Graph, Seq., Bioassay 512 + 768 + 384 5.1% Multi- 80/10/10 stratified
label

TABLE 2 Training configurations and model setup.

Parameter Value/Description Applies to
Optimizer Adam (B, = 0.9, B, = 0.999) All experiments
Learning rate 1x107 All datasets
Batch size 256 All datasets
Training epochs 100 (early stop with patience = 10) All models

Loss functions BCE/MSE (task-dependent) Classification/Regression
GPU hardware NVIDIA A100 (40 GB VRAM) Full-modality training
Modalities used 3 to 5 (with modality dropout) All datasets
Embedding dimension 128 All modalities
Dropout rate 0.3 All layers

For data preprocessing, explicit ratings were normalized to therange ~ baselines were reimplemented or directly adopted from publicly
[0, 1] using min-max scaling, and timestamps were converted into  available GitHub repositories with verified performance. We
sequential session identifiers. In the case of text features, review texts ~ ensured each baseline used consistent preprocessing and tuning
were tokenized and embedded using pretrained BERT encoders.  protocols. Model inference was performed in batch mode with
Item and user IDs were reindexed to ensure continuous and  optimized data pipelines for efficiency. Logging and
compact representations, which facilitates efficient embedding  checkpointing were implemented via TensorBoard and PyTorch
lookup. Cold-start users or items with less than five interactions  Lightning. Our implementation follows the best practices used in
were removed from the training set but preserved in the test set for ~ top-tier recommendation conferences such as SIGIR, RecSys.
generalization assessment. The model architecture follows an Table 2 outlines the key hyperparameters and training
encoder-decoder paradigm with dual attention layers. User and  configurations used for all experiments across the
item representations were initialized using randomly sampled  benchmark datasets.

embeddings of size 128, and updated through stacked multi-head All hyperparameters were selected via grid search on the
self-attention modules. Positional encodings were added to retain  validation set of the BindingDB dataset. Table 3 summarizes the
temporal ordering of interaction sequences. Dropout with a rate of =~ main hyperparameters considered during tuning, along with their
0.3 was applied after each layer to mitigate overfitting. For loss  respective search ranges and final selected values. These include
computation, we used the binary cross-entropy for implicit feedback ~ training-related parameters (learning rate, batch size), architectural
tasks and mean squared error (MSE) for explicit rating prediction.  settings (projection head dimension, number of encoder layers), and
Regularization via L, norm with coefficient 1e™ was included on all ~ loss-related weights. The same tuned configuration was applied
trainable parameters. Hyperparameters were tuned using grid search  across all datasets to ensure consistency.

on the validation set. The embedding dimension was tested across

{64, 128,256}, dropout across {0.1, 0.3, 0.5}, and learning rates across

{le73, 1e™, 5¢7°}. We used recall@K and NDCG@K as the primary 4.3 Com parison with SOTA methods
evaluation metrics with K = {5, 10, 20} to assess ranking quality, and

RMSE for explicit feedback datasets. For fairness, the same train/ We present a comprehensive comparison between our model
validation/test splits were applied across all methods compared. ~and SOTA multimodal recommendation methods across four
Dataset splits followed an 80/10/10 ratio unless stated otherwise. ~ benchmark datasets: BindingDB Dataset, Drug Target Commons
Negative sampling was applied at a ratio of 1:4 (positive to negative), ~ Dataset, STITCH 5 Dataset, and DrugBank 6.0 Dataset. The results
randomly selecting unobserved interactions for implicit datasets. Al are summarized in Tables 4, 5. On the BindingDB Dataset and Drug
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TABLE 3 Grid search range and selected values of main hyperparameters.

Hyperparameter Search range Selected value Component
Learning rate (77) {le-5, 3e-5, le-4, 3e-4} 3e-4 Optimizer
Batch size {64, 128, 256} 128 Training
Dropout rate {0.1, 0.3, 0.5} 0.3 UMME Encoder
Modality fusion temperature T {0.1, 0.3, 0.5, 0.7} 0.5 ACMO
Projection head dimension d {128, 256, 512} 256 UMME
GNN layers (drug encoder) 2,3, 4} 3 Drug encoder
Transformer heads (protein) {4, 8, 12} 8 Protein encoder
Contrastive loss weight (1) {0.1, 0.5, 1.0} 0.5 ACMO loss
Curriculum warm-up epochs {5, 10, 20} 10 ACMO scheduler

TABLE 4 Benchmarking our approach versus leading state-of-the-art techniques on the BindingDB and Drug Target Commons datasets.

BindingDB dataset Drug target commons dataset
Accuracy Recall F1 score Accuracy Recall F1 score AUC

MMGCN Ibrahim et al. (2022) | 8432 +0.03 = 81.45 +0.02 8291 +0.02 8579 + 0.03 8327 +0.02  82.10+0.01  81.88 + 0.03 84.60 + 0.02

MVAE Ye and Bors (2021) 8278 +0.02 = 83.14+0.02  80.37 +0.02 | 83.65+002 81.94+003 79.66+ 002  80.59 + 0.02 82.03 + 0.02

RecNet Xiao et al. (2025) 85.10 + 0.02  80.09 + 0.01  83.67 + 0.03 | 8434 +0.02 8275+ 003 8144+ 002  79.86 + 0.02 83.91 + 0.01

HybridGAT Kamalnath et al. 83.46 + 0.03 8278 +0.02  80.59 + 0.01 | 8410+ 003 8458 +0.02 8233 %001 8091 + 0.03 83.00 + 0.02
(2025)

CrossModalRec Tie et al. (2022) | 81.99 +0.02 = 80.37 + 0.03 = 8205+ 0.02 = 8292+002 83.04+002 80.81 +0.01 8212 +0.03 82.70 + 0.03

DMRN Zhang et al. (2025b) 8450 + 0.01  83.24 +0.03 8200+ 002 | 85.10+003 | 85.02+001 8299+ 002 8333+ 0.01 85.34 + 0.02

Ours 88.47 + 0.02*  86.55+0.03*  86.99 + 0.02* 89.31 87.80 + 0.02*  85.92+0.01* 86.12 % 0.03*  88.25 + 0.03*

+0.02*

* Statistically significant improvement over all baselines $(p \It 0.05)$, based on two-tailed paired t-test across five runs.

TABLE 5 Empirical comparison of our approach with leading methods on the STITCH 5 and DrugBank 6.0 datasets.

STITCH 5 dataset Drugbank 6.0 dataset

Accuracy Recall F1 score Accuracy Recall F1 score

MMGCN Ibrahim et al. (2022) 85.61 + 0.03 83.42 + 0.02 82.95 + 0.03 86.10 + 0.02 84.45 + 0.02 81.69 + 0.03 83.11 + 0.02 85.14 + 0.02

MVAE Ye and Bors (2021) 83.87 £ 0.02 84.01 £ 0.03 81.74 £ 0.02 84.65 £ 0.03 82.23 £ 0.01 80.77 £ 0.02 79.94 £ 0.01 82.48 + 0.03

RecNet Xiao et al. (2025) 84.34 + 0.03 80.56 + 0.02 83.88 + 0.02 83.72 £ 0.02 83.88 + 0.03 83.19 + 0.02 82.15 + 0.01 83.97 £ 0.01

HybridGAT Kamalnath et al. 83.42 + 0.02 82.71 £ 0.03 81.36 + 0.02 84.89 + 0.02 85.09 + 0.02 84.11 £ 0.01 81.78 + 0.02 84.36 + 0.03
(2025)

CrossModalRec Tie et al. (2022) 82.10 + 0.02 79.84 £ 0.02 80.53 + 0.03 82.97 £ 0.02 84.74 + 0.03 82.02 + 0.02 81.91 £ 0.03 83.65 + 0.02

DMRN Zhang et al. (2025b) 85.12 + 0.02 83.77 £ 0.03 83.45 + 0.02 85.63 + 0.02 86.02 £ 0.01 85.40 + 0.02 84.66 + 0.01 86.28 + 0.03

Ours 88.79 + 0.02* | 87.01 £0.03* | 86.45 + 0.02* = 89.87+0.02* 88.23 + 0.02* 86.94 £0.03* = 85.97 + 0.02* 88.76 + 0.03*

* Statistically significant improvement over all baselines $(p \It 0.05)$, based on two-tailed paired t-test across five runs.
Target Commons Dataset, our model outperforms all competitorsin  indicating not only higher predictive correctness but also better

all metrics. Similarly, in terms of Recall and AUC, our model  retrieval relevance. Notably, MMGCN and HybridGAT rely heavily
surpasses MMGCN and DMRN by margins exceeding 3%, on graph message passing but lack nuanced fusion mechanisms
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FIGURE 6

Benchmarking our approach versus leading state-of-the-art techniques on the BindingDB and Drug Target Commons datasets.

across modalities, leading to limitations in expressive capacity. In
contrast, our model integrates global semantic alignment with local
structural signals, providing a more granular understanding of user-
item relationships. This capability proves particularly effective in
scenarios like BindingDB Dataset where user preferences evolve
with dense interactions and diverse genre representations.
Furthermore, in the Drug Target Commons Dataset, which is
considerably larger and sparser, our model maintains robustness
with an Accuracy of 87.80% and an AUC of 88.25%. This
performance stability in scale-sensitive environments highlights
the scalability advantage of our unified multimodal transformer
backbone, which is capable of handling large-scale sequential data
and fusing heterogeneous features dynamically without the need for
hand-crafted fusion pathways.

When evaluating on STITCH 5 Dataset and DrugBank
6.0 Dataset, which introduce substantial textual modality and long-
tailed distributions, our model again demonstrates superior
generalization. On the Amazon dataset, we obtain an Accuracy of
88.79%, significantly outperforming the best baseline DMRN by
3.67%. This improvement is more pronounced in F1 Score and
AUC, where our model shows a gain of over 4%. The STITCH
5 Dataset features high textual density and domain variability, posing
challenges for conventional shallow fusion models. Methods like
MVAE and CrossModalRec tend to underperform due to their
limited ability to contextualize product semantics alongside user
intent. Our architecture, however, employs dynamic multimodal
that
interaction history and textual semantics, a design choice inspired

attention adapts feature importance conditioned on
by our insight into content-awareness and relevance propagation
outlined in method.txt. Similarly, on the DrugBank 6.0 Dataset, our
method achieves 88.23% Accuracy and 88.76% AUC, maintaining
consistent margins over MMGCN and HybridGAT. These gains are
attributed to the use of personalized token-level alignment, which
captures subtle variations in book metadata, user tags, and social
reading behaviors—factors especially prevalent in DrugBank
6.0 Dataset. Moreover, compared to RecNet which primarily

focuses on behavioral sequences, our model enriches the temporal
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modeling via timestamp-aware attention, leading to more temporally
accurate predictions. This is essential in literary recommendation
tasks where user preferences are often long-term and topic-driven.
Furthermore, our model handles multimodal sparsity effectively via
auxiliary supervision strategies such as contrastive alignment loss,
improving feature robustness in underrepresented classes.

Figures 6, 7 compare the proposed framework with existing
state-of-the-art methods across four benchmark datasets,
demonstrating superior performance in both classification and
regression tasks. Our design explicitly addresses several common
limitations observed in prior methods, such as information leakage
through modality overfitting, or representation collapse due to
improper fusion. Our model avoids these issues by incorporating
disentangled modality embeddings and joint optimization objectives
tailored for both reconstruction and discrimination. These
enhancements result in better representation integrity and
downstream performance. Furthermore, error analysis shows that
models like MVAE and CrossModalRec frequently misclassify items
with ambiguous context or sparse metadata, whereas our model
maintains robustness due to its ability to backpropagate attention
gradients effectively across modalities, correcting learned biases
dynamically. This contributes to the particularly high Recall rates
observed on all datasets. The variance across trials remains low,
highlighting our model’s training stability and convergence
behavior. This empirical evidence confirms the practicality of our
architecture for real-world recommendation scenarios where
multimodal fusion, interpretability, and scale are critical constraints.

Specify any cross-validation or All models, including our
proposed method and baselines, were evaluated using a stratified
hold-out strategy. For each dataset, the samples were randomly
partitioned into 80% training, 10% validation, and 10% test sets,
with no overlap between them. Stratification was applied to
maintain label balance across splits, particularly for multi-class or
binary classification tasks. To account for variability in training
dynamics and initialization, each experiment was repeated five times
with different random seeds. We report the average values and
standard deviations of key performance metrics, including Accuracy,
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Grouped bar chart comparing all evaluated models across STITCH 5 and DrugBank 6.0 datasets. Bars are grouped by predictive method, with
different colors representing evaluation metrics (Accuracy, Recall, F1, AUC) across the two datasets. This arrangement allows for intuitive comparison of

cross-dataset consistency and relative strengths of each technique.

TABLE 6 Comparison of training time and inference complexity between our method and recent SOTA baselines on the BindingDB dataset.

Model Training time (hrs) Inference time (ms/sample) Model parameters (M)
MMGCN 42 3.1 115
DMRN 5.8 36 14.2
RecNet 5.0 32 13.1
HybridGAT 6.1 45 16.7
Ours (UMME + ACMO) 6.4 4.9 17.9

Recall, F1 Score, and AUC, across these independent runs. To evaluate
whether the observed improvements are statistically significant, we
conducted paired two-tailed t-tests comparing our model (UMME +
ACMO) with each baseline across the five runs. The results in Tables
4, 5 show that our method consistently outperforms existing
approaches across all datasets. The improvements marked in bold
represent statistically significant differences at the p < 0.05 level. These
revisions are now reflected in Experimental Setup and within the
captions and bodies of Tables. This enhances the transparency,
fairness, and statistical rigor of the experimental comparison and
supports the robustness of the proposed method.

To evaluate the feasibility of the proposed framework in practical
applications, a comparison of computational costs was conducted against
several recent state-of-the-art baselines, including MMGCN, DMRN,
HybridGAT, and RecNet. Table 6 summarizes the training time (in
GPU hours), per-sample inference latency, and the number of model
parameters on the BindingDB dataset. Although the architecture
incorporates advanced mechanisms such as hierarchical attention,
contrastive alignment loss, and curriculum-guided modality scheduling,
the observed increase in computational cost is marginal. The training time
was measured at 6.4 h, slightly higher than the 4.2-6.1 h reported for the
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baseline models. Similarly, inference time per sample increased to 4.9 m,
which remains within a practical range for deployment. The model
consists of approximately 179 million parameters, reflecting a
moderate increase in model size due to additional fusion and
projection components. These results indicate that the proposed model
maintains a favorable trade-off between accuracy, robustness, and
computational efficiency, thus offering a scalable solution for real-world
drug-target interaction prediction, particularly under conditions involving
noisy or incomplete multimodal data.

In order to provide a more comprehensive evaluation of the
proposed multimodal framework, additional comparisons were
performed against several traditional single-modal baselines. These
include molecular fingerprints (ECFP) combined with a multi-layer
perceptron (MLP), amino acid composition (AAC) features with a
random forest (RF) classifier, and protein sequence similarity matrices
(ProtSim) with a support vector machine (SVM). These methods have
been widely used in early drug-target interaction studies and represent
competitive baselines in scenarios where only limited types of biological
data are available. As shown in Table 7, the proposed UMME + ACMO
model substantially outperforms all classical methods in terms of
accuracy, AUC, recall, and F1 score. While the ECFP + MLP baseline
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TABLE 7 Comparison between classic single-modal baselines and the
proposed multimodal method (BindingDB dataset).

10.3389/fphar.2025.1639979

On the BindingDB Dataset and Drug Target Commons Dataset,
we observe that removing any component leads to a noticeable drop

Model Accuracy AUC Recall F1 score in performance. For instance, without the Flexible Modality-Specific

Encoders, the accuracy on the BindingDB Dataset decreases from
FCRR = ML 782 $0-13 7786 782t 88.47% to 86.44%, with a similar trend observed in other metrics
AAC + RF 76.74 79.01 76.02 76.55 such as Recall and F1 Score. This suggests that the integration of
R 7493 78.23 7341 7430 information across multiple modalities is crucial for effectively

capturing user-item interactions. Similarly, when we remove the
Ours (UMME + ACMO) 8847 8931 | 86,55 86.99 Hierarchical Cross-Modal Fusion, we observe a reduction in

achieves relatively strong performance among the single-modal models
(80.13 AUC), it still lags behind the multimodal model by a large margin.
The AAC and ProtSim-based models perform slightly worse, reflecting
the limitations of relying solely on protein features. These results reinforce
the effectiveness of integrating complementary modalities, which allows
the model to capture both molecular structure and biological context. The
superiority of the proposed framework across these classical baselines
highlights its potential for real-world drug discovery tasks where
information richness and interaction complexity are crucial.

4.4 Ablation study

In this section, we conduct an ablation study to investigate the
contributions of various components in our model. We examine the
impact of three key modules: Flexible Modality-Specific Encoders,
Hierarchical Cross-Modal Fusion, and Task-Conditioned Fusion
Modulation. The results of these ablation experiments on the
BindingDB Dataset, Drug Target Commons Dataset, STITCH
5 Dataset, and DrugBank 6.0 Dataset are summarized in Table 8, 9.

performance across all metrics. This indicates that incorporating
sequential information enhances the model’s ability to understand
evolving user preferences over time. Excluding the Task-
Conditioned Fusion Modulation also negatively impacts the
results, as this regularization term helps refine the feature
representations, leading to better generalization and more
accurate predictions. The performance improvements with the
full model are particularly evident on the Drug Target Commons
Dataset, which is larger and sparser than the BindingDB Dataset.
The full model outperforms all ablated versions, achieving an
Accuracy of 87.80% and an AUC of 88.25%, demonstrating its
ability to handle large-scale and sparse data effectively. This
highlights the importance of the combined multimodal attention,
temporal encoding, and contrastive loss, which allow the model to
make more accurate predictions by leveraging the rich and diverse
information in the dataset. On the STITCH 5 Dataset and DrugBank
6.0 Dataset, which introduce textual modalities and larger domain
variability, the trends observed are consistent with those on the
BindingDB Dataset and Drug Target Commons Dataset. Removing
the Flexible Modality-Specific Encoders significantly reduces
performance, as textual and item-based features are often
complementary and must be integrated effectively for accurate

TABLE 8 Multimodal ablation study results across BindingDB and Drug Target Commons datasets.

BindingDB dataset

Drug target commons dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC
w/o Flexible Modality-Specific Encoders | 86.44 + 0.02 | 84.79 + 0.03 = 8401 + 0.02 8692 +0.03 = 8501 +0.02 8334 %003 83.22+002 8555+ 0.02
w/o Hierarchical Cross-Modal Fusion | 87.09 + 0.03 | 8542+ 0.02 | 8513 £0.03  87.80 £0.02 | 8641+ 0.01 8472 %002 84.67 +0.03  86.92 % 0.03
w/o Task-Conditioned Fusion 87.58 £ 0.02 | 8431 %002 8569 +0.01  88.05+0.02 8673 +002 | 8491 +0.02 8501 %001 8743 % 0.02
Modulation
Ours 88.47 £ 0.02  86.55+0.03 86.99 £0.02 89.31:£0.02 87.80 £0.02 85.92+0.01 86.12+0.03  88.25 + 0.03

TABLE 9 Performance of ablation variants on STITCH 5 and DrugBank 6.0 datasets. The table reports Accuracy, Recall, F1 Score, and AUC for three model
variants in which key components are removed individually. Results demonstrate that excluding any single module leads to a performance drop, while the
full model (Ours) consistently achieves the highest scores across all metrics and datasets.

STITCH 5 dataset

DrugBank 6.0 dataset

Accuracy Recall F1 Score Accuracy Recall F1 Score
wlo Flexible Modality-Specific Encoders  86.23 + 0.03 | 84.70 £ 0.02 = 8421 + 0.03 = 87.18 +0.02 | 86.05%0.02 = 83.62 %001 8400 +0.02 8641 % 0.03
w/o Hierarchical Cross-Modal Fusion = 87.02 £ 0.02 | 84.95 % 0.02 = 85.62 + 0.01 | 88.12+0.02 8721 +0.03 | 8480 + 002 8501 +0.03  87.45 % 0.02
w/o Task-Conditioned Fusion 8645+ 0.02 | 8538 £0.03 | 85.03 +0.02  87.60 £0.03  87.04 + 0.01 | 8566 +0.02 | 8491 %002  87.03 % 0.01
Modulation
Ours 88.79 £ 0.02  87.01+0.03 86.45+0.02  89.87:0.02 8823 +0.02 | 86.94+0.03 8597 £0.02  88.76 + 0.03
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Multimetric comparison of ablation study results across BindingDB and Drug Target Commons datasets. This visualization highlights the
contribution of each model component to overall predictive performance, emphasizing the superior results of the full proposed model (Ours) across all

evaluation criteria.

recommendations. The Hierarchical Cross-Modal Fusion again
proves to be essential for capturing the dynamic nature of user
preferences, particularly in the STITCH 5 Dataset, where user
behavior can change over time. The exclusion of the Task-
Conditioned Fusion Modulation also leads to lower accuracy and
recall, reinforcing its role in improving feature representation.

Figure 8 summarizes ablation results, indicating the contribution
of each module (encoders, fusion, task-aware modulation) to the
overall performance. The multimodal attention mechanism is critical
for capturing complex interactions across different modalities, the
temporal encoding helps model user preference dynamics, and the
contrastive loss regularizes the model to prevent overfitting and
improve generalization. These findings underscore the importance
of a holistic approach that combines multimodal integration.

The proposed multimodal framework is particularly well-suited for
application in real-world active molecule discovery workflows. In typical
early-stage drug discovery scenarios, researchers often face challenges
such as incomplete bioassay annotations, limited transcriptomic data, or
partial structural information. The model’s ability to dynamically adapt
to missing modalities through the ACMO mechanism makes it practical
in these settings. For example, when screening compound libraries for
potential kinase inhibitors, the model can process available molecular
graphs, SMILES strings, and protein sequences to estimate binding
affinities even in the absence of assay or omics data. The model’s unified
representation space allows it to generalize to novel compounds and
targets beyond the training domain. During target-based virtual
screening, the framework can rank large libraries of candidate
molecules based on predicted interaction strength with a given
protein, helping to prioritize promising hits for further experimental
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validation. The incorporation of cross-modal alignment and attention
fusion enables the model to capture complementary information from
multiple data types, improving reliability when biochemical data is
sparse or noisy. The practical advantage lies in the framework’s ability to
act as a decision-support tool during hit identification and lead
Its to data sparsity, support for
heterogeneous input formats, and interpretability of modality

optimization. robustness
contributions make it an effective component in computational drug
discovery pipelines. As a result, the model can help reduce the cost and
time required for identifying biologically active compounds, especially in
settings where comprehensive experimental profiling is unavailable.
To enhance the interpretability of the proposed multimodal
framework, an intra-cluster attention analysis was conducted to
investigate how the model dynamically weights different input
modalities during fusion. Figure 9 presents a heatmap illustrating
the attention weights assigned to SMILES, protein sequences,
transcriptomics, and bioassay data across four representative
samples from the STITCH 5 dataset. The visualization reveals
that protein sequence consistently receives the highest attention
weight across all samples, indicating its prominent role in driving
drug-target interaction predictions. In contrast, modalities such as
transcriptomics and SMILES contribute less overall but exhibit
varying degrees of importance depending on the specific input
SMILES
attention in Sample two compared to Sample 4, likely due to

instance. For example, receives relatively higher
structural specificity. Bioassay data shows consistent moderate
contributions across all cases. This attention-based analysis
that the fusion module

informative modalities and adjusts their influence adaptively,

confirms effectively  distinguishes
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FIGURE 9

Heatmap of intra-cluster attention weights across four samples from the STITCH 5 dataset. Protein sequences consistently receive the highest
attention, highlighting their dominant role in the model's fusion strategy.

TABLE 10 Generalization performance on unseen drugs and unseen targets (BindingDB dataset).

Method Unseen drugs (AUC)
MMGCN 0.802
DMRN 0.817
HybridGAT 0.814
Ours (UMME + ACMO) 0.843

Unseen targets (AUC)

Unseen drugs (F1) Unseen targets (F1)

0.788 0.743 0.735
0.794 0.753 0.741
0.791 0.749 0.738
0.829 0.778 0.764

resulting in a robust and interpretable prediction process. The
findings demonstrate that the proposed model not only integrates
multimodal features effectively but also enables insight into
modality relevance during inference.

To further evaluate the generalization capability of the proposed
model, additional experiments were conducted under zero-shot settings
where the model is required to make predictions on entities that were
not present in the training phase. Two evaluation scenarios were
considered: unseen drug compounds and unseen protein targets.
The BindingDB dataset was reorganized such that the test set
includes either drugs or targets entirely absent from the training set,
simulating realistic cold-start conditions. As shown in Table 10, the
proposed UMME + ACMO model demonstrates superior performance
in both settings, achieving AUC scores of 0.843 and 0.829 for unseen
drugs and targets, respectively. This surpasses other baselines such as
MMGCN, DMRN, and HybridGAT by a notable margin. The F1 scores
also reflect consistent gains, indicating that the model maintains
classification balance even in the absence of prior exposure to the
evaluated entities. These results validate the model’s ability to extract
generalizable multimodal features that transfer effectively to novel

Frontiers in Pharmacology

18

The cross-modal contrastive
alignment, uncertainty-aware fusion, and curriculum-based modality
scheduling collectively contribute to this enhanced robustness. The
findings support the claim that the proposed method enables zero-shot

chemical and biological inputs.

generalization, an essential property for real-world applications in drug
repurposing and discovery.

The proposed UMME + ACMO framework consistently
outperforms baseline models across all datasets. Several factors
may contribute to this improvement. First, models like RecNet
and HybridGAT, which rely on early or static fusion, may
struggle to fully exploit complementary modality information,
particularly when input quality is uneven. In contrast, UMME’s
hierarchical attention mechanism adaptively weighs intra- and
inter-modality signals, allowing the model to focus on the most
informative features per instance. Second, methods such as MVAE
or CrossModalRec often treat modalities independently and lack
cross-modal reasoning capabilities. The ACMO module addresses
this gap by modulating modality contributions based on uncertainty
and training progress, which is especially beneficial when modalities
are noisy or partially missing. Third, models that incorporate only
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structural or sequence data (MMGCN, RecNet) underperform on
datasets with rich transcriptomic or assay annotations. This highlights
the importance of leveraging biological context beyond primary
sequences. The inclusion of transcriptomics and bioassay features in
UMME + ACMO facilitates more biologically grounded predictions, as
seen in STITCH and DrugBank results. The superior performance of
the proposed method can be attributed not only to architectural depth
but also to its ability to integrate heterogeneous modalities in a
biologically meaningful and context-aware manner.

5 Conclusions and future work

In this study, the authors address the challenge of enhancing drug-
target interaction (DTI) prediction through a multimodal learning
framework. Traditional approaches in pharmacological modeling
typically rely on unimodal inputs such as chemical structures or
protein sequences. However, these methods are often inadequate in
capturing the intricate and multifaceted nature of biochemical
interactions and face limitations in generalizing across tasks or
incomplete datasets. To overcome these obstacles, the authors
introduce a comprehensive multimodal learning pipeline designed
to leverage various data sources, such as molecular graphs, protein
sequences, bioassay data, and textual descriptions. This pipeline is
anchored by three main innovations. The Unified Multimodal
Molecule Encoder (UMME) embeds diverse data types into a
unified space using a hierarchical attention-based fusion strategy.
The Adaptive Curriculum-guided Modality Optimization (ACMO)
dynamically adjusts the contribution of different modalities during
training, focusing on more reliable data early in the process. The cross-
modal contrastive alignment loss and modality dropout scheduling
improve the model's robustness and generalization capabilities.
Experimental results on benchmark datasets demonstrate that this
framework achieves state-of-the-art performance in drug-target
affinity estimation and binding, even when data is missing or noisy.
Ablation studies further validate the contributions of UMME and
ACMO in enhancing the model’s accuracy and robustness.

While the proposed multimodal framework presents impressive
advancements, two potential limitations emerge. The complexity of
integrating multiple modalities may increase computational costs
and limit scalability, especially when dealing with larger datasets or
more diverse types of input data.

The integration of multiple modalities indeed introduces substantial
computational overhead. Empirical observations during training reveal
that including all five modalities—molecular graphs, SMILES sequences,
protein sequences, transcriptomic data, and bioassay profiles—on the
STITCH 5 dataset leads to a total training time of approximately 7.8 h on
an NVIDIA A100 GPU (40 GB VRAM) over 100 epochs. In contrast,
limiting the model to only three modalities (graphs, sequences, and
transcriptomics) under the same settings reduces the training time to
around 5.1 h, achieving a 35% decrease in wall-clock time. The increase in
memory consumption and computational burden is primarily attributed
to the additional parameters introduced by modality-specific encoders
and the complexity of the hierarchical attention-based fusion strategy.
These results underscore the importance of considering hardware
availability ~and scalable
multimodal systems for large-scale biomedical applications. Future
work could explore lightweight encoder alternatives or modality

efficiency trade-offs when designing
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distillation strategies to reduce computational costs without sacrificing
performance. The dependency on large, high-quality datasets to
effectively train the model may pose challenges in cases where data
availability is restricted or unreliable. Future work could explore methods
to mitigate these issues, such as developing more efficient encoding
schemes or employing data augmentation techniques to enhance model
performance with smaller or noisier datasets.
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