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Background: Curcumin is a natural polyphenolic compound that originates from
turmeric (Curcuma longa L., Linnaeus, Zingiberaceae), a traditional medicinal
herb. It is widely recognized for its strong antioxidant properties.
Objective: This comprehensive review aims to delineate the recent progress in
comprehending the role of curcumin in modulating oxidative stress and exerting
an anti-fibrotic effect, with a particular focus on liver, renal, myocardial, and
pulmonary fibrosis.
Methods: A systematic review of the literature was conducted via the PubMed,
Web of Science, Google Scholar, and China National Knowledge Infrastructure,
covering 2000 until 2024. A systematic review identified studies examining
curcumin’s regulation of oxidative stress pathways in therapeutic strategies for
multiple fibrotic disorders, which were analyzed to synthesize current evidence.
Results: In recent years, the application of curcumin for the clinical management
of fibrotic diseases in a variety of clinical applications has been extensively
investigated. Accumulating evidence suggests that curcumin can exert
antifibrotic effects by ameliorating oxidative stress through the modulation of
various signaling pathways such as regulating reactive oxygen species (ROS),
nuclear factor erythroid-2-related factor 2 (NRF2), peroxisome proliferator-
activated receptors (PPAR), transforming growth factor- β1 (TGF-β1). In this
review, we investigate the pharmacokinetics of curcumin, the relationship
between oxidative stress and the pathogenesis of fibrosis, and summarize the
related studies of curcumin in the treatment of fibrotic diseases by regulating
oxidative stress.
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Conclusion: This comprehensive review elucidates curcumin’s antifibrotic
potential and explores its translational applications in developing novel
therapeutic strategies to combat fibrotic pathologies, supported by mechanistic
evidence that informs safer, more effective treatment paradigms.

KEYWORDS

reactive oxygen species, reactive nitrogen species, curcuma, anti-fibrosis effects,
traditional chinese medicine, signaling pathways

1 Introduction

Fibrotic disease is a widespread disease that critically threatens
public health, mainly including pulmonary fibrosis, liver fibrosis,
renal fibrosis, myocardial fibrosis, peritoneal fibrosis, and other
diseases. It has been widely reported to be characterized by high
morbidity and mortality (Olson et al., 2007; Pottier et al., 2014). 45%
of mortality in developed countries is related to cumulative
impairment of tissue-specific function and final organ
dysfunction due to fibrosis (Nanthakumar et al., 2015). It is
noteworthy that with the acceleration of the aging of population,
the above situation will become increasingly serious, and the
morbidity and mortality rates will continue to increase (Redente
et al., 2011; Kurundkar and Thannickal, 2016). Fibrosis is the
procedure of aberrant aggregation of ECM after different types of
tissues being damaged. It is a pathological stage of poor repair of all
organs and tissues (Henderson et al., 2020; Panizo et al., 2021).
Current treatment strategies for fibrotic diseases have many
obstacles, including the lack of cell or tissue specificity of anti-
fibrotic treatments, the occurrence of adverse events of anti-fibrotic
drugs, and limited treatment options (Ramachandran and
Henderson, 2016; Nastase et al., 2018; Lamb, 2021). Over the
past decade, despite increasing research in the management of
fibrotic diseases, its illness and death rate have continued to
increase. Therefore, the development of anti-fibrotic therapeutic
strategies holds substantial clinical importance. Traditional Chinese
medicine (TCM) has a long history which has played a decisive
status in the evolution of medicine in China for more than
2,000 years. Existing evidence shows that herbal medicine can
serve as an important supplement and alternative method for
anti-fibrotic drug treatment (Li et al., 2021; Li et al., 2022). It has
the advantages of wide source, low toxicity, and structural diversity
(Shan et al., 2019).

Turmeric (Curcuma longa L., Linnaeus, Zingiberaceae) is the
rhizome of a perennial herbaceous plant of the ginger family, mainly
distributed in southern and southwestern tropical Asia region
(Aggarwal et al., 2007; Kocaadam and Şanlier, 2017). In TCM,
turmeric was first documented in “New Materia Medica” (Hu
Chenxia, 2008). It has the effects of invigorating blood
circulation, and relieving depression (Qin et al., 2022). In clinical
practice, turmeric is commonly used in a variety of herbal formulas
to treat a wide array of diseases and body pathologies (Yang et al.,
2019;Wu Yuhong and Liu, 2020; Zhengtao et al., 2022). Curcumin, a
phenolic compound isolated from turmeric in modern times, is the
main active ingredient responsible for the therapeutic effects of
turmeric (Esatbeyoglu et al., 2012; Priyadarsini, 2014). Curcumin is
often used as a pigment and spice in food, cosmetics, and textiles to
dye and enhance flavor. It can also treat multi-system diseases
(Aggarwal et al., 2007; Kocaadam and Şanlier, 2017; Qin et al.,

2022), such as dermatologic diseases, infection, stress, and
depression. Research on various diseases has proven that
curcumin has anti-inflammatory, antioxidant, anti-cancer,
antibacterial, anti-parasitic, anti-viral, and immune-modulating
effects (Prasad et al., 2014; Kotha and Luthria, 2019; Zheng et al.,
2020; Abd El-Hack et al., 2021; Luo et al., 2023). Different
concentrations of curcumin have no obvious toxic effects on
normal tissues and cells (Aggarwal and Harikumar, 2009).
Therefore, curcumin is widely used in clinical research on
various diseases.

Curcumin, a lipophilic polyphenolic compound with low
molecular mass, demonstrates significant therapeutic efficacy
alongside a favorable safety profile. Numerous studies have
proved the anti-fibrotic traits of curcumin, primarily in the lung,
liver, kidney, and myocardial fibrosis (Kong et al., 2020; Sadoughi
et al., 2021) (Figure 1). The mechanism may be related to inhibiting
extracellular matrix (ECM) deposition, oxidative stress, and alveolar
epithelial cells (AEC) cell apoptosis, reducing inflammatory
response, and enhancing autophagy (She et al., 2018; Hernández-
Aquino et al., 2020; Fathimath Muneesa et al., 2022; Cui et al., 2023).
Among them, oxidative stress plays an important role in the
initiation and development of fibrosis by damaging lipids,
proteins, and DNA, inducing cell necrosis and apoptosis,
amplifying inflammatory responses, stimulating the production of

FIGURE 1
Antifibrotic effects of curcumin.
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pro-fibrotic mediators, etc (Sánchez-Valle et al., 2012). This article
reviews the mechanism of curcumin’s anti-fibrosis effects by
inhibiting oxidative stress, to provide a reference for
subsequent research.

2 Methods

A comprehensive online search of literature was conducted via
Web of Science, Google Scholar, and China National Knowledge
Infrastructure, covering 2000 until 2024. The ensuing key concepts
were utilized: Curcumin, Turmeric Yellow, Curcumin Phytosome,
Diferuloylmethane, Oxidative Stress, Antioxidative Stress, Oxidative
Damage, Oxidative Stress Injury, Oxidative Injury, Oxidative
Cleavage, Oxidative DNA Damage, ROS, Oxidative and
Nitrosative Stress, Oxidative Nitrative Stress, Nitro-Oxidative
Stress, Fibrosis, Cicatrix, Fibrosing, Hypertrophic, Keloid, Tissue
Adhesions, Cirrhosis, fibrillation, fibration and fibering. A
comprehensive examination was also conducted on the
bibliographies of all the articles obtained from the search, aiming
to incorporate pertinent literature.

3 Extraction, chemical structure, and
physicochemical properties
of curcumin

Curcumin serves as a natural compound sourced from
Zingiberaceae plants, a vital group of medicinal plants (Shakeri
et al., 2019). Generally speaking, curcumin can be extracted from the
rhizomes or roots of ginger plants (Nan et al., 2023), which are

customarily called turmeric (Curcuma) or turmeric in traditional
Chinese medicine, respectively (Jianmin et al., 1983). An analysis of
the rhizome or root extracts of ginger plants using thin-layer
chromatography confirmed that the curcumin content in
different plants of the same genus and even in rhizomes and
roots of the same plant are significantly different (Jianmin et al.,
1983). Qi et al. analyzed the curcumin content in the same species of
ginger plants from different regions by HPLC and confirmed that
the curcumin content was affected by the species of curcuma
(Jianmin et al., 1983; Aidi and Wenyujin, 2002).

In 1953, Srinivasan determined the presence of curcumin and
other components in turmeric by chromatography (Kocaadam and
Şanlier, 2017). Most crude extracts prepared from turmeric mainly
include curcumin (I), desoxymethylcurcumin (II), and
dideoxymethylcurcumin (III) (Priyadarsini, 2014). The
physicochemical properties of curcumin are presented in Table 1.
It can be rapidly degraded when exposed to conditions including an
alkaline pH environment (Dellali et al., 2021). Later,
Chandrasekhara and Ravindranath et al. synthesized curcumin
from vanillin and acetylacetone by condensation using the Pabon
method with more than 99% content determined by the rose
anthocyanin method (Ravindranath and Chandrasekhara,
1980; 1981a).

4 Pharmacokinetics and toxicology
of curcumin

Pharmacokinetics is the study of drug absorption, distribution,
metabolism, and excretion, which helps us evaluate the properties of
specific drugs and their application prospects. At present, there are a
large number of literature studies on metabolic process of curcumin
in rats, which are mainly administered by intraperitoneal injection,
sublingual vein, oral administration, or the pharmacokinetics of
curcumin in rats (Holder et al., 1978; Wahlström and Blennow,
1978; Ravindranath and Chandrasekhara, 1980; 1981a; b; Wang
et al., 1997). Wahlstrom et al. reported that plasma levels and bile
excretion measurements showed malabsorption of curcumin from
the intestine in Sprague-Dawley rats at an oral dose of 1 g/kg
(Wahlström and Blennow, 1978). Ravindranath et al. used
radioactive tritium-labeled drugs to evaluate the tissue
distribution of curcumin. The outcomes demonstrated that when
Sprague-Dawley rats were given oral curcumin doses of 400 mg,
80 mg, and 10 mg, the percentage of curcumin absorption did not
change. This demonstrates a dose-dependent limitation in curcumin
absorption bioavailability (Ravindranath and Chandrasekhara,
1981b). Once curcumin is absorbed, it undergoes conjugation
effects at different tissue sites. Research has found that curcumin-
glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-
glucuronide and tetrahydrocurcumin are the main metabolites of
curcumin in the body (Pan et al., 1999; Hoehle et al., 2006). Studies
have shown that when rats are administered 100 mg/kg by
intraperitoneal injection, curcumin levels are highest in the liver,
followed by the spleen (Pan et al., 1999). However, in another
human clinical study, 12 patients with colorectal cancer liver
metastases received curcumin about 450–3,600 mg of per day
1 week before surgery. At the end, no curcumin was detected in
the liver tissue, and only a small amount of reduced turmeric

TABLE 1 Physicochemical properties of curcumin.

Content Description

Name Curcumin

CAS number 458-37-7

Molecular formula C21H20O6

In vitro studies on the intestinal
absorption of curcumin in rats

(1E,6E)-1,7-bis(4-hydroxy-3-
methoxyphenyl)hepta-1,6-diene-3,5-dione

Canonical SMILES COC1=C(C=CC(=C1)C=CC(=O)CC(=O)
C=CC2=CC(=C(C=C2)O)OC)O

Molecular weight 368.37 g/mol

Topological Polar SurfaceArea 93.1�A²

Refractive Index 1.5118

Physical description A crystalline solid

Color Orange crystalline powder

Melting Point 183 ℃

Solubility Insoluble in water; very soluble
in ethanol, acetic acid

Density 0.9348 at 59°F (NTP, 1992) - Less dense
than water; will float

Frontiers in Pharmacology frontiersin.org03

Yu et al. 10.3389/fphar.2025.1636538

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1636538


metabolites was detected (Garcea et al., 2004). Moreover, the rate at
which curcumin is eliminated from the body serves as another
crucial determinant of its biological impacts. Studies have shown
that when Sprague-Dawley rats take an oral dose of 1 g/kg of
curcumin, 75% of it is defecated in the feces, while the content of
curcumin in the urine is negligible (Wahlström and Blennow, 1978).
In another study, subsequent to the oral administration of a 400 mg
dose of curcumin to rats, no traces of curcumin were discernible in
their urinary samples (Ravindranath and Chandrasekhara, 1980).
Metabolic studies using radiolabeled curcumin in rats, when
administered at 400 mg/animal, about 40% of the unaltered form
of curcumin was found in the feces (Ravindranath and
Chandrasekhara, 1981b). Regardless of the dosage, the urinary
excretion of curcumin is very low. The temporal parameters for
the absorption and clearance phases of curcumin (2 g/kg) after oral
ingestion in rats are 0.31 ± 0.07 and 1.7 ± 0.5 h respectively (Anand
et al., 2007). One clinical study found that patients with advanced
colorectal cancer who took turmeric extract orally everyday for
4 months contained 36–180 mg of curcumin and had neither
curcumin nor curcuminoids in their urine metabolites (Sharma
et al., 2001). Overall study results indicate that oral curcumin has
low absorption and rapid clearance (Mirzaei et al., 2017). The above
characteristics such as low bioavailability, short plasma half-life, low
plasma concentration, and poor oral absorption have seriously
limited the clinical development of curcumin (Tomeh et al.,
2019; Hao et al., 2023). The study stated that when administered
at the maximum recommended dose of 5 g/Kg, there was no obvious
toxic effect on Sprague-Dawley rats (Wahlström and Blennow,
1978). Similarly, Aggarwal et al. studied the acute toxicological
damage of curcumin-essential oil complex (CEC), an available
biological agent, in rats and mice at the uppermost advised dose
of 5,000 mg/kg. In contrast to the control group, these animals also
showed no symptoms, toxicity, or death (Aggarwal et al., 2016).
Findings from Phase I clinical trials involving curcumin indicate its
safety in humans, even when administered at elevated doses (12 g/
day) (Anand et al., 2007). However, more reliable research is needed
to prove whether there is any difference in the toxic damage to
internal organs and cells between animal and human bioavailable
preparations.

5 Oxidative stress and fibrotic diseases

The process of fibrosis involves excessive deposition of ECM and
remodeling of the injured site, leading to the restoration of
unnecessary connective tissue and organ dysfunction during the
repair process (Lurje et al., 2023). It may be present in virtually all
organs of the human organism, such as the liver, kidneys, heart,
lungs, and skin. Repeated injury is a general characteristic of fibrotic
diseases. There are different causes, such as chronic virus infection,
autoimmune, chronic ischemia process, or toxicity (including
nicotine, alcohol, drugs, or radiation) (Distler et al., 2019).
Fibrosis begins with the triggering of parenchymal cell damage or
death and is usually repetitive or persistent. The subsequent repair
process is mediated by regulatory processes such as damage
recognition, rapid myeloid attraction and fibroblast activation.
However, they lack the capacity to restore physiological
equilibrium (Lurje et al., 2023). These fibrosis are typically

characterized by the chronic inflammatory response coupled with
alterations in the invasive immune cell infiltrate (Guillot and Tacke,
2019). Endogenous early-phase proinflammatory mediators
including IL-1, IL-6, TNF, and TGF-β derived from
macrophages, tissue fibroblasts, and resident stromal populations
drive the differentiation of IL-17-producing effector cells. IL-17A
promotes tissue damage through the production of ROS that
enhances the neutrophilic response and meanwhile increases the
expression of TGF-β receptors on fibroblasts, thereby promoting
ECM production in the TGF-β response (Henderson et al., 2020).
Immune cell subsets further drive fibrotic progression through the
release of angiopoietic and fibrogenic mediators that act on resident
fibroblasts and vascular endothelial cells, thereby inducing
pathological neovascularization, and promoting tissue damage by
secreting matrix metalloproteinases and ROS (Pardo et al., 2016;
Bartneck et al., 2019; Sutti et al., 2019).

In the pathological mechanism of oxidative stress-induced
fibrosis, Oxidative stress drives inflammatory cascades via
elevated secretion of proinflammatory cytokines and fibrogenic
growth factors, thereby promoting myofibroblast activation and
pathological extracellular matrix remodeling. ROS upregulates
TGF-β signaling pathways and serve as critical effectors in
propagating TGF-β-induced fibrogenic responses, including
fibroblast activation, the synthesis of pro-fibrotic mediators,
epithelial/endothelial cell apoptosis, and epithelial-mesenchymal
transition (EMT) (Liu and Desai, 2015). On the other hand,
increased extracellular matrix deposition due to oxidative stress
subsequently leads to fibrosis (Jianming and Li, 2016; Makena et al.,
2023). In the meanwhile, oxidative stress causes lipid damage to
parenchymal cell membranes, disrupts enzyme and protein
modifications that are essential for cell metabolism, and
promotes DNA mutation, culminating in apoptosis of these cells.
In summary, oxidative stress can cause the progress of fibrotic
diseases through these damages (Antar et al., 2023) (Figure 2).

6 Effect of curcumin on
fibrotic diseases

The present study systematically elucidates the multifaceted
antifibrotic therapeutic mechanisms of curcumin (Figure 3).

6.1 Anti-hepatic fibrosis effect of curcumin

PPARα (NR1C1), a ligand-responsive nuclear hormone
receptor, demonstrates pronounced hepatic tissue enrichment,
was originally characterized as a pharmacological target for
heterogenin that induces peroxisome proliferation in rodents
(Issemann and Green, 1990). Besides PPARα, this receptor
subclass includes two additional variants specified by the PPARβ/
δ (NR1C2) and PPARγ (NR1C3) genes, with each exhibiting organ-
specific expression profiles and distinct physiological roles (Kliewer
et al., 1994). Hepatic PPARα serves as a master regulator of β-
oxidation processes and systemic lipid/energy equilibrium (Janovick
et al., 2022; Qiu et al., 2023). Nuclear receptor PPARα is
predominantly activated under energy-deprived states,
orchestrating mitochondrial energetic reprogramming that
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culminates in enhanced oxidative phosphorylation for ATP
synthesis. Curcumin inhibits autophagy induced by oxidative
damage in hepatic cells via PPAR-α activation, thereby reducing
the occurrence of EMT, decreasing ROS and MDA, and inhibiting
the production of ECM, thus playing a crucial part in improving
hepatic fibrosis (Elmansi et al., 2017; Kong et al., 2020).

PPARγ serves as a differentiation marker for hepatic stellate cells
(HSCs), with its transcriptional activity declining during their
transition to myofibroblasts, whereas agonist-mediated inhibition
suppresses HSC activation (Li et al., 2015). Curcumin upregulates
PGC-1α via AMPK signaling, subsequently enhancing PPARγ
activity and Superoxide Dismutase-2 (SOD-2) transcription/
activity, thereby suppressing α1(I) collagen expression in cultured
HSCs (Zhai et al., 2015). Within HSCs, curcumin enhances PPARγ
functionality while mitigating oxidative stress through Ob-R
dephosphorylation, subsequently suppressing Ob-R transcription
and blocking leptin-mediated signaling, thereby abolishing leptin’s
pro-activation effects on HSCs (Tang et al., 2009). It additionally
suppressed receptor of advanced glycation endproducts (RAGE)
transcriptional activity via enhanced PPARγ functionality and
attenuated oxidative stress, thereby abolishing receptor of
advanced glycation endproduct (AGE)-mediated stimulation of
HSC activation (Lin et al., 2012). Furthermore, curcumin
mitigates liver fibrosis progression through PPAR-γ activation,

leading to elevated glutathione levels and diminished oxidative
stress within activated hepatic stellate cells (Zheng and Chen, 2006).

GSH, serving as the primary intracellular redox buffer,
demonstrates particularly high concentration within hepatic
tissue (Vairetti et al., 2021). Curcumin can upregulate
glutathione, GSH/GSSG ratio and total glutathione levels thus
improving hepatic fibrosis in Wistar rats (Reyes-Gordillo et al.,
2008; Hernández-Aquino et al., 2020). Research demonstrates
curcumin suppresses GLUT2 transcriptional activity via PPARγ
activation and promotes de novo glutathione biosynthesis,
thereby eliminating HSC activation and ultimately ameliorating
hyperglycemia-associated liver fibrosis (Lin and Chen, 2011).

Glutamate cysteine ligase (GCL) serves as a critical regulatory
enzyme governing GSH biosynthesis. Curcumin induces GCL
expression to increase GSH and reduce oxidative stress, thereby
preventing liver fibrosis formation in HSCs and Sprague-Dawley
rats (Zheng et al., 2007; Fu et al., 2008).

NRF2 mediates the expression of multiple genes and influences
various physiological processes, including substance metabolism,
ROS clearance, and glutathione synthesis (Hayes and Dinkova-
Kostova, 2014). Curcumin can protect HSCs from oxidative
stress by upregulating NRF2 and inhibiting the activation and
secretion of glucose oxidase (Go) -induced ECM molecules (Liu
et al., 2016; Gowifel et al., 2020).

FIGURE 2
Relationship between oxidative stress and fibrosis (CAT: catalase, ECM: extracellular matrix, EMT: epithelial-mesenchymal transition, NO: nitric
oxide, ROS: reactive oxygen species, SOD: superoxide dismutase).
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Nitrotyrosine is a product of protein oxidation and is considered
a marker of oxidative damage. Curcumin may prevent liver fibrosis
through the decrease of nitrotyrosine staining in thioacetamide
(TAA) -treated rats (Bruck et al., 2007). Overproduction of ROS
oxidizes guanine residues to 8-OHdG, and these adducts can cause
DNA damage when added to DNA (Singh et al., 2011). Curcumin
significantly diminishes the proportion of 8-OH-dG-
immunopositive nuclei, serving as an established biomarker for
oxidative stress-induced DNA damage (Vizzutti et al., 2010).
Heme oxygenase-1 (HO-1) serves as the primary regulatory
enzyme in heme metabolism, exhibiting pronounced antioxidant
and anti-inflammatory properties (Yachie, 2021). Curcumin may
ameliorate hepatic fibrosis by increasing HO-1 and decreasing
oxidative stress in Male Sprague–Dawley rats (Öner-İyidoğan
et al., 2014). Apurinic/apyrimidinic endonuclease 1 (APE1) plays

a crucial part in the base excision repair (BER) pathway of ROS-
induced damaged bases and DNA single-strand breaks and is a key
element of proteins upregulated by oxidative stress (Weaver et al.,
2022). Curcumin may protect the liver from oxidative stress via
upregulating APE1 (Bassiouny et al., 2011). AGEs and RAGE play a
pivotal role in NASH- associated hepatic fibrosis (Lohwasser et al.,
2009). Curcumin ameliorates oxidative stress-induced effects by
suppressing AGEs-induced leptin signaling activation, thereby
blocking HSC activation (Tang and Chen, 2014).

In addition, curcumin inhibits MDA formation and significantly
improves liver antioxidant status (Wu et al., 2008). In N-(4-
hydroxyphenyl) acetamide (NHPA) -treated rats, curcumin
attenuated hepatic collagen III accumulation and fibrogenesis by
inhibiting nitric oxide and MDA production. At the same time,
curcumin can improve the levels of GSH, SOD, and CAT in liver

FIGURE 3
Diagram of the mechanisms of curcumin against various fibrotic diseases.
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fibrosis induced by thioacetamide and bisphenol a, and reduceMDA
(Elswefy et al., 2020; Radwan et al., 2024). Abnormal accumulation
of succinate can induce ROS production (Chouchani et al., 2014).
Hypoxia inducible factor- 1α (HIF-1α) is involved in cell cycle
change, extracellular matrix deposition, and myofibroblast
transition (Senavirathna et al., 2018; Aquino-Gálvez et al., 2019).
Curcumin prevents HSC upregulation by suppressing the succinic
acid/HIF-1α signaling cascade and reducing succinic acid
accumulation by countering fatty acid oxidation (She et al., 2018).

In summary, the anti-fibrotic action of curcumin in the liver is
characterized by its multi-pronged attack on the hepatic triad of
injury: it dampens Kupffer cell activation, directly suppresses HSC
activation, and enhances hepatoprotective signaling. The targeting
of resident liver cells like Kupffer cells and HSCs presents a distinct,
liver-specific strategy not seen in other organs. This contrasts with
its role in pulmonary fibrosis, where its primary cellular targets are
likely activated fibroblasts and alveolar epithelial cells, highlighting
how curcumin’s efficacy is shaped by the unique cellular ecosystem
of each diseased organ.

6.2 Anti-renal fibrosis effect of curcumin

High glucose induces superoxide imbalance in glomerular
mesangial cells and causes the accumulation of ECM in diabetic
glomeruli. Renal tubular EMT is a factor in the accumulation of
renal matrix proteins, and oxidative stress may predispose to the
development of EMT in renal tubular epithelial cells in diabetic
nephropathy. Evidence indicates curcumin ameliorates renal fibrosis
viaWnt/β-catenin modulation coupled with superoxide suppression
(Ho et al., 2016). It can also protect NRK-52E cells from high
glucose-stimulated EMT by enabling NRF2 and HO-1 (Ho
et al., 2016).

NRF2 is a cytoprotective transcription factor that can induce the
expression of multiple antioxidants and phase II detoxification
enzymes and plays an essential part in adjusting cellular
detoxification and redox homeostasis. Evidence indicates
curcumin ameliorates cisplatin-induced EMT and renal fibrosis
via NRF2 activation (Trujillo et al., 2016). Soetikno et al.
suggested that curcumin can also alleviate redox imbalance and
renal fibrosis by governing the NRF2-Keap1 signaling cascade
(Soetikno et al., 2013). Lia et al. suggested that curcumin could
attenuate oxidative stress and renal fibrosis caused by acetaldehyde
by activating the NRF2 signaling cascade to reduce MDA content
and increase the levels of SOD, CAT, glutathione peroxidase (GPX),
glutathione reductase (GR) and GSH (Li et al., 2019). Furthermore,
it has also been suggested that curcumin can not only reverse the
suppressive effect of redox imbalance on GPx efficacy, thereby
alleviating the ROS accumulation in rats resulted by Ochratoxin
A, but also alleviate the renal fibrosis caused by Ochratoxin A
(Damiano et al., 2020).

The landscape of renal fibrosis underscores a central role for
oxidative stress in driving mitochondrial dysfunction and epithelial-
mesenchymal transition (EMT). Curcumin’s intervention in this
organ demonstrates a distinctive emphasis on rectifying metabolic
derangements within highly metabolic renal tubular cells. The
significant amelioration of renal fibrosis through the Wnt/β-
catenin and Nrf2-Keap1 pathways highlights a therapeutic

strategy that is particularly crucial in the context of diabetic
nephropathy. This metabolic-centric approach presents a contrast
to its action in hepatic fibrosis, where the primary battleground
involves the activation of quiescent hepatic stellate cells by
inflammatory signals from Kupffer cells. Thus, in the kidney,
curcumin appears to function not only as an antioxidant but also
as a metabolic regulator, protecting the energy-fragile tubular
epithelium from oxidative injury and subsequent fibrotic
transformation.

6.3 Anti-myocardial fibrosis effect
of curcumin

Cardiac fibrosis serves as a hallmark characteristic of
pathological hypertrophy, manifesting as extracellular matrix
proliferation driven by collagen deposition. Treatment of
H9C2 cells with palmitate significantly increased ROS and redox
imbalance, curcumin activated the NRF2 signaling cascade, thereby
significantly increasing the expression of downstream genes
glutamate-cysteine ligase catalytic (Gclc), HO-1, and NAD(P)H
quinone oxidoreductase 1 (NQO-1), and antioxidant response
inhibited myocardial fibrosis (Zeng et al., 2015). Studies have
shown that the protein kinase C (PKC) is a serine/threonine-
associated protein kinase (Newton, 2003). Hyperglycemia leads to
PKC activation, and increased PKC activity can lead to alterations in
the ECM (Sheetz and King, 2002), leading to cardiomyocyte
hypertrophy and interstitial fibrosis, PKC activation can also
induce mitogen-activated protein kinase (MAPK). Vivian
Soetikno and Flori R. Sari et al. suggested that curcumin could
ameliorate myocardial fibrosis in diabetic rats by suppressing the
PKC-MAPK signaling cascade and attenuating oxidative stress
(Soetikno et al., 2012). It is also reported that curcumin can
reduce redox imbalance by activating the PPAR-γ pathway,
thereby inhibiting inflammation and fibrosis (Gbr et al., 2021).

6.4 Anti-pulmonary fibrosis effect
of curcumin

ROS/RNS produced either endogenous or extrinsic may damage
alveolar epithelium directly (Kinnula et al., 2005). Oxidative stress
occurred by activating transcription factors that trigger cell-
mediated cell signaling pathways and induce inflammatory
cytokines, while also damaging DNA and lipids (Bezerra et al.,
2023; Liu et al., 2023). Research indicates that curcumin augments
antioxidant capacity via upregulating HO-1 expression in fibroblasts
and primary pulmonary endothelial cells while suppressing
radiation-triggered (Lee et al., 2010). In murine LMSCs,
curcumin may have an antioxidant effect on it through the Akt/
Nrf2/HO-1 pathway, thereby playing a role in anti-pulmonary
fibrosis (Ke et al., 2020). Animal experiments showed that
curcumin inhibited hydroxyproline content, collagen type I,
TGF-β1 expression, myeloperoxidase (MPO), and superoxide
generation in the lungs of amiodarone rats, thereby improving
pulmonary fibrosis (Punithavathi et al., 2003). According to
previous studies that TGF-β1 can induce NADPH oxidase 4
(NOX4)-dependent ROS production, thereby promoting
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TABLE 2 Effect of curcumin on fibrotic diseases.

Disease Animals/cell
lines

Upregulation Downregulation Inducers Concentration Duration References

Pulmonary
Fibrosis

Female C57BL/
6 mice

— HYP RT 1% or 5% curcumin 4 months Lee et al. (2010)

PMVEC — ROS RT 5, 10, 25, 50, 100 μM 4 h

Primary fibroblasts — — — 5, 10, 25, 50, 100 μM 4 h

Murine LMSCs p-Akt/Akt, NRF2,
HO-1

ROS H2O2 2.5, 5, 10 μM 6 h Ke et al. (2020)

Male Fischer
344 rats

— MPO, HYP, Type I
Collagen, Superoxide
anion,TGF-β1

Amiodarone 200 mg/kg 5 weeks Punithavathi et al.
(2003)

Parke’s strain of
mice

— HYP, ROS, TIMP-1,
a-SMA

PQ 5 mg/kg 49 h Tyagi et al. (2016)

Female mice — ROS, α-SMA, HYP,
Nitrite, MPO, EPO

SiO2 5 mg/kg 21 days Kumari and Singh
(2022)

Male Wistar rats NRF2, HO-1,
NQO1, TAC,
TTG, GST

KEAP1, Hydroxyproline PQ 30 mg/kg/day 7 days Hosseini et al.
(2021)

Hepatic
Fibrosis

Male Sprague-
Dawley rats

— HYP, HA, PC III, Collagen
IV, α-SMA

CCl4 100, 200, 400 mg/kg 8 weeks Kong et al. (2020)

BNL CL.2 cells PPAR-α, GSH α-SMA, ROS TGF-β1 10, 20, 30 μM/L 24 h

Male Wistar rats GSH α-SMA, Col-I, Smad3,
CTGF, TGF-β

CCl4 100 mg/kg 4 weeks Hernández-Aquino
et al. (2020)

Male ICR mice — α-SMA, HIF-1α, Col1α,
Col3α, FN, TGF-β1, SDH,
succinate

HFD 50 mg/kg 10 weeks She et al. (2018)

HSCs — Col1α, Col3α, FN, α-SMA,
TGF-β1, ROS

dimethyl
succinate

10 μM 8 h

HSCs — SDH, HIF-1α PA 10 μM 8 h

Male Wistar rats GSH, GSSG,
GSH+GSSG, GSH/
GSSG

collagen, TGF-β CCl 4 100 mg/kg 2 months Reyes-Gordillo et al.
(2008)

Male Wistar rats — Nitrotyrosine TAA 300 mg/kg 12 weeks Bruck et al. (2007)

Male Sprague
Dawely rats

SOD, HO-1 ROS, MDA TAA 100, 200 mg/kg 18 weeks Elmansi et al.
(2017)

Male C57BL/
6 mice

— α-SMA,TIMP-1,
Procollagen type I, ROS, 8-
OH-dG

MCD 25 μg 4, 8, 10 weeks Vizzutti et al. (2010)

Male
Sprague–Dawley
rats

SOD, HO-1 MDA, ROS HFD 1 g/kg 16 weeks Öner-İyidoğan et al.
(2014)

HSCs PGC-1α, AMPKα,
SOD2, PPAR-γ

α1(I) collagen — 5, 10, 15 μm 24 h Zhai et al. (2015)

Sprague-Dawley
rats

GSH, GCL, GSH/
GSSG, PPARγ

α-SMA, αI(I) collagen, FN,
Tβ-RII, Tβ-RI, Lipid
hydroperoxide, HYP,
PDGF, TGF-β

CCl4 200, 400 mg/kg 8 weeks Fu et al. (2008)

HSCs PPAR-γ, GSH, GCL,
GSH/GSSG

α-SMA, αI(I) collagen,
TGF-βRI, TGF-βR II,
ROS, LPO, Ob-R, PDGF-
βR, CTGF

Leptin 5, 10, 20, 30 μM 24 h Tang et al. (2009)

(Continued on following page)
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TABLE 2 (Continued) Effect of curcumin on fibrotic diseases.

Disease Animals/cell
lines

Upregulation Downregulation Inducers Concentration Duration References

HSCs PPARγ, GSH, GSH/
GSSG, GCL

p38 MAPK, αI(I)
procollagen, α-SMA, Tβ-
RI, Tβ-II, CTGF, ROS,
LPO, GLUT2, PDGF-βR

Glucose 10, 20, 30 μM 24 h Lin and Chen
(2011)

HSCs PPAR-γ, GSH,
GSH/GSSG, GCL

Tß-RI, Tß-RII, ROS, LPO,
αI(I) collagen

— 5, 10, 15, 20, 30 μM 24 h Zheng et al. (2007)

Male Sprague-
Dawley rats

GSH, GPX, APE1,
PPARγ

MDA, TGF-β, CTGF,
TIMP-1, α-SMA, STAP

CCl4 200 mg/kg 4 or 8 weeks Bassiouny et al.
(2011)

HSCs PPAR-γ, GSH,
GSH/GSSG

Tβ-RI, Tβ-RII, CTGF,
αI(I)-procollagen, α-SMA

— 20 μM 24 h Zheng and Chen
(2006)

Male Sprague-
Dawley rats

SOD, GSH MDA CCl4 0.005% curcumin in
feed

8 weeks Wu et al. (2008)

Male Wistar rats NRF2, SOD, GSH,
HO-1

MPO, MDA, iNOS,
Collagen type I, α-SMA,
NF-ĸB-p65, TGF-β,
p-Smad3

TAA 200 mg/kg 8 weeks Gowifel et al. (2020)

HSCs PPARγ, GSH, GSH/
GSSG, GCL

RAGE, ROS, LPO AGEs 5, 10, 20, 25, 30 μM 24 h Lin et al. (2012)

HSCs NRF2, GCL, GSH,
AGE-R1

Leptin, RAGE AGEs 20 mM — Tang and Chen
(2014)

Male Wistar albino
rats

CAT, GSH, TIMP-2 MDA BPA 100 mg/kg 8 weeks Elswefy et al. (2020)

HSC-T6 NRF2, GSH ROS, MDA, α-SMA GO 0.15 μM 3 h Liu et al. (2016)

Male Wistar albino
rats

SOD NO, MDA, α-SMA,
Collagen III

NHPA 200 mg/kg 22 h Alhusain et al.
(2022)

Male Rattus
norvigicus

CAT, SOD, GSH MDA TAA Curcumin group:
50 mg/kg; Curcumin
NPs group:15 mg/kg

2 weeks Radwan et al.
(2024)

Renal
Fibrosis

Male Wistar rats Wnt5a, β-catenin Superoxide, 8-OH-dG,
Fibronectin, TGF-β1

STZ 10 mg/kg/day 56 days Ho et al. (2016)

Rat mesangial cells Wnt5a, β-catenin Superoxide, TGF-β1,
Fibronectin

D-glucose 10 μM 48 h

Male Wistar rats NRF2, CAT, GR TGF β1, Collagen I,
Collagen IV, a-SMA,
MDA, 3-NT, p47phox,
gp91phox, PKCβ2

CIS 200 mg/kg 72 h Trujillo et al. (2016)

The NRK-52E
normal rat/kidney
tubular epithelial
cell line

NRF2, HO-1 α-SMA HG 5, 10, 20 μM 24 h Zhang et al. (2015)

Male Sprague-
Dawley rats

NRF2, HO-1,
GPx, CCr

Keap1, p67phox, p22phox,
MDA, NF-κB, TNF-α,
TGF-β1, Fibronectin

5/
6 nephrectomy

75 mg/kg/day 8 weeks Soetikno et al.
(2013)

Male Sprague
Dawley rats

SOD, CAT, Gpx MDA OTA 100 mg/kg 14 days Damiano et al.
(2020)

Male C57BL/
6 mice

GSH, NRF2, HO-1,
NQO1, UGT, SOD,
CAT, GPx, GR

MDA, α-SMA, Collagen I Glyoxylate 50,100 mg/kg 14 days Li et al. (2019)

Myocardial
Fibrosis

Male adult Sprague
Dawley rats

GSH, TAC, PPAR-γ MDA, TGF-β1, CaMKII STZ 100 mg/kg/day 6 weeks Gbr et al. (2021)

Male C57BL/
6 mice

NRF2, HO-1,
NQO-1

CTGF, TGF-β HFD 50 mg/kg/day 8 weeks Zeng et al. (2015)

(Continued on following page)
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fibroblast migration (Amara et al., 2010), and can upregulate
mitochondrial ROS to induce lung epithelial cell senescence to
promote fibrosis (Yoon et al., 2005; Taslidere et al., 2014).
Furthermore, curcumin and nanocurcumin inhibited ROS
production and alleviated paraquat (PQ) -induced pulmonary
fibrosis by modulating gene expression of the kelch-like ECH-
associated protein 1 (KEAP1), HO-1, NQO1, and glutathione-S-
transferase (GST) in lung tissue (Tyagi et al., 2016; Mahlooji et al.,
2022). We summarized the effects of curcumin on various fibrotic
diseases in Table 2 (Table 2).

The evidence presented above positions curcumin as a
modulator of the oxidative milieu that drives fibroblast
differentiation and ECM deposition in the lungs. A key
comparative insight emerges when contrasting lung and liver
fibrosis: while both conditions involve TGF-β signaling, the
upstream triggers and key effector cells differ substantially. In the
liver, curcumin’s interception of damage signals from hepatocytes to
Kupffer cells and HSCs is critical. In the lung, however, its ability to
mitigate epithelial cell injury and its consequent signaling to
fibroblasts may be of paramount importance. This underlines the
concept that while core pathways like Nrf2 and TGF-β are shared
therapeutic targets, the cellular “entry point” for curcumin’s action is
organ-specific.

6.5 Anti-fibrotic effect of curcumin
analogues and formulations

Removal of unstable molecular groups and retention of active
molecular groups by curcumin analogues can enhance their
instability. A13, classified among curcumin analogues, shares
fundamental pharmacological properties with curcumin yet
demonstrates enhanced efficacy compared to curcumin
regarding metabolic stability and oral bioavailability. It
reduces oxidative stress and improves myocardial fibrosis in
diabetic rats by activating the Nrf2/ARE pathway (Xiang et al.,
2020). In addition, curcumin analog Y20 has shown better
pharmacokinetic profile in vivo and can exert dual anti-
inflammatory and antioxidant activities. It activates
Nrf2 expression and thereby regulates oxidative stress, which
may mediate high-fat diet-induced cardiomegaly, apoptosis, and
fibrosis (Qian et al., 2015). Curc-mPEG454, a curcumin
conjugate functionalized with short-chain polyethylene glycol
(PEG), demonstrates elevated serum concentrations of curcumin
while preserving its anti-inflammatory efficacy. Curc-mPEG454

augments cellular redox homeostasis through stimulation of de
novo biosynthesis of Nrf2-mediated GSH (Xiao et al., 2021). The
main metabolite of curcumin is tetrahydrocurcumin (THC),
which is superior in inducing glutathione peroxidase and
quenching free radicals, and is more stable and has better
intestinal absorption than curcumin. Dietary
tetrahydrocurcumin can improve renal fibrosis by reducing
copper-zinc superoxide dismutase (CuZn SOD) and
glutathione peroxidase (GPX-1) (Lau et al., 2018).
Dehydrogingerone (DHZ), a polyphenolic constituent isolated
from the rhizome of Zingiber officinale, which is a semi-analog of
curcumin. DHZ ameliorated the TAA-mediated downregulation
of catalase activity, thereby alleviating hepatic fibrosis
progression (Sharma et al., 2022). C66, a recently developed
curcumin analogue, exhibits a significantly reduced effective
dosage. It stimulates miR-200a, downregulates
Keap1 expression, activates NRF2, alleviates redox imbalance,
and thus anti-renal fibrosis (Wu et al., 2016). Curcumin
nanoparticles can improve the bioavailability and
biodistribution, which significantly decreased MDA and
significantly improved CAT, SOD and GSH in thioacetamide
(TAA) -stimulated hepatic fibrosis in rats (Radwan et al., 2024)
(Figure 4). These structural and delivery innovations directly
address curcumin’s pharmacokinetic limitations. A13 and
C66 analogues enable lower dosing in fibrosis models, while
nanoformulations like Curc-mPEG454 achieve sustained
plasma exposure critical for chronic fibrosis management. This
paves the way for human trials targeting organ-specific
accumulation.

6.6 Transcriptional reprogramming of
fibrotic pathways by curcumin

Curcumin orchestrates transcriptional suppression of fibrotic genes
through interconnected mechanisms. In hepatic fibrosis models, it
inhibits succinate accumulation by blocking succinate dehydrogenase
activity, thereby preventing HIF-1α-mediated upregulation of Col1α,
Col3α (She et al., 2018). Simultaneously, it reprograms AGE receptor
expression in hepatic stellate cells—downregulating pro-fibrotic RAGE
while upregulating detoxifying AGE-R1—via interruption of leptin
signaling and Nrf2 activation (Tang and Chen, 2014). Furthermore,
curcumin (200 mg/kg) induces APE1 expression in fibrotic livers,
enhancing DNA repair while suppressing NF-κB-driven
transcription of TNF-α and IL-6 (Bassiouny et al., 2011).

TABLE 2 (Continued) Effect of curcumin on fibrotic diseases.

Disease Animals/cell
lines

Upregulation Downregulation Inducers Concentration Duration References

H9C2 embryonic
rat heart-derived
cell line

NRF2, HO-1, GCLC,
NQO-1

ROS, TGF-β PA 20 μM 15 h

Male
Sprague–Dawley
rats

GPx MDA, p22phox, p67phox,
gp91phox, PKC-α, PKC-
β2, p-P38MAPK/
P38MAPK, p-ERK1/2/
ERK1/2, TGF-β

STZ 100 mg/kg/day 8 weeks Soetikno et al.
(2012)
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7 Clinical evidences supporting the
anti-fibrotic effects of curcumin

In patients with non-alcoholic fatty liver disease (NAFLD), a
randomized controlled trial (RCT) found that 12 weeks of curcumin
supplementation (1,500 mg/day) significantly reduced hepatic
fibrosis scores compared to baseline, although it was not superior
to lifestyle modification alone in ameliorating systemic
inflammation (Saadati et al., 2019). The disparity in outcomes
underscores the potential need for longer intervention periods or
more bioavailable formulations, a notion strongly supported by a
12-month RCT in patients with metabolic dysfunction-associated
steatotic liver disease (MASLD) and type 2 diabetes, where
1,500 mg/day of curcumin led to significant reductions in both
hepatic steatosis and liver stiffness, alongside marked improvements
in systemic inflammation and oxidative stress (Yaikwawong
et al., 2025).

The most compelling evidence for curcumin’s direct anti-
fibrotic action in human tissue comes from a 72-week, double-
blind RCT using the phospholipid formulation Meriva (2 g/day) in
patients with biopsy-proven non-alcoholic steatohepatitis (NASH)
(Musso et al., 2025). This study reported that a remarkable 42% of
patients on Meriva achieved regression of significant liver fibrosis,
with 62% experiencing NASH resolution, effects potentially
mediated by the inhibition of hepatic NF-κB. Importantly, the
same trial also observed a significant regression of concomitant
chronic kidney disease in 50% of the Meriva group, suggesting
systemic anti-fibrotic benefits (Musso et al., 2025). To specifically
validate these findings in renal fibrosis, the large-scale, multicenter
MPAC-CKD-1 trial was designed to evaluate the efficacy of a micro-
particle curcumin formulation on albuminuria and estimated
glomerular filtration rate (eGFR) in patients with chronic kidney
disease, with results anticipated to provide crucial evidence on its
potential to slow disease progression (Weir et al., 2018).

FIGURE 4
The molecular structures of the curcumin analogues.
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8 Future perspectives

Curcumin exhibits a broad spectrum of positive effects in
mediating oxidative stress for therapeutic intervention in fibrotic
diseases. In the present investigation, the molecular mechanism
of curcumin-mediated oxidative stress against fibrotic diseases
was reviewed, such as PPAR, NRF2, HO-1, TGF-β, AGE-RAGE,
and other signaling pathways. Curcumin functions as a free
radical scavenger through its phenolic substances, beta-diones,
and methoxys, acting on the activity of ROS (Farzaei et al., 2018).
In liver fibrosis, damage to liver cells causes the formation of
apoptotic bodies (AB), the leakage of mitochondrial DNA, or the
generation of ROS. These factors initiate the stimulation of
Kupffer cells and the conversion of dormant hepatic stellate
cells into myofibroblastic phenotypes. Leptin, Angiotensin II,
TGF-β, Platelet-derived growth factor (PDGF), and other
mediators help activate NOXs in macrophages and stellate
cells and further accelerate matrix deposition. Reaserches have
found that curcumin has shown prophylactic and curative effects
on oxidization-related liver disease through multiple cells
signaling cascades. These pathways include upregulated PPAR
(Zhai et al., 2015; Elmansi et al., 2017; Kong et al., 2020), NRF2
(Liu et al., 2016; Gowifel et al., 2020) and HO-1 (Öner-İyidoğan
et al., 2014) signaling pathways, and downregulated RAGE (Lin
et al., 2012) and AGEs (Tang and Chen, 2014) signaling
pathways. In pulmonary fibrosis, ROS generation contributes
to fibroblast phenotype acquisition, including differentiation,
contraction, apoptotic resistance, and ECM deposition (Hecker
et al., 2009; Hosseinzadeh et al., 2018). Evidence suggests that
curcumin can activate the protein kinase B (Akt)/Nrf2/HO-1
(Lee et al., 2010; Ke et al., 2020) signaling pathway and attenuate
the TGF-β1, MPO (Li et al., 2019) and ROS (Kumari and Singh,
2022) to inhibit redox imbalance in pulmonary fibrosis models.
In myocardial fibrosis, the cardiac source of ROS is mainly
nicotinamide-adenine dinucleotide phosphate (NADPH)
oxidase (Li et al., 2002), which exacerbates cardiac fibrosis and
modulates gap junction function, resulting in diminished
myocyte coupling and facilitating arrhythmogenic reentry
(Sovari, 2016). Curcumin reduces cardiac fibrosis by activating
SIRT1, increasing NRF2 (Zeng et al., 2015), increasing NADPH
oxidase subunits, weakening PKC-MAPK (Soetikno et al., 2012)
signaling pathway, and reducing SOD and MDA (Sadoughi et al.,
2021). In renal fibrosis, redox imbalance can cause the reduction
of ATP production after mitochondrial dysfunction, and may
also lead to the development of EMT in diabetic nephropathy,
resulting in renal fibrosis (Lv et al., 2018). Emerging evidence
indicates that curcumin attenuates renal fibrosis through Wnt/β-
catenin (Ho et al., 2016), HO-1 (Zhang et al., 2015) and Nrf2-
Keap1 (Soetikno et al., 2013) signaling pathways. These provide
references for the pharmacology and clinical application of
curcumin for therapeutic intervention in fibrotic diseases.
However, there are some questions that need to be further
clarified in future studies before this natural compound can be
used clinically.

Synthesizing the evidence from liver, renal, myocardial, and
pulmonary fibrosis, a coherent model for curcumin’s pleiotropic
actions comes into focus. We propose a “Core Pathway - Specific
Branch”model to conceptualize its effects. At the heart of this model

lies the consistent activation of the Nrf2 antioxidant pathway and
the concerted suppression of the TGF-β signaling axis. These two
core pathways, addressing the universal pillars of oxidative stress
and pro-fibrotic signaling, form the foundational mechanism of
curcumin’s efficacy across all organs studied.

Firstly, human pharmacokinetics of curcumin remain
incompletely characterized, with low absorption and fast
metabolism (Mirzaei et al., 2017). Secondly, limited absorption
of curcumin severely constrains its clinical utility. Fortunately,
chemical modification of curcumin significantly enhances its
therapeutic efficacy, target selectivity, and safety profile. In
addition to this, sophisticated drug delivery platforms,
including liposomes, nanoparticles, and phospholipid
complexes formulated with diverse synthetic/natural
biomaterials (proteins, lipids, polymers), have demonstrated
enhanced bioavailability and formulation stability for curcumin
derivatives. The promising work on phospholipid complexes and
nanoparticles must be advanced towards “smart” targeted
delivery. Strategies should include designing nanoparticles that
home to activated stellate cells or profibrotic fibroblasts,
engineered for stimulus-responsive release in the high-ROS
microenvironment of the fibrotic niche. This would ensure
precise spatiotemporal delivery, enhancing efficacy while
minimizing off-target effects. Combining curcumin with
established anti-fibrotic drugs in a single nano-formulation
could also create powerful synergistic therapies, where
curcumin acts as a “sensitizing” agent to enhance the primary
drug’s efficacy. Although extensive research efforts have addressed
formulation limitations and optimized physicochemical attributes,
critical gaps persist in curcumin’s therapeutic efficacy, target
specificity, and pharmacokinetic performance—issues that
warrant urgent attention from the scientific community (Bisht
et al., 2007). Third, due to the multi-target properties of curcumin,
its anti-fibrosis mechanism has not been fully illustrated and more
validation is needed. The majority of contemporary investigations
primarily emphasize cellular and animal-based models, yet scarce
clinical evidence exists to assess curcumin’s anti-fibrotic
therapeutic potential and its corresponding dosage
requirements. More studies should provide more conclusive
evidence, especially those with large samples and multi-center
prospective cohort studies. The most critical frontier is the design
of definitive clinical trials. The scarcity of clinical evidence,
highlighted earlier, must be addressed through hypothesis-
driven, biomarker-enriched trials. These trials should
incorporate. Validated Redox and ECM Biomarkers: Moving
beyond standard serum enzymes to include direct markers of
oxidative stress (e.g., specific lipid peroxidation adducts) and ECM
turnover (e.g., PRO-C3) to objectively quantify anti-fibrotic
efficacy. Precision Enrollment: Focusing on specific fibrotic
disease etiologies and potentially stratifying patients based on
their baseline redox or inflammatory status. Long-term Safety
and Efficacy Assessment: Rigorously evaluating the long-term
safety profile, a concern we previously raised, and the ability of
curcumin to halt or reverse fibrosis progression in large-scale,
multi-center, randomized controlled trials. Fourth, concerning
safety evaluation, extended-duration human studies are
required to rigorously evaluate the therapeutic safety profile of
curcumin in clinical populations.
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9 Conclusion

In summary, numerous investigations have validated that the
anti-fibrotic effect of curcumin through mediating oxidative stress,
and more studies are needed to further confirm the anti-fibrotic
effect of curcumin. It is hoped that with further research, the
therapeutic effect of curcumin on fibrotic diseases may be
understood and applied clinically.
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