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Introduction: Meridianin C (MC) is a marine-derived indole alkaloid that has
demonstrated kinase inhibitory and anti-tumor activities. Despite its diverse
biological properties, no previous reports have systematically evaluated the in
vivo quantitative analysis of MC and its metabolites.
Methods: In this study, MC was synthesized following a previously reported
procedure with slight modifications. A sensitive, accurate, and reliable ultra-
high performance liquid chromatography-tandem mass spectrometry
(UHPLC–MS/MS) method was developed to simultaneously detect MC and
its five major metabolites (MC-1-N-O-GluA, MC-1-N-O-SO3H, MC-2′-N-O-
GluA, MC-2′-N-O-SO3H, and MC-O-GluA-didehydration) in rat plasma. Rats
received a single oral dose of MC (100 mg/kg), and pharmacokinetic analysis
was subsequently performed.
Results: Pharmacokinetic data revealed that MC was rapidly absorbed, with a
Cmax of 44.8 ± 7.0 μmol/L, an AUC0–48h of 232.0 ± 85.9 μmol·h/L, a Tmax of 0.75
± 0.27 h, and a t1/2 of 17.7 ± 14.1 h. Plasma concentrations of MC were
significantly higher than those of its metabolites, suggesting that MC remains
the predominant circulating form after oral administration. The identified
metabolites mainly resulted from hydroxylation combined with glucuronide
conjugation, hydroxylation combined with sulfation, and hydration combined
with glucuronide conjugation.
Discussion: These findings demonstrate that the primary metabolic pathway of
MC involves hydroxylation (phase I) followed by conjugation (phase II). To our
knowledge, this represents the first systematic investigation of the
pharmacokinetic characteristics of MC and its metabolites in rats. The study
not only advances understanding of MC disposition but also provides a valuable
reference for future pharmacokinetic evaluations of other marine-derived indole
alkaloids.
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1 Introduction

In recent years, marine-derived natural products have gained
significant attention in pharmaceutical research and development
owing to their structural diversity and potent bioactivities (Lu et al.,
2025). Marine organisms—including sponges, tunicates, mollusks,
marine bacteria, and fungi—have become prolific sources of novel
secondary metabolites, many of which possess unique chemical
scaffolds and demonstrate promising activities against cancer,
infectious, and metabolic diseases. Notably, marine-derived
natural products have shown distinct chemical novelty, new
mechanisms of action, and enhanced biological activity compared
with terrestrial compounds, which contributes to their increasing
application in drug discovery and development (Fernández et al.,
2024; Singh et al., 2024). Several marine alkaloidal drugs have
achieved clinical success worldwide, such as Trabectedin
(Yondelis®) and Lurbinectedin (Zepzelca®), which have been
approved for cancer therapy, demonstrating the great
translational potential of marine natural products (Molinski
et al., 2009; Markham, 2020). Recent advances show that indole-
derived marine natural products not only target tumor proliferation
but also help overcome multidrug resistance by acting on efflux
transporters such as BCRP (Breast Cancer Resistance Protein),
providing new therapeutic avenues for resistant malignancies
(Kanoujia et al., 2023).

Among these marine natural products, indole alkaloids from
marine invertebrates, especially ascidians and sponges, have been
highlighted as a rich source of lead compounds for drug discovery
(Pindur and Lemster, 2001). Meridianins (Figures 1A–G) are a
family of brominated indole alkaloids first isolated from the
Antarctic tunicate Aplidium meridianum (Gompel et al., 2004;
Franco et al., 1998). Particularly, meridianins have received
considerable attention due to its potent protein kinase inhibitory
activity (More et al., 2014) and a broad spectrum of pharmacological
properties, including antitumor (Radwan and El-Sherbiny, 2007),
antimalarial (Lebar et al., 2011), anti-Alzheimer’s activity (Llorach-
Pares et al., 2017) and antituberculosis effects (Y et al., 2015).

Meridianin C (MC), one of the most prominent members of the
meridianin family, is characterized by an indole nucleus substituted
at the C-3 position with a 2-aminopyrimidine ring, and a bromine
atom at the C-5 position of the indole ring (More et al., 2014).
Pharmacologically, MC displays a broad spectrum of bioactivities. It
has shown potent inhibition against a range of protein kinases, such
as casein kinase 1 (Fernández et al., 2024) and cyclin-dependent
kinase 1 (Gompel et al., 2004), implicating its potential as a multi-
target kinase inhibitor in cancer therapy and neurodegenerative
disease research. In addition, MC has demonstrated strong
antiproliferative effects against human tongue cancer cell lines
(Park et al., 2018), as well as improved glucose uptake via GSK-
3β inhibition (Han et al., 2021), supporting their therapeutic
prospects not only in oncology but also in metabolic diseases
such as diabetes.

Given these remarkable activities, MC has frequently served as a
lead compound for the design of novel small molecules (More et al.,
2014; Han et al., 2021), similar to other natural anticancer agents
such as ferulic acid, isothiocyanates and apigenin (Liu et al., 2025;
Guo et al., 2025; Liang et al., 2023). Numerous synthetic MC
derivatives have demonstrated improved anti-proliferative and
kinase inhibitory properties compared to the parent compound
(More et al., 2014; Han et al., 2021; Cho et al., 2020). In
addition, Han et al. reported MC analogues with superior glucose
uptake activity to MC through GSK-3β inhibition in hepatic cells
(Han et al., 2021), while Park et al. demonstrated anti-adipogenic
effects of MC derivatives by downregulating key transcription
factors and adipokines (Park et al., 2014).

Despite these advances, most research has focused on the
synthesis, structural modification, and in vitro biological
evaluation of MC and its analogues. However, their
pharmacokinetic profiles, metabolic fate in vivo and druggability
remain inadequately explored. As pharmacokinetic studies are
essential for understanding the absorption, distribution,
metabolism, and excretion (ADME) properties of drug candidates
(Moda et al., 2008), the lack of comprehensive in vivo evaluation
greatly limits the translational potential of MC.

FIGURE 1
Structure of meridianins (A–G).
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TABLE 1 Qualitative analysis of MC and its metabolites in rat plasma by UHPLC/Q-TOF MS.

RT (min) NO.a Calculated
Massb

Observed mass (Da)
Fragment ions

Error (mDa) Type of
metabolite

Formula

2.49 M1 481.0359 481.0365/483.03,305.00/307.00,226.09,185.07 −0.6 Hydroxylation + glucuronide conjugation C18H17BrN4O7

2.97 M2 384.9606 384.9613/386.96,305.00/307.00,226.09,209.06,197.08,185.07 −0.7 Hydroxylation + sulfation C12H9BrN4O4S

3.24 M3 305.0038 305.0118/307.01,289.01,226.09,185.07 −8.0 Hydroxylation C12H9BrN4O

3.33 M4 465.0410 465.0421/467.0406 −1.1 Glucuronide conjugation C18H17BrN4O6

3.38 M5 465.0410 465.0416,305.00/307.00,226.08,210.09,185.07,169.08 −0.6 Glucuronide conjugation C18H17BrN4O6

3.78 M8 320.9987 320.9985/322.9968 0.2 2 × Hydroxylation C12H9BrN4O2

3.85 M9 481.0359 481.0359/483.03,305.00/307.00,226.09,209.06,198.09,143.06 0.0 Hydroxylation + glucuronide conjugation C18H17BrN4O7

4.22 M10 289.0089 289.0089/291.01,209.08,169.08,140.05 0.0 Parent drug C12H9BrN4

4.37 M11 384.9606 384.9608/386.96,305.00/307.00,226.09,209.06,198.09,185.07
143.06

−0.2 Hydroxylation + sulfation C12H9BrN4O4S

6.06 M14 445.0148 443.0180/445.0161,288.00/290.00,246.99/248.99,208.07,168.07 −1.3 Hydration + glucuronide conjugation +2 × Alcohols dehydration C18H13BrN4O5

aMetabolites in bold font were quantified.
bOnly one molecular ion of the isotopes was shown.

*Bold values indicate the prototype compound (M10) and its five metabolites in the pharmacokinetic study.
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Previously, our group characterized nine metabolites of MC in
rat plasma using UHPLC/Q-TOF MS (Table 1), which enabled
semi-quantitative analysis based on relative signal intensities (Zhang
et al., 2021). The proposed metabolic pathways of MC, as illustrated

in Figure 2, were established in our previous research. While this
approach is valuable for identifying metabolites and elucidating
metabolic pathways, it does not provide accurate or validated
quantification of MC and its metabolites due to limitations in

FIGURE 2
Proposed metabolic routes of MC in rat plasma (GluA indicates glucuronidation).

FIGURE 3
Synthesis of MC.
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sensitivity, specificity, and reproducibility. In contrast, this study is
the first to develop and validate a UHPLC-MS/MS method for the
absolute quantification of MC and its five major metabolites in rat
plasma, enabling comprehensive and reliable pharmacokinetic
analysis in vivo. The UHPLC-MS/MS technique offers significant
advantages, including superior sensitivity, specificity, and
reproducibility, making it ideal for precise quantification in
complex biological matrices (Yang et al., 2022; Hao et al., 2026;
Cui et al., 2022). Additionally, MC was synthesized using a modified
protocol (Huggins et al., 2018) to support this investigation. Overall,
this advancement provides critical data to support the preclinical
evaluation and drug development of MC.

2 Materials and methods

2.1 Chemicals

Puerarin (purity >98%) as internal standard (IS) was purchased
from Chengdu Herbprify CO. LTD. (Beijing, China). HPLC-grade
acetonitrile and formic acid were bought from Thermo Fisher
Scientific (Boston, MA). Ultrapure water was obtained by a Milli-
Q water purification system (Millipore, France). All other chemicals
were of analytical grade.

2.2 Synthesis of MC

As depicted in Figure 3, MC was synthesized in four steps
starting from 5-bromoacetyl indole, and the nitrogen of rawmaterial
was then protected using p-toluenesulfonyl chloride (TsCl),
triethylamine, and 4-dimethylaminopyrimidine (DMAP) in a
solvent (DCM). The enaminone was then obtained by reacting
protected in-dole derivative with DMF/dimethylformamide-
diemthylacetal (DMF-DMA) at reflux for 5 h. The reaction of
cyclization and deprotection of the enaminone derivative were
completed by utilizing potassium carbonate and guanidine
hydrochloride to finally synthesize MC (Huggins et al., 2018).

2.3 Experimental animals

Sprague Dawley rats (male, 220–250 g) were purchased from the
SPF Biotechnology Co., Ltd. (Beijing, China). Animals were
acclimated under controlled conditions (temperature 22 °C ±
2 °C, humidity 50%–60%, 12 h light cycle) with unlimited fodder
and water access for 7 days. The animal experiments were approved
by the Animal Experiment Ethics Review Committee of Jiangsu
Vocational College of Medicine, Yancheng, China (LLSQ-
2021-031106).

2.4 Drug administration and sampling

After fasting overnight, six rats were orally administered
100 mg/kg MC suspended in 0.5% carboxymethyl cellulose
sodium solution (10.0 mg/mL). Blood samples (about 300 μL)
were collected into heparinized polythene tubes from the

suborbital vein at 0, 0.25, 0.5, 1, 2, 3, 4, 8, 12, 24, 36 and 48 h
after administration. All samples were immediately centrifuged at
6,125 g for 5 min at 4 °C to acquire plasma. The plasma samples were
preserved at − 80 °C until further analysis.

2.5 Preparation of calibrations samples and
quality control samples

MC, accurately weighted, was firstly dissolved in methanol to
acquire the standard stock solutions (250 μg/mL). A set of standard
working solutions (25,000.0 ng/mL, 12,500.0 ng/mL, 2,500.0 ng/mL,
1,250.0 ng/mL, 625.0 ng/mL, 250.0 ng/mL, 125.0 ng/mL,
31.25 ng/mL) were obtained by diluting the stock solutions with
methanol. An aliquot of 20 µL of these standard working solutions
was then spiked into 1.5 mL polythene tubes and the solvent of
methanol was evaporated at room temperature. Afterwards, the
calibration standards (5,000.0 ng/mL, 2,500.0 ng/mL, 500.0 ng/mL,
250.0 ng/mL, 125.0 ng/mL, 50.0 ng/mL, 25.0 ng/mL, 6.25 ng/mL)
were obtained by adding blank plasma (100 µL) into the tubes and
fully mixing. The preparation method of quality control samples
(QCs, 25.0 ng/mL, 1,250.0 ng/mL, 4,000.0 ng/mL) was identical with
that of the calibration standards. All solutions were stored at 4 °C
until further use.

2.6 Samples processing

For the measurement of the concentrations of MC and its
metabolites, three times volume of methanol, containing 20 µL IS
(puerarin, 2,160.0 ng/mL), were added to 100 µL plasma samples to
precipitate protein. After vortexing for 2 min, the mixtures were
centrifuged at 6,125 g for 10 min at 4 °C. The obtained supernatants
were transferred to fresh tubes and allowed to be dried at room
temperature by a nitrogen blowing instrument. Then, the remaining
residues were re-dissolved with 100 µL methanol–water (80:20, v/v).
Following centrifugation at 16,173 g for 10 min, the supernatants
were transferred and used for UHPLC/Q-TOF MS assessment. The
injection volume of each sample was 1 μL.

2.7 UHPLC and MS conditions

The UHPLC-MS system comprised of an Acquity UPLC system
(Waters, Milford, United States) and Waters TQD tandem mass
spectrometer equipped with an electrospray ionization (ESI) source.
A Waters ACQUITY BEH C18 column (100 × 2.1 mm, 1.7 μm,
Waters, Milford, United States) was used for the chromatography
separation. The column temperature was set to 40 °C. The mobile
phase was composed of 0.1% formic acid in water (A) and 0.1%
formic acid in acetonitrile (B) with a fixed flow rate at 0.4 mL/min. A
gradient elution programwas used as follows: 0–1.5 min, 5%–20% B;
1.5–5 min, 20%–30% B; 5–7 min, 30%–95% B; 7–9 min, 95% B;
9–11 min, 95% B.

The MS tune parameters were set as mentioned below. The
desolvation of the source temperatures was set at 500 °C. The flow
rate of nebulization gas was 650 L/h. The capillary voltage was set at
2.8 kV in the positive ionization mode. The cone voltages were
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maintained at 35 V for all the tested ingredients. All data were
obtained via the multiple reaction monitoring (MRM) ion mode.
The range of m/z for the data collection was set at 100–1,500 Da.
Transitions, cone voltage and a collision energy of MC and its
metabolites were optimized (Table 2). The mass spectrum of MC

and the chemical structures of its MS/MS fragments is shown in
Figure 4, and The mass spectrum of puerarin and the chemical
structures of its MS/MS fragments is shown in Figure 5. MassLynx™
software version 4.1 was used for data acquisition and TargetLynx™
(Waters, Milford, MA, United States) was applied to quantitation.

TABLE 2 Transitions, cone voltage and a collision energy of compounds in MRM mode.

Compounds Transitions Collision energy (V) Cone voltage (V)

M1, M9 483.0→305.0 42 35

M2, M11 385.0→226.1 42 35

MC 289.0→209.1 45 35

M14 443.0→288.0 45 35

PUR (IS) 417.1→297.0 30 35

FIGURE 4
The mass spectrum of MC and the chemical structures of its MS/MS fragments.

FIGURE 5
The mass spectrum of puerarin and the chemical structures of its MS/MS fragments.
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2.8 Method validation

All method validation procedures were performed strictly in
accordance with the US FDA Guidance for Industry on Bioanalytical
Method Validation (FDA, 2018). The assessment of selectivity was
performed via comparing chromatograms among blank rat plasma
(six different batches) and rat plasma spiked with MC and IS. The
evaluation of linearity was carried out using weighted (1/x2) least-squares
analysis of two sets of calibration standards. Three different concentrations
of Quality Check: QCs (n = 6) standards were used and detected on three
different days to evaluate the intra-day and inter-day precision and the
accuracy. Similarly, matrix effect and extraction recovery were assessed
using three different concentrations of QCs (n = 6). The matrix effect was
evaluated via calculating the peak area ratio ofMC in post-spikedQCs and
the solvent-substituted samples with same concentration. The extraction

recovery was assessed via calculating the peak area ratio of MC in pre-
spiked and post-spiked QCs. The stability of MC was examined using
three concentrations of QCs (n = 3) under three different storage
conditions, including freeze-thaw stability (three cycles from −20 °C to
ambient temperature), short-term stability (storage at 20 °C–25 °C
for 24 h), and long-term stability (storage at −20 °C for 30 days).

2.9 Pharmacokinetics study

The concentrations of MC in the collected plasma samples were
quantified by the established calibration curve based on peak areas of
corresponding components. Owing to the lack of corresponding
standards, calibration curves for the metabolites were not established.
It has been reported that the concentrations of the metabolites could be

FIGURE 6
MRM chromatograms of MC and IS in rat plasma; Blank indicates the control blank plasma; MC and IS indicate blank plasma spiked with MC and IS.
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quantified according to calibration curve of parent drug. This is possible
due to the structural similarity of their parent nucleus (Zhang et al., 2015).
Therefore, in this study, the concentrations of the metabolites were
calculated via the calibration curve of MC. The main pharmacokinetic
parameters of MC and its metabolites were calculated via a non-
compartmental model with the pharmacokinetic software, DAS (ver.
2.0, Chinese Pharmacology Association, Shanghai, China).

2.10 Data analysis

Pharmacokinetic parameters were evaluated by DAS software
(version 2.0, Chinese Pharmacological Society, Shanghai, China),
including the area under the plasma concentration-time curve
(AUC0–t), time to reach the maximum plasma concentration
(Tmax), elimination half-time (t1/2), the maximum plasma

FIGURE 7
MRM chromatograms of the quantified metabolites in rats at 1 h after oral administration at a dose of 100 mg/kg.
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concentration (Cmax). Data were expressed in mean and standard
deviation (SD) of each group. A paired t-test was used to analyze the
significance of the differences between the two groups. p-value was
considered statistically significant if p < 0.05 (SPSS 18.0 software,
SPSS Inc., Chicago, IL, United States).

3 Results

3.1 Synthesis of MC

Synthesis of MC was performed as described by Huggins et al.
(2018) with slight modifications. MC was synthesized in four steps
as depicted in Figure 3. The reactions were monitored by TLC.
The synthesis of MC was achieved with an overall yield of 32%.
The structure of MC was confirmed by both 1H NMR
spectrometry (Supplementary Figure S1) and MS techniques
(Supplementary Figure S2).

3.2 Method validation

3.2.1 Selectivity
The selectivity of the method was demonstrated by analyzing six

different batches of blank rat plasma and rat plasma spiked with MC
and Internal Standard (Puerarin). The Multiple reaction monitoring
(MRM) chromatograms of blank (control), MC and IS are displayed
in Figure 6 while MRM of MC and quantified metabolites are shown
in Figure 7. The results showed that there was no obvious
endogenous interference in the detection of the analytes and the
IS, demonstrating the selectivity of the method.

3.2.2 Linearity and sensitivity
To evaluate the linearity, calibration curve for MC was

established by analyzing the spiked calibration samples with the
concentrations ranging from 6.25 to 5,000 ng/mL. The obtained
equation of the calibration curve was y = 0.0374x + 80.251 (r2 =

0.9958), where y represents the peak area ratio of MC/IS and x
represents the concentration of MC in rat plasma. The correlation
of determination (r2) surpassed 0.99, indicating a good linearity of
the calibration curve in the measured concentration range. The
lower limit of quantifications (LLOQ) of MC in rat plasma was
detected to be 6.25 ng/mL. This indicated the higher sensitivity of
the system.

3.2.3 Accuracy and precision
To evaluate the precision and accuracy, six replicates of QC

samples were detected at three concentrations on three successive
days. As shown in Table 3, the range of intraday and inter-day
precision values for MC were 7.4%–12.5% and 10.9%–14.3%,
respectively. These values were within the limits (<15%).
Furthermore, the accuracy values were found to be
between −10.5% and 3.2%, which met the criteria of no more
than ±15%. The results indicated the optimal reproducibility of
the method.

3.2.4 Recovery and matrix effect
The pre-spiked QCs were obtained by the utilization of

methanol, which caused the precipitation of proteins in plasma
after the addition of MC and IS. On the other hand, for post-spiked
QCs, methanol (protein precipitation) was added into plasma
before the addition of MC and IS. The extraction recovery was
described as the peak area ratio of MC in pre-spiked and post-
spiked QCs. The recovery of MC ranged from 95.9% to 106.1%
(Table 4), which complied with the criteria of Chinese
Pharmacopoeia. The matrix effect was assessed by calculating
the peak area ratio of MC in post-spiked QCs and the sol-vent-
substituted samples. Nonetheless, the matrix effect of MC ranged
from 94.0% to 108.9% (Table 4), which was within the limits of
acceptability.

3.2.5 Stability
The stability was estimated by analyzing QCs (25.0, 1,250.0, and

4,000.0 ng/mL) after storing in three different conditions: three

TABLE 3 Precision and accuracy of MC in rat plasma (n = 6).

Marker compounds Concentration (ng/mL) RSD (%) RE (%)

Added Found Intra-day Inter-day

MC 25.0 25.8 9.8 10.9 3.2

1,250.0 1,137.5 7.4 11.6 −9.0

4,000.0 3,580.0 12.5 14.3 −10.5

TABLE 4 Recovery and matrix effects of MC and IS in rat plasma (n = 6).

Marker compounds Concentration (ng/mL) Recovery (%) RSD (%) Matrix effect (%) RSD (%)

MC 25.0 102.3 2.2 94.0 7.0

1,250.0 95.9 2.8 108.9 1.9

4,000.0 106.1 4.6 108.2 2.9

IS 432.0 98.1 6.8 91.8 7.2
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TABLE 5 Stability of MC in rat plasma (n = 3).

Marker compounds Concentration (ng/mL) Stability (re, %)

Freeze-thaw (3 cycles) 20 °C–25 °C/24 h −20 °C/30 days

MC 25.0 13.5 12.5 10.6

1,250.0 12.6 7.9 5.2

4,000.0 9.3 −6.8 −8.5

FIGURE 8
Mean plasma concentration-time curves of MC and its five metabolites in rat plasma after intragastric administration of MC at a single dose of
100 mg/kg (n = 6).
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freeze-thaw cycles (−20 °C to ambient temperature), 20 °C–25 for
24 h, and - 20 °C for 30 days. As presented in Table 5, the deviations
in the stabilities of MC ranged from - 8.5% to 13.5% under the three
different storage conditions. The results revealed that MC was stable
in all the three conditions.

3.2.6 Pharmacokinetic application
The established UHPLC-MS/MS approach was successfully

employed to evaluate the pharmacokinetics of MC and its
metabolites (M1, M2, M9, M11 and M14) after a single (dose)
oral administration of MC (100 mg/kg) to rats. The mean plasma
concentration-time curves of the MC and its metabolites are
presented in Figure 8. The main pharmacokinetic parameters
estimated via non-compartmental analysis are compiled in
Table 6. The Cmax for MC was 44.8 μmol/L, whereas it’s
AUC0–48h, Tmax, and half-life (t1/2) were found to be
232.0 μmol h/L, 0.75 h, and 17.7 h, respectively. On the other
side, the Cmax for M1, M2, M9, M11 and M14 was 0.92, 6.4, 0.01,
1.6 and 1.9 μmol/L and their Tmax occurred at 2.5, 0.50, 2.4,
0.88 and 3.9 h, respectively. Additionally, the AUC0–48h of these
five metabolites (M1, M2, M9, M11, M14) was estimated to be
27.7, 11.1, 1.3 × 103, 58.7 and 9.9-fold less than that of MC,
respectively. However, the system failed to quantify the
concentration of M3, M4, M5, and M8 in plasma samples
because their contents were lower than the limit of
quantification (LOQ).

4 Discussion

MC, an indole alkaloid derived from marine organisms, is
known to possess a variety of pharmacological activities and is
often used as a core scaffold for the synthesis of active substances
(More et al., 2014; Han et al., 2021). Several studies have proposed
MC as a promising lead compound for drug development, but
most previous reports have focused on synthesis, structural
modification, and in vitro biological evaluation (Han et al.,
2021). To date, there have been no studies providing validated
quantitative data on the pharmacokinetics of MC and its
metabolites in vivo. Previous investigations—including our own
UHPLC/Q-TOF MS metabolite profiling—were limited to semi-
quantitative analyses, lacking the sensitivity, specificity, and
reproducibility required for robust pharmacokinetic evaluation
(Zhang et al., 2021). In contrast, the present study is the first to
employ a validated UHPLC-MS/MS method for the simultaneous
absolute quantification of MC and its major metabolites, enabling a
more comprehensive understanding of their pharmacokinetic
profiles in vivo.

In our previous study, nine metabolites of MC were detected in
rat plasma after oral administration (Zhang et al., 2021). To further
investigate their pharmacokinetics profile, we determined the
concentrations of MC and its five major metabolites in rat
plasma according to the established UHPLC-MS/MS approach
(Figure 8). The pharmacokinetic evaluation per-formed by non-
compartmental analysis is shown in Table 6. Pharmacokinetic
evaluation showed rapid absorption of MC, as indicated by the
high plasma concentrations of MC and its metabolites at 0.75 h
post-dosing. This is consistent with findings by Kushida et al.
(2021), who reported that indole alkaloids in Uncaria Hook
(e.g., geissoschizine methyl ether) are rapidly absorbed into the
bloodstream after oral administration, with a Tmax of 0.42–0.67 h.
The Cmax and AUC0–48h of MC were significantly higher than those
of its metabolites, indicating it remains the predominant plasma
compound post-oral administration—suggesting favorable
bioavailability. This contrasts with Hase et al.’s findings on
vincamine (a structurally related indole alkaloid): they noted
vincamine has low bioavailability, further affected by
formulation and other components (Hasa et al., 2013). In our
study, MC maintains high plasma levels in its original form with
high Cmax and AUC0–48h, pointing to better bioavailability than
vincamine and potentially other related indole alkaloids.
Additionally, the observed multiple peaks in the plasma
concentration–time profile and the long half-life (17.7 ± 14.1 h)
imply possible enterohepatic recirculation, a phenomenon also
documented for other indole alkaloids such as 10-
methoxycamptothecin (Shao et al., 2017). Enterohepatic
recirculation has been shown to enhance drug exposure and
prolong the pharmacological effects of various natural products
(Gao et al., 2014).

It was also observed thatM2 (MC-1-N-O-SO3H) andM14 (MC-
O-GluA-didehydration) were the two metabolites with relatively
high AUC0-48h values. This showed that hydroxylation + sulfation
and hydroxylation + glucuronide conjugation were the major
metabolic pathways (phase II metabolism) of MC, which is
consistent with the findings of our previous study (Zhang et al.,
2021). This phase II metabolism pattern aligns with previous reports
on the metabolism of other natural products, where conjugation
typically increases polarity and reduces toxicity (Lentini et al., 2020).
Importantly, some glucuronidated or sulfated metabolites may
retain or even surpass the biological activities of the parent
compound, as reported for morphine-6-glucuronide and
berberrubine-9-O-β-D-glucuronide (Klimas and Mikus, 2014;
Yang et al., 2017). Given the broad bioactivity spectrum of MC,
future studies should focus on evaluating the pharmacological
potential of its glucuronidated metabolites, which may provide
improved efficacy and safety.

TABLE 6 Pharmacokinetic parameters of MC and its main metabolites in rat plasma after intragastric administration of 100 mg/kg MC (n = 6).

Parameters Units MC M1 M2 M9 M11 M14

AUC0–48h μmol·h/L 232.0 ± 85.9 8.4 ± 2.9 20.9 ± 8.5 0.18 ± 0.12 4.0 ± 1.1 23.4 ± 2.5

Cmax μmol/L 44.8 ± 7.0 0.92 ± 0.47 6.4 ± 2.0 0.010 ± 0.001 1.6 ± 0.6 1.9 ± 0.6

Tmax h 0.75 ± 0.27 2.5 ± 4.7 0.50 ± 0.27 2.4 ± 4.7 0.88 ± 0.63 3.9 ± 5.0

t1/2 h 17.7 ± 14.1 6.4 ± 4.3 4.4 ± 2.7 13.5 ± 6.0 3.4 ± 2.2 13.5 ± 7.2
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5 Conclusion

In summary, this study is the first to quantitatively analyze
Meridianin C (MC) and its major metabolites in vivo, providing
validated pharmacokinetic data. A sensitive and validated UHPLC-
MS/MS method was developed for the simultaneous quantification of
MC and its five major metabolites in rat plasma, and this rapid
method can be readily extended to other halogenated indole alkaloids.
Pharmacokinetic analysis demonstrated that MC had higher systemic
exposure (AUC0–48h) than its metabolites. Notably, metabolites
M2 and M14, which exhibited relatively high AUC0–48h values,
revealed that hydroxylation combined with sulfation and
hydroxylation combined with glucuronidation are the primary
phase II metabolic pathways. These findings highlight the
significance of phase II metabolites in drug development and
provide valuable data for the preclinical development of MC-based
drug candidates. Future studies should investigate the in vivo
pharmacological activity of these metabolites and further
characterize the pharmacokinetics and tissue distribution of MC to
fully elucidate its druggability and therapeutic potential.
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