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T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological
malignancy with limited therapeutic options and frequent treatment-
associated toxicities. L-asparaginase, a cornerstone in T-ALL therapy, is often
restricted by hypersensitivity reactions and systemic side effects, highlighting the
need for safer strategies to enhance its efficacy. This study investigated the
potential of apigenin, a naturally occurring flavonoid with antioxidant and pro-
apoptotic properties, to act as a chemosensitizer for L-asparaginase in MOLT-4
T-ALL cells. Cytotoxicity was assessed using the MTT assay, apoptosis by Annexin
V/PI staining, cell cycle distribution by flow cytometry, and mitochondrial
membrane potential by JC-1 staining. Both apigenin and L-asparaginase
produced dose- and time-dependent cytotoxicity, with combination
treatment resulting in reduced ICso values. Apoptotic analysis showed
significantly higher apoptosis in the combination-treated groups than in
single-agent groups. Cell cycle analysis revealed that apigenin induced S-
phase arrest and L-asparaginase induced Gl-phase arrest, while the
combination disrupted cell cycle progression at multiple checkpoints. JC-1
assay further demonstrated enhanced mitochondrial depolarization, with up
to a 29.2-fold increase in cytoplasmic-to-mitochondrial fluorescence ratio in
combination therapy compared to L-asparaginase alone. These findings indicate
that apigenin potentiates L-asparaginase-induced cytotoxicity through
mitochondrial dysfunction and intrinsic apoptotic signaling. The combined use
of apigenin and L-asparaginase may provide a novel strategy to improve
therapeutic efficacy in T-ALL while potentially reducing the toxicity associated
with high-dose L-asparaginase monotherapy.
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Introduction

Leukemia is a collection of cancers originating from abnormal cells in the body’s
hematopoietic tissues, characterized by poor differentiation and aggressive behavior (Feng
Li, 2024; Shafat et al., 2017; Yang et al,, 2021). According to Sung et al., 2021, leukemia
ranked as the 13th most common cause of cancer-related mortality worldwide, accounting
for ~3.1% (305,405 cases) of all cancer deaths. Among its subtypes, acute lymphoblastic
leukemia (ALL) is a particularly aggressive form that arises from the lymphoid lineage,
resulting in overproduction of immature lymphocytes and disruption of normal
hematopoiesis. ALL is most prevalent in children, progresses rapidly, and requires
prompt intervention (Ekpa et al., 2023; Pui et al.,, 2004; Rujkijyanont and Inaba, 2024).
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T -cell acute lymphoblastic leukemia (T-ALL) is a rarer subtype,
comprising 15%-20% of pediatric and 25%-30% of adult ALL cases,
and is historically associated with inferior survival compared with
B-ALL (Moricke et al., 2016; Raetz and Teachey, 2016). Despite
improvements in chemotherapy protocols, outcomes for T-ALL,
especially in relapsed and high-risk groups, remain poor (Durinck
et al,, 2015; Van Vlierberghe and Ferrando, 2012). The mainstay of
treatment for ALL is combination chemotherapy that includes
asparaginase, anthracyclines, cytarabine, cyclophosphamide, and
intrathecal methotrexate (Hayashi et al., 2024; Juluri et al., 2022).
While  this
management of resistant or recurrent disease is still challenging
(Chen et al., 2013; Youns et al., 2010).

L-asparaginase is a crucial and highly effective drug for treating
T-ALL (Egler et al., 2016; Ishida H, 2024; Tong and Rizzari, 2023). Its
selective action is based on the inability of leukemic lymphoblasts to

regimen has improved survival to 80%-85%,

upregulate asparagine synthetase, leaving them vulnerable to
extracellular ~ asparagine depletion. However, dosing and
administration are complicated by hypersensitivity, hepatotoxicity,
coagulopathy, and pancreatitis, with hypersensitivity being the main
cause of treatment interruption (Baruchel et al., 2020). Maintaining
serum asparaginase activity (SAA) >0.1 IU/mL is required for
therapeutic efficacy, but achieving this threshold while limiting
toxicity is difficult (van der Sluis et al., 2016). Thus, strategies that
enhance L-asparaginase efficacy while minimizing toxicity are
urgently needed.

A major barrier in ALL therapy is the toxicity of chemotherapeutics
to normal tissues, which restricts both dosing and treatment duration.
Therefore, a promising approach is to combine conventional
chemotherapy with natural, low-toxicity agents that enhance
therapeutic efficacy while protecting healthy cells (Gilad et al., 2021).
Plants are rich in bioactive compounds with anticancer potential,
particularly polyphenols. These secondary metabolites influence
multiple stages of carcinogenesis and are generally safe, affordable,
and accessible (Kang et al., 2012; Kilani-Jaziri et al,, 2012; Russo et al.,
2010). Flavonoids, widely found in fruits, vegetables, teas, and herbal
medicines, exhibit diverse pharmacological activities, including
antioxidant, anti-inflammatory, hepatoprotective, immunoregulatory,
and anticancer properties (Hasnat et al., 2024).

Abbreviations: ALL, Acute Lymphoblastic Leukemia; ANOVA, Analysis of
Variance; ATCC, American Type Culture Collection (inferred from context,
not explicitly stated but common for cell lines); B-ALL, B-cell Acute
Lymphoblastic Leukemia; CDK2, Cyclin-dependent Kinase 2; CCCP,
Carbonyl Cyanide 3-Chlorophenylhydrazone; Cl, Combination Index; DMSO,
Dimethyl Sulfoxide; DNA, Deoxyribonucleic Acid; ER, Endoplasmic Reticulum;
FACS, Fluorescence-Activated Cell Sorting; FBS, Fetal Bovine Serum; FITC,
Fluorescein lIsothiocyanate; G1, Gap 1 Phase; G2, Gap 2 Phase; JC-1,
5,5',6,6'-Tetrachloro-1,1',3,3' -tetraethylbenzimidazolylcarbocyanine  iodide;
MMP, Mitochondrial Membrane Potential (appears as AYm); MTT, 3-(4,5-
Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide; PBS, Phosphate-
Buffered Saline; PI, Propidium lodide; PKB, Protein Kinase B (another name
for AKT); PMSF, Phenylmethylsulfonyl Fluoride (not mentioned, but often used
with protease-free conditions—could be excluded if not present); qPCR,
Quantitative Polymerase Chain Reaction (not in your document, but often
associated with gene expression studies—omit if not present); RNA,
Ribonucleic Acid; RNase, Ribonuclease; SAA, Serum Asparaginase Activity;
SDS, Sodium Dodecyl Sulfate (not used in your text); SD, Standard Deviation;
T-ALL, T-cell Acute Lymphoblastic Leukemia; A¥m, Mitochondrial
Membrane Potential.
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Among flavonoids, apigenin—a dietary flavone abundant in
fruits, vegetables, and herbs—has attracted particular interest. It
displays antioxidant, anti-inflammatory, and anticancer -effects
(Telange et al., 2017). Mechanistic studies show that apigenin
arrests HL-60 myeloid leukemia cells at G2/M and TF-1
erythroid leukemia cells at GO/G1, partly through inhibition of
the PI3K/AKT pathway and activation of caspases (A. Mahbub
et al,, 2017). Importantly, apigenin has low toxicity in normal cells,
supporting its potential as an adjuvant to chemotherapy. It has also
been shown to sensitize cancer cells to chemotherapeutic agents
such as 5-fluorouracil, doxorubicin, chlorambucil, imatinib, and
cyclophosphamide (Bokuli¢ et al., 2011).

However, flavonoid-drug interactions can be context
dependent. While many studies confirm their chemosensitizing
potential, others report

apigenin has been shown to attenuate vincristine-induced

antagonistic effects. For example,
apoptosis in hematological malignancy models (Goto et al,
2012). This variability highlights the need for rationally designed
studies to define specific drug-flavonoid interactions in leukemia.

In this study, we investigated the potential of apigenin to
sensitize T-ALL cells to L-asparaginase. By evaluating their
combined effects on cell viability, apoptosis, mitochondrial
function, and cell-cycle regulation, we aimed to identify a
strategy to enhance L-asparaginase efficacy while reducing its
dose-related toxicities, thereby improving therapeutic outcomes
in T-ALL.

Materials and methods
Chemicals

L-Asparaginase from E. coli (A3809-1KU) and apigenin were
purchased from Sigma (United States). A stock solution of
L-asparaginase was prepared at 1 mg/mL using distilled water
and stored at —20 ‘C. With dimethyl sulfoxide (DMSO), a stock
solution of apigenin was made at a concentration of 2.5 mg/mL and
stored at —20 °C.

The sterile DMSO was obtained from the Merck Group (Germany)
and stored at room temperature. Fetal Bovine Serum (FBS) and RPMI
1640 media (1X) were sourced from Gibco (United Kingdom).
Dulbecco’s Phosphate-buffered saline (PBS) (1X) was acquired from
Capricorn Scientific (Germany), while Penicillin-Streptomycin (100X)
was purchased from Euroclone (Italy). 3-(4,5-Dimethylthiazol-2-yl)-
2,5-Diphenyltetrazolium Bromide (MTT) powder was obtained from
Invitrogen (United States), and a stock solution was prepared in 1X PBS
at a final concentration of 5 mg/mL. Trypan blue powder was
obtained from Sigma Aldrich (United States), and a stock solution
was prepared at a final concentration of 0.4% in 1X PBS. The FITC
Annexin V Apoptosis Detection Kit I, used for apoptosis assays,
was purchased from BD Biosciences (United States). The
MitoProbe™ JC-1 Assay Kit for flow cytometry was acquired
from Invitrogen (United States). Propidium iodide (PI) powder
was sourced from AppliChem (Germany), and a 1 mg/mL stock
solution was prepared in distilled water and stored at 4 “C. Triton
X-100 was also purchased from AppliChem (Germany), while
RNase A (DNase- and protease-free, 10 mg/mL) was obtained
from Thermo Scientific (United States).
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Cell line

The human T-ALL cell line, MOLT-4 cells, was purchased from
Icell Bioscience (Shanghai, China). The cell line used in this study was
previously cryopreserved at —80 °C to maintain its viability and integrity
before use. After thawing, cells were expanded under standard culture
conditions, and experiments were performed using cells at the 3rd—4th
passage to ensure stable growth and viability. The cells were grown in
RPMI 1640 medium with 10% FBS, 1% L-glutamine, and 1% penicillin-
streptomycin solution, and kept at 37 °C in a room with 5% COs.

Cell viability assay

Cell viability was determined using the 3-(4,5)-2,5-diphenyl-
tetrazolium bromide (MTT) assay. MOLT-4 cells (1 x 104 cells
per well) were placed in 96-well plates and given different
amounts of L-asparaginase and apigenin, either by themselves or
with a control, for 24 and 48 h at 37 °C in a 5% CO2 environment. At
the conclusion of each incubation period, 20 L of freshly prepared
MTT solution (5 mg/mL) was added to each well and incubated for
4 hat 37°Cina 5% CO, environment. The absorbance was measured
at 570 and 670 nm using a microplate reader (Thermo Scientific,
Multiskan GO, Finland). The obtained absorbance values reflect
cellular metabolic activity, which indirectly indicates viability and
cytotoxicity. The values of IC25, IC50, and IC75 were determined
based on the percentages of cell proliferation inhibition at different
apigenin and L-asparaginase concentrations and were graphed.

Apoptotic assay

MOLT-4 cells (6 x 10° cells per well) were seeded into 6-well
plates and exposed to varying concentrations of L-asparaginase (0.5,
1.0, and 1.5 pg/mL) and apigenin (5, 10, and 15 ug/mL), either
individually or in combination, for 24 and 48 h at 37 "C in a 5% CO,
incubator. Apoptotic cells were evaluated using an Annexin
V-FITC/propidium iodide (PI) apoptosis detection kit, following
the manufacturer’s protocol. Quantification of apoptotic
populations was performed using a flow cytometer (BD FACS
Canto, United States) with two-channel analysis, and data were

processed with CellQuest software (BD Biosciences).

Determination of mitochondrial
membrane potential

The MitoProbe™ JC-1 Assay Kit, which is used for flow cytometry,
was used to check the mitochondrial transmembrane potential with a
JC-1 dye test. MOLT-4 cells (6 x 10° cells/well) were seeded into 6-well
plates and were incubated with the indicated combined doses of
apigenin and L-asparaginase (5pg/mL-0.5 pg/mL, 10pg/mL-1.0 pg/
mlL, and 15ug/mL-1.5 pug/mL) for 48 h in a 5% CO, atmosphere. The
experimental design included two untreated control groups and one
negative control group, which contained cells exposed only to the
solvent vehicles (distilled water and DMSO at their highest applied
concentrations). After 48 h of incubation in a 5% CO, atmosphere,
carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 2 uL, 50 mM), a
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compound that disrupts mitochondrial membrane potential, was added
to one of the control groups to reach a final concentration of 50 M and
was maintained at 37 °C in a 5% CO, atmosphere for 5 min. JC-1 dye
(20 pL, 200 uM) was then added 20 min before the termination of the
experiment and incubated at 37 °C in a 5% CO, atmosphere. After
incubation, the cells were collected and washed with PBS. Fluorescence
intensity was ultimately measured using flow cytometry (BD FACS
Canto, United States). In the JC-1 assay, P6 represents polarized
mitochondria (healthy cells, red fluorescence), while P7 represents
depolarized mitochondria (apoptotic cells, green fluorescence).

Cell cycle analysis

MOLT-4 cells (6 x 10° cells per well) were cultured in 6-well plates

and exposed to various concentrations of apigenin and
L-asparaginase, administered either separately or in combination.
Two control groups were used: one group had cells treated with
distilled water and DMSO at high levels, and the other group had cells
that were not treated with any drugs at all. After 48 h of incubationina
5% CO, atmosphere, the cells were fixed with ethanol (80%) at —20 °C,
then permeabilized with Triton X-100 in PBS (200 pL, 0.1%) and
treated with RNase A (4 pL, 200 pg/mL) to remove RNA. Cells were
stained with PI solution (20 pL, 1 mg/mL) and analyzed by flow
cytometry (BD FACS Canto, United States). The percentage of cells in
the G1, S, and G2 phases was measured to see how well apigenin and
L-asparaginase, either separately or together, could stop the cell cycle

by comparing the treated groups to the control groups.

Isobologram and combination index analysis

The combination effects of L-asparaginase and apigenin were
evaluated using the improved isobologram method and the
combination index (CI) approach, as implemented in the
CompuSyn software. Combination Index (CI) values were
computed to evaluate the interaction between L-asparaginase and
apigenin, with CI < 1 indicating a synergistic effect, CI =
1 representing an additive effect, and CI > 1 suggesting
antagonism. These values were derived using the median-effect
principle according to the Chou-Talalay method (Chou, 2010).

Statistical analysis
Statistical analysis and graph generation were carried out using
GraphPad Prism 10.0. A paired t-test was applied to assess differences

between the control and experimental groups. Additionally, a two-
way ANOVA was used to analyze the overall experimental data.

Results

Apigenin and L-asparaginase inhibit
leukemia cell viability

The MTT assay was employed to evaluate the cytotoxic effects of
apigenin and L-asparaginase, both individually and in combination,
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on MOLT-4 cells following 24 and 48 h of incubation. For apigenin
alone, there was a dose-dependent decrease in cell viability, which
was stronger at 48 h than at 24 h (Figures 1A,B). The IC50 of
apigenin was 13.15 ug/mL at 24 h but decreased to 7.3 pg/mL at 48 h,
indicating that cytotoxic activity increased over time. Additionally,
at 48 h, the IC25 and IC75 values were 3.93 pg/mL and 11.8 pg/mL,
respectively, indicating a gradual dose-dependent response. Time-
dependent cytotoxicity was evident at higher concentrations
(>15 pg/mL) of this compound.

An additional delay during the 48 h period further increased
efficacy, with a dose-dependent inhibition of cell growth observed
following treatment with L-asparaginase alone. The IC50 was
2.58 pg/mL at 24 h and decreased to 0.56 pg/mL at 48 h,
representing a 4.6-fold reduction (Figures 1C,D). Moreover, at
48 h, the IC25 and IC75 values were 0.24 pug/mL and 4.0 pg/mL.

Combination index (CI) values below 1 at all tested
concentrations, calculated using 48-h MTT assay viability
data, indicated a synergistic interaction between apigenin and
L-asparaginase. The CI values were 0.499 for the combination of
0.5 pg/mL L-asparaginase with 5 pg/mL apigenin, and 0.487 for
1 pg/mL L-asparaginase with 10 pg/mL apigenin, indicating
strong synergy. At the highest tested dose—1.5 pg/mL
L-asparaginase combined with 15 ug/mL apigenin—a slightly
reduced synergistic effect was noted, with a CI value of
0.684 (Figure 1E).

Cell cycle effects of L-asparaginase and/or
apigenin in MOLT-4 cells

MOLT-4 cells were treated with apigenin and L-asparaginase
alone and in combination for 48 h. The results suggested that either
of the two compounds caused a concentration-dependent alteration
of cell cycle progression, and at the cell cycle indices, they had a more
prominent synergistic effect (Figure 2).

L-asparaginase treatment primarily led to G1-phase cell cycle
arrest with a dose-dependent increase in the accumulation of cells in
G1 phase. The percentage of G1 cells increased from 46.74% in the
untreated control to 66.05% in the presence of 0.5 pg/mL. This effect
was also more pronounced in higher concentrations, e.g., 1.5 ug/mL
for 71.41% of cells in G1. As a result, the fraction of cells in S and
G2 phases decreased. The S-phase cells decreased to 25.38% and the
G2-phase cells were reduced to 3.22% at the 1.5 pg/mL value of
L-asparaginase.

Contrasting results were obtained with apigenin treatment,
where S phase arrest was shown in a higher percentage of cells
at higher concentrations. The percentage of S-phase cells remained
comparable to the control (47.35%), with 46.25% at 10 ug/mL, but
increased further to 51.21% at 15 pg/mL. Conversely, G1-phase cells
were reduced (15 pg/mL, 42.92%), and G2-phase cells were
slightly reduced (15 pug/mL, 5.90%).

Using apigenin and L-asparaginase together at doses that were
very effective in killing cells showed clear changes in how the cells
progressed through their cycle. The number of cells in the G1 phase
rose to 59.34%, while the number of cells in the S phase slowly
dropped to 34.84% when treated with 0.5 pg/mL L-asparaginase and
5 pg/mL apigenin. G2 phase were also stable at 5.82%. Finally, the
number of S-phase cells went up a lot to 45.62% compared to when
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FIGURE 2

Apigenin and L-asparaginase induce cell-cycle arrest alone or in
combination. After treatment with agents for 48 h, MOLT-4 cells were
stained with Pl and analyzed for cell cycle distribution using flow
cytometry. Data represent mean + SD of three independent
experiments (*P < 0.01, **P < 0.05, vs. the control).

1 pg/mL L-asparaginase was used with 10 pug/mL apigenin; however,
the number of G1-phase cells dropped to 51.19%. The G2 phase fell
to 3.20%. The maximum extent of S-phase reached only 51.07% in
L-asparaginase at 1.5 pug/mL and apigenin at 15 pg/mL, while the
proportion of G1 phase cells was decreased down to 48.71% and
G2 phase cells were almost absent, comprising only 0.23% of cells.

Apoptotic assay

The apoptotic impact of apigenin and L-asparaginase, both
individually and in combination, was assessed using Annexin
V-FITC/PI dual staining followed by flow cytometry at 24- and
48-h post-treatment. Based on cytotoxicity results from the MTT
assay, L-asparaginase was used at concentrations of 0.5, 1.0, and
1.5 ug/mL, while apigenin was applied at 5, 10, and 15 ug/mL. These
same concentrations were combined to evaluate potential synergistic
effects on apoptosis.

The X-axis of the dot plots represents Annexin V-FITC staining,
while the Y-axis denotes PI staining. Apoptotic cells were quantified
as the sum of Q2 (late apoptosis) and Q4 (early apoptosis), while
necrotic cells (Q1) were identified but not included in the apoptosis
analysis (Figure 3A). Quadrant Q3 indicated the proportion of
viable MOLT-4 cells, which was recorded as 90.9% at 24 h and
93.3% at 48 h in the control group. At 24 h, apigenin alone induced
apoptosis in a dose-dependent manner, with 13.1%, 29.3%, and
63.4% apoptotic cells at 5, 10, and 15 pg/mL, respectively, while
L-asparaginase alone caused 31.0%, 32.0%, and 31.4% apoptosis at
0.5, 1.0, and 1.5 pg/mL, respectively. Combination treatments
significantly increased apoptotic activity, reaching 38.1% for
0.5 pug/mL L-asparaginase +5 pg/mL apigenin, 65.2% for 1.0 ug/
mL + 10 pug/mL, and 77.8% for 1.5 pg/mL + 15 pg/mL, suggesting
additive or synergistic interactions even at early time points.
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FIGURE 3

The apoptotic effect of apigenin and L-asparaginase alone and in combination on the proliferation of MOLT-4 cells at 24- and 48 h. (A) Apigenin and
L-asparaginase alone and in combination at 24 h; (B) Apigenin and L-asparaginase alone and in combination at 48 h; (C) Quantification of total cell death
in MOLT-4 cells treated with apigenin, L-asparaginase, or their combination for 24 h. (D) Quantification of total cell death in MOLT-4 cells treated with
apigenin, L-asparaginase, or their combination for 48 h Data represent mean + SD of three independent experiments (*P < 0.01, **P < 0.05, vs.

the control).

After 48 h, apoptosis levels increased across all conditions:
apigenin alone caused 15.8%, 50.5%, and 84.7% apoptosis at 5, 10,
and 15 pg/mlL, respectively, while L-asparaginase alone induced
24.6%, 34.0%, and 39.3% at 0.5, 1.0, and 1.5 pg/mL (Figure 3B).
Notably, the combined treatments produced striking apoptosis rates
of 41.2%, 84.0%, and 94.7% for 0.5 + 5, 1.0 + 10, and 1.5 + 15 pg/mL,
respectively, reinforcing a robust time- and dose-dependent
synergistic effect consistent with enhanced intrinsic apoptotic
signaling and mitochondrial dysfunction as reported in similar
studies (Aithal et al,, 2019; Naponelli et al.,, 2024; W. Wang et al.,
2000) The statistical analysis of three independently performed
experiments is shown in Figures 3C,D, where the Y-axis represents
the overall cell death rate calculated as the sum of Q1 (necrotic), Q2
(late apoptotic), and Q4 (early apoptotic) cell populations.
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Determination of mitochondrial membrane
potential

The mitochondrial membrane potential (A¥Ym) of MOLT-4
cells was evaluated after 48 h of treatment with apigenin and
L-asparaginase, individually and in combination at different
concentrations, using JC-1 dye-based flow cytometry. The
percentages of P6 and P7 for each condition were reported
alongside the results obtained from CCCP treatment (Figure 4B).
CCCP, a well-established disruptor of mitochondrial membrane
potential, was used to verify the sensitivity of the JC-1 dye in
detecting changes in mitochondrial polarization in MOLT-4 cells.
The data from the CCCP-treated group served as a reference for
normalizing the values obtained from the untreated control samples.
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(A) Quantitative analysis of JC-1red/green fluorescence ratio in MOLT-4 cells treated with L-asparaginase alone or in combination with apigenin for
48 h; (B) The effect of apigenin and L-asparaginase alone and in combination on the loss of mitochondria membrane potential of MOLT-4 cells at 48 h;
Data represent mean + SD of three independent experiments (*P < 0.01, **P < 0.05, vs. the control)

And drug-exposed groups. The calculated and normalized P7/
P6 ratios of apigenin and L-asparaginase combination-treated
groups were compared to the corresponding L-asparaginase-only
groups to determine the relative fold change in the cytoplasmic/
mitochondrial JC-1 ratio. This comparison was specifically chosen
in accordance with the study’s aim to evaluate the chemosensitizing
effect of apigenin on L-asparaginase-induced mitochondrial
depolarization.

In comparison to the respective L-asparaginase-only groups
(0.5, 1.0, and 1.5 pg/mL), the combination of 0.5 pg/mL
L-asparaginase with 5 pg/mL apigenin produced only a modest
change in the cytoplasmic-to-mitochondrial JC-1 ratio (2.4-fold
increase over L-asparaginase alone). However, a substantial rise
in this ratio was observed with the 1.0 ug/mL L-asparaginase +10 ug/
mL apigenin combination (8.7-fold increase), and an even greater
enhancement was recorded with the 1.5 pg/mL L-asparaginase
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+15 ug/mL apigenin treatment (29.2-fold increase relative to
1.5 pg/mL L-asparaginase) (Figure 4A).

Discussion

Flavonoids are often mentioned to be able to sensitize malignant
cells to classical anticancer drugs and potentiate their cytotoxicity,
thus revealing their potential use as adjunctive agents for
the treatment of neoplastic diseases including leukemia. It has
been reported that flavonoids, specifically apigenin, can enhance
the anticancer activity of chemotherapeutic agents (Mahbub et al.,
2015; Mahbub et al.,, 2017; Mahbub et al., 2022). Consistent with
these reports, our study demonstrates that apigenin augments the
activity of L-asparaginase against T-ALL cells, supporting its role as
a chemosensitizer.
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Apigenin, a naturally occurring flavonoid, showed time-
dependent inhibitory effects on leukemic cell viability, consistent
with its reported ability to induce apoptosis through oxidative stress,
mitochondrial membrane depolarization, and caspase activation
(Rooprai et al., 2021; Shukla and Gupta, 2010). These findings
also align with its recognized role as a chemosensitizing agent
that enhances the responsiveness of cancer cells to therapy
(Mahbub et al., 2022).

When combined, apigenin and L-asparaginase demonstrated
clear synergistic interactions. This effect is likely driven by
complementary mechanisms: L-asparaginase deprives cells of an
essential amino acid, while apigenin lowers the apoptotic threshold
by modulating mitochondrial pathways and apoptotic regulators.
Together, these actions amplify cell death signals, as has been
described for apigenin-flavonoid combinations in previous
reports (B. Wang and Zhao, 2017).

Such synergy is particularly relevant in the clinical context, as it
suggests the possibility of lowering effective L-asparaginase doses
while maintaining efficacy, thereby reducing treatment-related
toxicity. These observations are consistent with earlier findings
that flavonoids, including apigenin, can potentiate the anticancer
activity of standard chemotherapeutics (Asnaashari et al., 2023;
Nozhat et al., 2021).

Cell-cycle analyses further highlight the complementary
actions of both agents. L-asparaginase primarily induced
Gl arrest, consistent with its role in limiting asparagine
availability essential for DNA replication and protein synthesis
(Takahashi et al., 2017) whereas apigenin promoted S-phase
accumulation, a phenomenon linked to oxidative stress—-mediated
DNA damage and inhibition of cyclin-dependent regulators (Shi et al.,
2015). Their combination produced mixed G1 and S-phase arrest,
suggesting a dual blockade at multiple checkpoints. Such dual-phase
interference may prevent adaptive resistance, a frequent obstacle in
leukemia therapy (Ghelli Luserna di Rora’ et al, 2017; Simabuco
et al., 2018).

Apoptosis assays further support the hypothesis that apigenin
enhances L-asparaginase efficacy. Mechanistically, flavonoids such
as apigenin are known to destabilize mitochondrial membranes,
upregulate pro-apoptotic proteins, and inhibit survival pathways
including PI3K/AKT and mTOR, thereby amplifying intrinsic
apoptotic signaling (Naponelli et al., 2024; Zughaibi et al., 2021).
The strong apoptotic responses in the combination groups are
consistent with these mechanisms, underscoring apigenin’s role
as a chemosensitizer.

Interestingly, while L-asparaginase alone maintained relatively
consistent apoptotic activity over time, apigenin’s effects were highly
dose- and time-responsive, reinforcing its role as a dynamic
of cell death when wused
combination’s superiority was further substantiated by the

enhancer in combination. The
inclusion of both early and late apoptotic events (Q4 and Q2),
while excluding necrosis (Q1), ensuring that the measured responses
specifically reflect programmed cell death.

Altogether, these results suggest that co-administration of apigenin
may allow for the use of lower L-asparaginase doses while maintaining
or enhancing therapeutic efficacy, which could potentially minimize
L-asparaginase-associated toxicity in clinical applications.

The mitochondrial depolarization observed with JC-1 staining
further reinforces this interpretation. While L-asparaginase alone
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induces apoptosis largely through ER stress and protein synthesis
inhibition (Hawkins et al., 2004), apigenin directly targets
mitochondria by modulating Bax/Bcl-2 balance and cytochrome ¢
release (Cetinkaya and Baran, 2023; Huseynova et al., 2024). The
pronounced mitochondrial dysfunction in the combination groups
reflects a convergence of these mechanisms, leading to amplified
intrinsic apoptosis.

Taken together, these findings suggest that apigenin enhances
the therapeutic potential of L-asparaginase in T-ALL cells by acting
on complementary pathways involving cell-cycle arrest and
mitochondrial-mediated apoptosis. By enabling dose reduction of
L-asparaginase without loss of efficacy, this strategy could help
overcome toxicity-related limitations in clinical settings. Future
work should focus on elucidating the precise molecular targets of
this synergy and validating these effects in vivo to assess
translational potential.

Conclusion

This study highlights the potential of combining natural
flavonoids with conventional chemotherapeutic agents to enhance
anticancer efficacy. Specifically, the flavonoid apigenin significantly
potentiated the cytotoxic, apoptotic, and mitochondrial-disrupting
effects of L-asparaginase in leukemic cells. The combination
treatment led to greater reductions in cell viability, increased
rates of programmed cell death, and enhanced mitochondrial
membrane depolarization compared to either agent alone,
suggesting a synergistic interaction.

Mechanistically, the results suggest that apigenin may sensitize
cancer cells to chemotherapy by modulating mitochondrial function
and apoptotic signaling pathways. Additionally, distinct cell cycle arrest
patterns induced by each agent contributed to their combined
effectiveness, potentially limiting cancer cell adaptability and resistance.

These findings support the growing interest in using plant-
derived bioactive compounds as adjuvants in cancer therapy.
The observed synergy between apigenin and L-asparaginase
provides a promising foundation for future research and
highlights the potential for reduced dosing and improved
therapeutic outcomes in leukemia and possibly other
malignancies. Further studies, including in vivo models and
clinical evaluation, are warranted to fully explore and validate
this combination strategy.
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