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The dual specificity mitogen-activated protein kinase kinase 1 (MEK1) is a critical
node in the RAS-RAF-MEK-ERK signaling pathway, frequently dysregulated in
cancers due to mutations in upstream regulators. Despite the development of
MEK inhibitors, challenges such as on-target toxicities and drug resistance persist
that emphasize the need for novel therapeutic strategies. Drug repurposing offers
a fast and cost-effective alternative by leveraging existing FDA-approved
compounds with established safety profiles. This study employed
computational approaches to identify repurposed MEKL inhibitors through
structure-based virtual screening of 3,500 FDA-approved drugs. The
MEK1 crystal structure was subjected to molecular docking using InstaDock,
followed by biological activity prediction, interaction analysis, and 500-ns
molecular dynamics (MD) simulations to assess stability. Radotinib and
Alectinib exhibited superior docking scores (-10.5 and -10.2 kcal/mol),
outperforming the reference MEK1 inhibitor Selumetinib (-7.2 kcal/mol). MD
simulations revealed stable drug complexes, with lower root mean square
deviation (RMSD) and fluctuations (RMSF) than Selumetinib. Principal
component analysis and free energy landscapes corroborated their
conformational stability, suggesting robust binding to MEK1's allosteric pocket.
Radotinib interacted extensively with key residues, including Gly79 and Lys97 at
the ATP-binding site, while Alectinib engaged critical residues such as Arg189 and
His239. Their superior binding and conformational stability suggest the potential
to overcome resistance and toxicity issues associated with existing MEK
inhibitors. The structural and dynamic superiority of Radotinib and Alectinib
over Selumetinib positions them as promising repurposed MEK1 inhibitors,
potentially circumventing the clinical challenges of existing therapies. A
limitation of this in silico study is the absence of experimental validation,
which will be addressed in future work. Experimental validation is essential to
confirm their efficacy and safety in MEK1-linked malignancies.
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1 Introduction

The RAS-RAF-MEK-ERK cascade

extracellular signals and coordinates many aspects of cellular

signalling integrates
physiology, including cell proliferation, survival, differentiation,
and apoptosis (Degirmenci et al, 2020). This pathway is
dysregulated in more than 30% of human cancers, with upstream
components such as RAS, BRAF, or receptor tyrosine kinases being
mutated (Bahar et al,, 2023). These changes result in constitutive
pathway activation that accelerates tumor growth and helps evade
apoptosis (Chang et al., 2003). MEKI1 (mitogen-activated protein
kinase kinase 1) is a dual-specificity kinase that phosphorylates and
activates ERK1/2, thus a key component of this cascade (Wang et al.,
2022). As such, this enzymatic activity renders MEKI a pivotal
therapeutic target in cancers with mutations that constitute this
pathway (Caunt et al., 2015). MEK1 (MAP2K1) and its homolog
MEK?2 are dual-specificity kinases that phosphorylate ERK1/2 in
response to upstream signals, controlling cell proliferation and
survival. Aberrant activation of MEK1 (e.g., through BRAF or
RAS mutations) is oncogenic, making MEK1 a key cancer target.
In the past two decades, an enormous initiative has been made to
develop MEK inhibitors (MEKis) (Ram et al., 2023). MEKis often
have narrow therapeutic windows and can induce feedback
activation of parallel pathways. Type-A allosteric inhibitors that
bind to the allosteric site close to the ATP-binding pocket have
clinical activities, with a few, e.g., trametinib, selumetinib, approved
for some cancers (Roskoski, 2017). Despite their efficacy, therapeutic
potential is limited by dose-limiting toxicities, acquired resistance,
and narrow therapeutic windows (Ram et al, 2023). These
limitations emphasize the need for new inhibitors with better
safety and efficacy profiles.

Leveraging efficacy data on existing pharmaceutical agents with
known mechanisms of action and side effect spectrums has made
drug repurposing an attractive strategy for developing new vaccines
and therapeutics, especially as it offers significantly reduced cost and
timelines compared to de novo drug discovery (Parvathaneni et al.,
2019). Repurposing can identify newer usages for already FDA
(US. Food and Drug Administration)-approved compound
2019).

uses for

classes (Pushpakom et al,
identified

Repurposing approaches are being applied to MEK inhibitors

Drug repurposing has

new kinase inhibitors.

successfully

outside oncology. For example, trametinib and selumetinib

Abbreviations: MD, molecular dynamics; PCA, principal component analysis;
FEL, free energy landscape; RMSD, root mean square deviation; RMSF, root
mean square fluctuation; Rg, radius of gyration; SASA, solvent-accessible
surface area; ATP, adenosine triphosphate; PASS, prediction of activity spectra
for substances; Pa, probability to be active; Pi, probability to be inactive; PC,
principal component; AG, Gibbs free energy; kB, Boltzmann constant; T,
temperature in kelvin; SVD, singular value decomposition; PDB, Protein
Data Bank; VS, virtual screening; SAR, structure-activity relationship; NVT,
constant number of particles, volume, and temperature; NPT, constant
number of particles, pressure, and temperature; PME, particle mesh Ewald;
LINCS, linear constraint solver; TKI, tyrosine kinase inhibitor; MEK1, mitogen-
activated protein kinase kinase 1; FDA, U.S. Food and Drug Administration; Ca,
alpha carbon atom; CGenFF, CHARMM general force field; CHARMM36m,
Chemistry at HARvard Macromolecular Mechanics 36m force field; PPII,
polyproline Il helix; 310-helix, three residues per turn helix.
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(originally approved for melanoma) have shown efficacy in
treating genetic ‘RASopathy’ syndromes, demonstrating the
of MEK-targeted drugs. gene
expression-based repurposing strategies have uncovered novel

broader potential Similarly,
drug combinations involving MEK1/2 inhibitors for KRAS-driven
lung cancer. In this quest, computational approaches such as
structure-based virtual screening and molecular dynamics (MD)
simulations have proven powerful tools (Shamsi et al., 2024a). As
such, these methods facilitate the extraction of lead drug candidates
with tight binding and stability, avoiding the expensive domains of
the traditional drug development pathway (Sadybekov and Katritch,
2023). With the successful repurposing of kinase inhibitors for new
indications reported elsewhere, this strategy has potential in
oncology (Schein, 2021). Even with advances, the structural and
dynamic characterization of MEKI-inhibitor complexes is still
underexplored. Although the MEKI1 allosteric pocket has been
clearly defined, the sparse variety of structurally validated binders
restrains novel inhibitors from entering the development stage (Di
Fruscia et al, 2021). In addition, the native conformation of
MEK1 and how it interacts with ligands in vivo remains
relatively unclear. These gaps highlight the need for detailed
biophysical characterization to guide the rational design of potent
MEKI1 inhibitors.

Here, we implemented a thorough computational pipeline to
identify MEK1 inhibitors and screen their potential using FDA-
approved drugs. From the virtual screening of 3,500 drugs from
DrugBank (Knox et al., 2024) based on the crystal structure of MEK1
(PDB: 7BIL), molecular docking, biological activity prediction, and
500-ns MD simulations were carried out. Root mean square
deviation (RMSD), principal component analysis (PCA), and free
energy landscapes were further evaluated to assess stability and
binding dynamics. Using this approach, we identified Radotinib and
Alectinib as high-affinity MEK1 binders, with improved stability
over the reference inhibitor Selumetinib. This suggests that
repurposed drugs have fewer limitations than current MEKis and
provides a rational basis for building practically applicable therapies.
Various candidates were identified as being specific to cMYC-
transformed cells, and experimental validation may help link
computational discovery to therapeutic applications in cancer.
This study aims to computationally repurpose FDA-approved
drugs as MEKI1 inhibitors by integrating structure-based virtual
screening, dynamic stability analysis, and thermodynamic profiling
to identify candidates with enhanced binding and safety profiles.

2 Materials and methods
2.1 Molecular docking screening

Virtual screening (VS) is a computational method to identify
potential bioactive compounds from large chemical libraries using
structure-based molecular docking (Shamsi et al., 2024b). In this
study, structure-based VS was performed to evaluate the binding
affinities of FDA-approved drugs against MEKI1. The crystal
structure of MEK1 (PDB ID: 7B9L) was retrieved from the

Protein Data Bank (PDB) (Berman et al, 2014). Protein
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preparation included removal of crystallographic water molecules
and co-crystallized ligands, protonation of side chains, addition of
Kollman charges, and remodeling of missing residues. Missing
residues were modeled using PyMod v3 (Janson and Paiardini,
2021) and processed in AutoDock Tools (Huey et al, 2012). A
curated library of 3,500 FDA-approved drugs was sourced from the
DrugBank database (Knox et al., 2024) in processed format. Ligand
flexibility, including rotatable bonds and bond lengths, was fully
permitted during docking. Blind docking was conducted using
InstaDock (Mohammad et al, 2021) with a grid encompassing
the entire protein structure (dimensions: 85 A x 78 A x 67 A;
center coordinates: —21.735, —5.746, 20.809 for the X, Y, and Z-axes,
respectively). Docking poses were ranked by binding energy, and
top-ranked conformations were selected for further analysis. For
each compound, the top-ranked pose with the most favorable
binding energy was extracted and analyzed further. Ligands
showing the lowest (most negative) docking scores were
prioritized for downstream evaluation.

2.2 Biological potential and
interaction analysis

The biological activities of the selected compounds were
predicted using the PASS (Prediction of Activity Spectra for
Substances) web server (Filimonov et al., 2014). This tool
employs structure-activity relationship (SAR) models trained on
diverse biological activity datasets to calculate the probability of a
molecule exhibiting specific pharmacological effects, expressed as
“probability to be active” (Pa) and “probability to be inactive” (Pi).
Compounds with Pa > Pi were prioritized as high-confidence
candidates for further investigation. However, PASS predictions
do not confirm molecular target specificity and should be
interpreted as preliminary, hypothesis-generating tools. The PASS
results require subsequent validation through experimental assays or
mechanistic modeling. To investigate binding site interactions,
molecular docking poses of MEKI-ligand complexes were
analyzed using visualization tools. Polar contacts, hydrogen
bonds, and hydrophobic interactions were visualized using
PyMOL (version 2.5.4) (DeLano, 2002). Discovery Studio
Visualizer (v2023) (Visualizer, 2005) was employed to map
interactions with residues critical to MEK1’s ATP-binding and
catalytic sites for in-depth analysis of binding modes. Key
binding residues responsible for ligand stabilization were
identified based on thresholds and
compatibility (e.g., <3.5 A for hydrogen bonds), facilitating
insight into potential MEK1 inhibition mechanisms.

distance chemical

2.3 MD simulations

Molecular dynamics (MD) simulations were performed to study
the dynamic behavior, conformational stability, and flexibility of
MEK1 alone and in complex with Alectinib, Radotinib, and
Selumetinib. All simulations were carried out with GROMACS
2022.4 (Van Der Spoel et al., 2005) with a CHARMM36m force
field (Huang and MacKerell, 2013) using the TIP3P (Mark and
Nilsson, 2001) water model. Ligand topology files were created with
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the CGenFF web server (Zhu, 2019), submitted for geometry
optimization, and the charges checked with Avogadro 1.2.0 and
our own Python scripts. Four different systems were set up: apo-
MEK1, MEK1-Alectinib, MEK1-Radotinib, and MEK1-Selumetinib.
All systems were minimized in energy via the steepest descent
algorithm (5,000 steps) to remove steric clashes. During this
phase, equilibration was conducted in two stages: (1) NVT
ensemble (constant number of particles, volume, and
temperature) ensemble for 100 ps at 300 K (Berendsen
thermostat), and then (2) NPT ensemble (constant number of
particles, pressure, and temperature) ensemble for 100 ps at 1 bar
(Parrinello-Rahman barostat). Using periodic boundary conditions
and a 2-fs time step, production runs were performed for 500 ns.
Trajectory analysis performed using GROMACS utilities: the root
mean square deviation (RMSD) and the root mean square
fluctuation (RMSF) were calculated with gmx rms and gmx rmsf,
respectively, to evaluate the structural stability and residue
flexibility. The radius of gyration (Rg; gmx gyrate) and solvent-
accessible surface area (SASA; gmx sasa) were used to calculate the
compactness and solvent accessibility, respectively. We examined
the dynamics of the hydrogen bond using gmx hbond. All plots were
generated using the Grace (XMGRACE) plotting software. These
analyses together provided a comprehensive picture of protein-
ligand adaptability, and
structural stability throughout the simulation timeframe.

complex behavior, conformational

2.4 Principal component analysis

Principal component analysis (PCA) is a powerful
dimensionality reduction and multivariate analysis technique
widely used to extract meaningful large-scale motions from MD
simulations of biomolecular systems. In the context of this study,
PCA was employed to identify and quantify the dominant collective
motions and structural fluctuations of MEK1 in its apo and ligand-
bound states, thereby elucidating ligand-induced stabilization or
flexibility. By filtering out high-frequency random noise, PCA allows
the capture of functionally relevant, low-frequency conformational
transitions that can be crucial for understanding binding
mechanisms and structural stability. The primary reason for
employing PCA in this analysis was to explore whether
Radotinib and Alectinib modulate MEKI’s
dynamics more effectively than Selumetinib. Specifically, PCA

conformational

helped characterize large-scale domain motions and determine
whether these repurposed drugs stabilize MEKI in a restricted
conformational subspace, which may correlate with improved
binding affinity and reduced entropic penalties (Papaleo et al.,
2009). For PCA calculations, the covariance matrix of atomic
positional fluctuations was generated using the Ca atoms from
500-ns MD trajectories, employing the gmx covar module in
GROMACS. The
displacements of atom pairs and is defined as:

covariance matrix captures correlated

Cij: < (Xi-<Xi>)(Xj-<Xj>)>

/i atom, and < - > is

where x;/x; represents the coordinate of the i
the ensemble average over the simulation time. Diagonalization of
this matrix yields eigenvectors representing directions of motion

and corresponding eigenvalues that quantify the variance along
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TABLE 1 Top screened FDA-approved drugs repurposed against MEK1 identified through structure-based virtual screening.

Drug Binding affinity (kcal/mol) Ligand efficiency (kcal/mol/non-H atom) Torsional energy

1 Oxitropium -10.8 7.92 0.3176 2.8017
2 Delamanid -106 7.77 | 02789 2.8017
3 Fentonium -10.6 7.77 0.2944 3.113

4 Radotinib -105 7.7 0.2692 21791
5 Bictegravir -10.4 7.63 0.325 1.2452
6 Mosapramine | —10.4 7.63 0.3059 1.2452
7 Alectinib -10.2 748 02833 09339
8 Fendosal -10.2 7.48 0.3517 1.5565
9 Pimozide -10.2 748 | 030 21791
10 Conivaptan -10.1 7.41 0.2658 1.2452
11 Selumetinib ~ —7.2 528 | 02667 21791

The table lists the top 10 compounds with their respective docking parameters, including binding affinity (kcal/mol), predicted inhibition constant (pKi), ligand efficiency (kcal/mol per non-

hydrogen atom), and torsional energy values.

those directions. Singular value decomposition (SVD) was applied
for matrix diagonalization. This approach enables the identification
of ligand-induced effects on protein flexibility by comparing the
conformational sampling across systems.

2.5 Free energy landscapes

Gibbs free energy landscapes (FELs) were constructed to
quantify the thermodynamic stability of MEK1 conformations in
apo and ligand-bound states. Projections of the MD trajectories onto
the first two principal components (PC1 and PC2), obtained via
PCA, were used as reaction coordinates for FEL construction
2009). The
distribution P was computed using the gmx sham module in
GROMACS, and the corresponding free energy (AG) was
estimated using the Boltzmann relation:

AG = -kzT'In(P)

(Papaleo et al, conformational  probability

where P is the probability density, kg is the Boltzmann constant, and
T is the simulation temperature. Energy basins (low AG) represent
thermodynamically stable states, while peaks correspond to high-
energy transition states. FELs were visualized as contour plots, with
colors scaled from blue (low energy) to red (high energy). This
approach elucidated ligand-specific stabilization patterns and
identified dominant conformational clusters, revealing how
Alectinib and Radotinib modulate MEKI1’s energy landscape
compared to Selumetinib.

3 Results and discussion
3.1 Molecular docking screening
Molecular docking serves as a predictive tool to model the

interaction between a ligand and its target protein, allowing for
identifying molecules with high binding affinity and appropriate
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conformational orientation within the binding pocket (Muhammed
and Aki-Yalcin, 2024). In this study, a virtual screening of
3,500 FDA-approved drugs,
repository, was performed against the crystal structure of MEK1
(PDB ID: 7B9L) using the InstaDock platform (Mohammad et al.,
2021). The objective was to identify potential MEKI inhibitors
among existing therapeutics that can be repurposed for cancer

curated from the DrugBank

treatment. Following the docking process, compounds were
ranked based on their binding energies, and the top
10 candidates were selected for further analysis (Table 1).
Docking scores ranged from —10.1 to —10.8 kcal/mol, indicative
of strong binding potential. Notably, all candidates outperformed
Selumetinib (=7.2 kcal/mol), underscoring their superior affinity.
Importantly, all selected candidates demonstrated significantly
better docking scores than the reference MEKI inhibitor
Selumetinib, which exhibited a binding energy of —7.2 kcal/mol.
This difference in binding energy suggests that the shortlisted
engage MEKI than
Selumetinib, potentially translating to inhibitory

compounds  may more effectively
improved
activity. The findings from this docking-based screening highlight
the potential of drug repurposing strategies to uncover alternative
MEKI1 inhibitors that may overcome limitations associated with
current therapeutics, such as resistance or toxicity. However,
molecular  docking represents only the initial filtering
step. Further dynamic and energetic assessments, such as MD
simulations and binding free energy calculations, are essential to
validate these interactions under more physiologically relevant

conditions.

3.2 Drug profiling and PASS analysis

Drug profiling and predicting other biological activities are key
elements of any computational drug repurposing workflow. After
the initial molecular docking, the top 10 candidate compounds were
subjected to biological activity prediction using the PASS server. The
PASS algorithm uses structure-activity relationship (SAR) models to
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TABLE 2 Predicted pharmacological activities of selected MEK1-binding compounds using PASS (Prediction of Activity Spectra for Substances) analysis.

S. No. Drug Pa Pi Activity
1 Radotinib 0.797 0.002 Growth factor agonist
0.790 0.005 Protein kinase inhibitor
0.748 0.001 Ber-Abl kinase inhibitor
0.624 0.009 Angiogenesis inhibitor
0.430 0.093 Antineoplastic
2 Alectinib 0.276 0.048 Prostate cancer treatment
0.349 0.126 Antineoplastic
0.256 0.052 Antineoplastic alkaloid
0.218 0.060 Antineoplastic (non-small cell lung cancer)
0.205 0.153 Antimetastatic
3 Selumetinib 0.954 0.000 MAP kinase kinase inhibitor
0.729 0.021 Antineoplastic
0.349 0.123 Antiinflammatory
0.256 0.094 Angiogenesis inhibitor
0.232 0.163 Autoimmune disorders treatment

The table shows the probability of activity (Pa) and inactivity (Pi) for each compound across relevant biological functions.

predict pharmacological effects (Filimonov et al., 2014). The drug
profiling for the 10 docked molecules was carried out to evaluate
their pharmacological potency in MEKI inhibition and relevant
anticancer properties (Supplementary Table S1). Specifically,
Radotinib and Alectinib were identified to have appropriate drug
profiles and higher potential for anticancer-related indications.
Though other compounds exhibited strong docking potential,
their lack of predicted anticancer activity excluded them from
further study. The PASS analysis for the selected molecules was
carried out to evaluate their pharmacological potency other than
MEKI1 inhibition (Table 2). Radotinib and Alectinib exhibited
greater anticancer potential, with high Pa values across diverse
anticancer categories. Importantly, Pa values for both compounds
were substantially higher than their respective Pi values, indicative of
biological activity. For instance, Radotinib had Pa values particularly
high as a growth factor agonist (Pa = 0.797), protein kinase inhibitor
(Pa = 0.790), and Bcr-Abl kinase inhibitor (Pa = 0.748), etc.
(Zabriskie et al, 2015). Such profiles are consistent with its
tyrosine inhibitor
compatibility with MEKI targeting.

Both Radotinib and Alectinib had high Pa values (> Pi) for
multiple anticancer activities (Table 2). For instance, Radotinib’s top

known mechanism as a kinase and

predicted activities include growth factor agonism (Pa=0.80) and
kinase inhibition (Pa=~0.79), consistent with its tyrosine kinase
profile. Alectinib likewise showed high Pa for antineoplastic
activities. These profiles suggest promising anticancer potential.
We further screened Alectinib, an FDA-approved drug for non-
small cell lung cancer. We provided favorable probabilities for
antineoplastic and antimetastatic activities, demonstrating the
program’s utility in onco-logic settings. These results imply that
Radotinib and Alectinib show a high binding affinity toward MEK1,
coupled with their complementary biological activity profiles

Frontiers in Pharmacology

consistent with MEK1 inhibition and the treatment of their
indicated cancers (Herden and Waller, 2018). Hence, integrating
docking data with the biological activity prediction improves the
confidence of these hits as potential drug candidates for repurposing.
However, PASS predictions are only indicative and based on in silico
SAR models. Although PASS has a high reported cross-validation
accuracy (~95%) high Pa values do not guarantee an actual
biological  effect.  Thus, PASS s
cautioned—experimental are needed to confirm the

over-reliance  on
assays
predicted activities.

3.3 Interaction analysis

Radotinib and Alectinib were prioritized for further analysis due
to their strong docking scores and favorable biological activity
profiles. A detailed interaction analysis was conducted for
Radotinib, Alectinib, the MEK1 inhibitor
Selumetinib using PyMOL and Discovery Studio Visualizer to

and reference
gain mechanistic insight into their binding modes. Protein-ligand
interactions are fundamental to understanding ligand efficacy, as
they influence enzymatic activity, signal transduction, protein
stability, and drug specificity. Visual representation of the docked
complexes revealed that all three compounds, Radotinib (cyan),
Alectinib (magenta), and Selumetinib (orange), bound within the
MEKI1 allosteric pocket located adjacent to the ATP-binding site
(Figure 1). Figure 1A shows a cartoon representation of
MEKI1 highlighting the binding locations of all three ligands.
in Figures 1B-D illustrate the binding
Alectinib, Radotinib, and  Selumetinib,
respectively. The ligands predominantly interacted with key

Zoomed-in views
orientations  of

regions involved in ATP and inhibitor binding, including the
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FIGURE 1
Structural representation of MEK1 in complex with the selected drugs, Alectinib (magenta) and Radotinib (cyan), and the reference MEK1 inhibitor

Selumetinib (orange). (A) Cartoon representation of the MEK1 structure, with the bound compounds shown within the binding pocket. (B) A zoomed-in
view of MEKZ, illustrating the precise positioning of Alectinib (C), Radotinib, (D) Selumetinib. The figure was generated through PyMOL using the structural

coordinates from the docking study.
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FIGURE 2
2D interaction maps illustrating binding residues of MEK1 and their interactions with (A) Radotinib, (B) Alectinib, and (C) Selumetinib.

Frontiers in Pharmacology 06 frontiersin.org


mailto:Image of FPHAR_fphar-2025-1619639_wc_f1|tif
mailto:Image of FPHAR_fphar-2025-1619639_wc_f2|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1619639

Khan et al.

Leu74-Val82 cleft, Lys97 (ATP/inhibitor-binding site), Asp190
(proton acceptor active site), and the Asp208-Val21l segment,
indicating their potential to modulate MEKI activity through
direct interaction with catalytically relevant residues.

The two-dimensional interaction maps provided a detailed
account of the molecular interactions (Figure 2). Alectinib
displayed a stable and meaningful interaction pattern. It formed
a hydrogen bond with Argl89 and engaged in pi-pi stacking with
His239. A pi-sulfur interaction was observed with Arg234, while
hydrophobic alkyl and pi-alkyl interactions involved Argl89,
1le216, and Met219. Van der Waals interactions further anchored
the ligand via contacts with residues such as Gly79, Lys97, 1le99,
His188, Asp190, Asp208, Phe209, Gly210, Leu215, Asp217, Ala220,
Asn221, Gly237, Thr238, and Tyr240 (Figure 2A). Notably,
Alectinib interacted with Gly79, Lys97, and Asp190, which are
part of the catalytic core, further suggesting its therapeutic
relevance in MEK1 inhibition (Di Fruscia et al, 2021). At the
same time, Radotinib also demonstrated a rich interaction profile,
forming hydrogen bonds with residues Gly79, Lys97, Ser150, Ser194,
Asn195, and Asp208. Additionally, it exhibited halogen interactions
(e.g., fluorine) with Aspl52, GInl53, and Ser194, along with
pi-sulfur interactions involving Lys97, Aspl90, Asp208, and
Met143. Radotinib’s halogen bond with Aspl52 may enhance
binding specificity by mimicking ATP’s phosphate interactions.
Hydrophobic contacts such as alkyl and pi-alkyl interactions
were observed with Leu74, Val82, Ala95, Ilel41, Leul97, and
Cys207, while van der Waals forces stabilized the complex
through interactions with Gly75, Ala76, Gly77, Asn78, Gly80,
1le99, Leull5, Metl46, Lys192, Phe209, Leu2l5, Met219, and
Asn221 (Figure 2B).

These extensive interactions, especially with residues in the
ATP-binding cleft and active site, underscore Radotinib’s
potential as a robust MEKI1 inhibitor. In contrast, Selumetinib,
a non-ATP-competitive MEK
inhibitor, showed comparatively limited interactions. It formed

the reference compound, is

hydrogen bonds with Lys97 and Ser212 and engaged in pi-sigma
and pi-sulfur interactions with Leu215 and Met143, respectively.
Hydrophobic contacts included interactions with Leull8, Val127,
Ile141, Ile216, and Leu215, while van der Waals interactions
occurred with Leull5, Cys207, Asp208, Gly210, Val2ll, and
Met219 (Figure 2C). Among the residues in the ATP-binding
region, Selumetinib directly interacted with Lys97, indicating a
more constrained binding profile compared to Radotinib and
Alectinib. Both Radotinib and Alectinib demonstrated broader
and more diverse interaction networks within the MEK1 binding
pocket than the reference inhibitor. Their ability to engage multiple
key residues, particularly at the ATP-binding and allosteric sites,
reinforces their potential as strong MEKI inhibitors. These results
provided a structural rationale for their selection and prompted
further assessment using MD simulations to evaluate binding
stability and dynamic behavior under physiological conditions.

3.4 MD simulation analysis
MD simulations have become an indispensable tool in molecular

biology and drug discovery, enabling high-resolution insights into
the atomic-level behavior of proteins and their interactions with
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ligands (Singh and Singh, 2020). In this study, MD simulations were
employed to investigate the dynamic behavior of MEK1 in its apo
form and in complex with three compounds: Radotinib, Alectinib,
and Selumetinib. The simulations were conducted using GROMACS
20224 on a Linux platform, with a total simulation time of
500 nanoseconds for each system. Trajectory analysis of these
simulations provided multiple parameters to assess the dynamic
behavior and stability of MEK1 and its complexes. Three energy
components were initially evaluated: potential, kinetic, and total
energy. The potential energies (in kJ/mol) for the MEK1, MEKI-
Alectinib, MEK1-Radotinib, and MEK1-Selumetinib systems were
found to be -1,058,300, -742,093, -743,103, and -742,440,
respectively. The corresponding kinetic energy values were
202,973, 145,759, 145,871, and 145,765 kJ/mol, while the total
energy -855,325,  —596,335,  —597,231,
and -596,675 kJ/mol, respectively. These energy profiles suggest

values  were
that all three complexes exhibit stable energy states, with
MEKI1 retaining its structural integrity even upon drug binding.
Notably, the drug-bound systems showed consistently lower total
and potential energy values than the apo form, indicating enhanced
thermodynamic stability upon ligand binding.

3.4.1 Stability prediction by RMSD and RMSF
calculations

Root mean square deviation (RMSD) is utilized to estimate the
difference between the backbones of a protein from its starting
conformation to its final conformation (Maiorov and Crippen,
1994). The stability of the protein structure associated with its
native conformation can be calculated by the deviations observed
during its simulation. The fewer deviations, the more stable the
protein structure, or vice versa. The Radotinib- and Alectinib-bound
complexes showed lower average RMSD and RMSF than the
reference Selumetinib complex (see Table 3). Radotinib complex
RMSD plateaued around 0.71 nm and Alectinib around 0.67 nm,
both below Selumetinib’s ~0.79 nm (Table 3). Similarly, Radotinib
yielded the lowest average RMSF (~0.30 nm vs. 0.52 nm for
Selumetinib), indicating reduced flexibility. These results
(Table 3) imply enhanced stability for the repurposed drugs. The
RMSD values of MEK1-Alectinib and MEK1-Radotinib complexes
were lower than those of MEKI1 protein and reference MEKI-
Selumetinib complexes. The generated RMSD plot against time
in nanoseconds of all complexes is shown in Figure 3A. The
Selumetinib-bound MEK1 (blue trace) showed larger RMSD
fluctuations than the other complexes than the other plots
throughout the MEKI1-Alectinib and MEKI1-
Radotinib complex plots were in equilibrium state after initial
adjustment till the end of the simulation. The PDF plot also

shows different distribution points of each system.

simulation.

Root mean square fluctuation (RMSF) measures the protein
particle (residues) fluctuations over time (Shamsi et al., 2024b).
Here, we analyzed RMSF for MEK1, MEKI-Alectinib, MEKI-
Radotinib, and MEKT1-Selumetinib
500 nanoseconds; the generated RMSF plot is represented in
Figure 3B. The plot indicates random fluctuations of the MEK1-
Alectinib complex, which overlaps with the reference MEKI-

complexes over

Selumetinib complex, while the MEK1-Radotinib complex shows
lower fluctuations. The higher fluctuation was observed between
270 and 300 residues for MEK1-Alectinib and MEK1-Selumetinib
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TABLE 3 Average MD parameters for MEK1 and ligand-bound complexes.

10.3389/fphar.2025.1619639

Complexes RMSD (nm) RMSF (hm) Rg (nm) SASA (nm) Intra H-bonds
MEK1 0.76 0.23 2.14 189.3 228
MEKI1-Alectinib 0.67 0.54 2.24 200.1 225
MEKI1-Radotinib 0.71 0.30 2.14 185.2 240
MEKI1-Selumetinib 0.79 0.52 2.19 195.8 234

RMSD, root-mean-square deviation; RMSF, root-mean-square fluctuation; Rg, radius of gyration; SASA, solvent-accessible surface area; Intra H-bonds, number of intramolecular hydrogen

bonds.
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500ns simulation trajectories. (B) Individual residual fluctuation during a 500 ns simulation calculated for MEK1, MEK1-Alectinib, MEK1-Radotinib, and
MEK1-Selumetinib complexes. The lower panel figures depict the distribution of RMSD and RMSF.

complex. The average RMSF value for MEK1, MEKI-Alectinib,
MEKI1-Radotinib, and MEK1-Selumetinib complexes was 0.23 nm,
0.54 nm, 0.30 nm, and 0.52 nm, respectively (Table 3). Maximum
RMSF reach for MEK1, MEKI1-Alectinib, MEK1-Radotinib, and
MEKI1-Selumetinib complexes were 1.11 nm, 2.33 nm, 1.60 nm, and
245 nm, respectively. Compared to the reference MEKI-
Selumetinib complex, MEKI-Alectinib and MEKI-Radotinib
complexes were found to exhibit lower residual fluctuations. The
PDF plots also show varying points of the RMSF values with a
similar trend. These reduced RMSD and RMSF values reflect
enhanced conformational stability, potentially contributing to
improved inhibitory action.

3.4.2 Compactness and folding mechanism
assessment by Rg and SASA

Radius of gyration (Rg) analysis was performed to illustrate the
compactness of the MEK1 protein and to estimate the overall size of the
MEKI1 protein. Rg provides a detailed description about mass
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distribution around the molecule’s center of mass and its dynamic
structural properties (Lobanov et al.,, 2008). We can access structural
expansion and contraction by calculating Rg during simulation time.
Here we performed Rg analysis of MEK1, MEK1-Alectinib, MEK1-
Radotinib, and MEK1-Selumetinib complexes over 500 ns time and
generated the Rg plot depicted in Figure 4A. A marginal fluctuation in
the MEK1-Alectinib complex plot (red) was observed after 200 ns.
However, higher fluctuation was observed in the reference inhibitor
MEKI1-Selumetinib complex plot (blue) from 340 ns onwards, which
was higher than the MEKI-Alectinib complex. The MEK1-Alectinib
complex plot was in an equilibrium state throughout the simulation.
The average Rg of MEKI, MEKI-Alectinib, MEKI-Radotinib, and
MEKI1-Selumetinib complexes were 2.14 nm, 2.24 nm, 2.14 nm, and
2.19 nm, respectively (Table 3). Maximum Rg values of MEK1, MEK1-
Alectinib, MEK1-Radotinib, and MEK1-Selumetinib complexes were
244 nm, 2.49 nm, 2.37 nm, and 2.49 nm, respectively. The generated
plots, calculated values, and distribution plot as a PDF revealed that the
MEKI structure retained its compactness after binding the drugs.
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Solvent accessible surface area (SASA) refers to the part of the
protein surface that is available to contact by solvent molecules
during MD simulation. SASA is an important parameter to elucidate
folding patterns, stability, and interactions with other molecules,
such as water, ions, etc. We computed SASA for MEK1, MEK1-
Alectinib, MEK1-Radotinib, and MEK1-Selumetinib complexes and
generated a plot in Figure 4B. In the SASA plot, the MEK1-Alectinib
complex shows higher fluctuations in comparison to other
The MEKI-Alectinib SASA’s
downward trend and equilibrium throughout the simulation.
Average SASA values for MEKI, MEKI-Alectinib, MEKI-
Radotinib, and MEK1-Selumetinib complexes were 189.3 nm?
200.1 nm?, 185.2 nm? and 195.8 nm?® respectively (Table 3). The
findings indicate that the MEK1-Alectinib and reference MEK1-
Selumetinib complexes revealed a wider surface area occupied by

complexes. complex shows

solvents during the simulation. The PDF plot also indicates the
SASA distribution point of each system, in which the MEKI-
Alectinib complex showed a wider area, but it did not have a
worse impact on folding and stability.

3.4.3 Stability prediction by hydrogen bonds
assessment

Hydrogen bonds are considered for their significance in protein
stability measurement during MD simulations (Hubbard and
Haider, 2010). The hydrogen bonds within proteins provide
stable conformations and shape and influence biological function.
The computed intramolecular hydrogen bonds plot of MEKI,
MEKI-Alectinib, MEKI1-Radotinib, and MEKI-Selumetinib
complexes is shown in Figure 5. The plot demonstrates the
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making and breaking of an intramolecular hydrogen bond
pattern over 500 ns. As the plot indicates, the MEKI-Radotinib
complex shows more bond formations between 100 and 400 ns of
simulation (Figure 5A). The average intramolecular hydrogen bonds
for MEK1, MEKI-Alectinib, MEKI1-Radotinib, and MEKI1-
Selumetinib complexes were 228, 225, 240, and 234, respectively.
The MEKI-Alectinib complex broke three hydrogen bonds, while
the MEKI-Radotinib complex formed 12 new intramolecular
hydrogen bonds. Maximum intra-molecular hydrogen bonds for
MEK1, MEK1-Alectinib, MEK1-Radotinib, and MEK1-Selumetinib
complexes were 262, 257, 276, and 269, respectively. The PDF plot
and calculated number of bonds show stronger stability of the
MEKI1-Radotinib complex (Figure 5B).

The intermolecular hydrogen bonds were also determined
during the 500 ns MD simulation. This significantly plays a
crucial role in the stability of protein-ligand complexes, their
function, and binding energy (Bitencourt-Ferreira et al., 2019).
The computed intermolecular hydrogen plot of MEK1-Alectinib,
MEK1-Radotinib, and MEK1-Selumetinib complexes is displayed in
Figure 6. The MEKI-Alectinib, MEKI1-Radotinib, and MEKI1-
Selumetinib complexes formed 1-2, 1-5, and 1-8 intermolecular
hydrogen bonds, respectively (Figures 6A-C). The lower panel plot
shows the distribution of intermolecular hydrogen bonds between
the complex during simulation. Notably, Selumetinib’s higher
H-bond count did not translate to superior stability, as reflected
in its elevated RMSD/RMSF values (Table 3). This suggests that
H-bond quality (e.g., bond length/angle consistency, partner
residues) may outweigh quantity in stabilizing MEKI-inhibitor
instance, Radotinib’s stable H-bonds with

complexes. For
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catalytic residues likely restrict ATP-pocket dynamics, while
Selumetinib’s transient interactions with peripheral residues (e.g.,
Ser212) permit conformational flexibility. Overall, the hydrogen
bonds assessment suggested that the MEKI1 remained stable
during the simulation when interacting with the drugs.

3.4.4 MEK1 secondary structure elements profile
The secondary structure content of MEK1 protein before and
after Alectinib, Radotinib, and Selumetinib binding was analyzed
over time. The GROMACS-based Dictionary of Secondary Structure
of Proteins (DSSP) tool (Gorelov et al., 2024) was utilized to break
secondary structure assignments (helix, sheet, turn, etc.) at the
residue level for each time step. It allowed us to visualize and
quantify the secondary structure content in a meaningful form.
The generated secondary structure assignment plot is depicted in
Figure 7 and shown by different color shades. A few random minor
fluctuations were observed over time in MEK1, MEKI1-Alectinib,
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MEK1-Radotinib, and MEKI1-Selumetinib plots (Figures 7A-D).
The quantitative values given in Table 4 show increasing residual
involvement in the structure of MEKI1-Radotinib complex. The
minimal decrement in bend formation of MEKI-Alectinib,
MEKI1-Radotinib complex was seen, and the [-bridge was
consistent. Overall, no significant residual reduction was observed
in any elements of the MEKI secondary structure after drug
interaction throughout the 500 ns simulation. The findings
recommended that MEK1 was in a stable conformation state.

3.5 Principal component analysis

To illustrate the most dominant motion of the MEK1 protein
after binding of Alectinib, Radotinib, and Selumetinib drugs during
MD simulation, PCA was utilized on the coordinate covariance
matrix extracted from trajectories of a 500 ns MD simulation. Most
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FIGURE 7
Time-resolved analysis of secondary structure elements in MEK1 and its ligand-bound complexes during 500-ns MD simulations. Secondary

structure assignments were determined using the DSSP algorithm and are represented for (A) apo MEK1, (B) MEK1-Alectinib, (C) MEK1-Radotinib, and (D)
MEK1-Selumetinib complexes. Color-coded bands depict the dynamic distribution of helices, sheets, turns, and coils over time.

TABLE 4 Secondary structure composition (fraction of residues) in MEK1 and complexes after 500 ns MD (calculated by DSSP).

Complexes Structure  Coil B-bridge Bend Turn a-helix Pi-helix 3j0-helix  PPII-helix
MEK1 0.56 0.24 0.12 0.01 0.11 0.08 0.35 0.01 0.03 0.05
MEKI-Alectinib 0.56 025 0.12 0.01 0.10 0.09 0.34 0.00 ‘ 0.04 0.04
MEK]-Radotinib 0.59 0.24 0.14 0.01 0.10 0.09 035 0.01 ‘ 0.03 0.04
MEKI-Selumetinib  0.56 025 0.12 0.01 0.11 0.08 035 0.01 ‘ 0.03 0.04
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FIGURE 8
Principal component plots. (A) Overlapped PCA plot of MEK1, MEK1-Alectinib, MEK1-Radotinib, and MEK1-Selumetinib complexes. (B) Time-

dependent eigenvector assessment for MEK1, MEK1-Alectinib, MEK1-Radotinib, and MEK1-Selumetinib complexes.

of the structural motions are captured through the first two principal ~ Figure 8 displays the superimposed PCA plot for MEK1, MEK1-
components; thus, we performed PCA analysis of MEK1, MEK1-  Alectinib, MEK1-Radotinib, and MEKI-Selumetinib complexes of
Alectinib, MEK1-Radotinib, and MEKI-Selumetinib complexes.  the first two principal components. As the PCA plot shows, each
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complex occupied a different range of vibrational space, which
indicates different motion patterns. The MEKI-Alectinib and
MEK1-Radotinib complexes covered less vibrational space, while
the reference MEKI1-Selumetinib complex was dispersed and
occupied a larger area. The area of motion covered by MEK1 at
PC1 -4 nm to 12.9 nm at PC2 —5.2 nm to 7.0 nm, MEK1-Alectinib
complex at PC1 -9.1 nm to 10.3 nm at PC2 —-8.5 nm to 7.4 nm,
MEK1-Radotinib complex at PC1 —5.3 to 7.2 at PC2 5.5 nm-8.0 nm
and MEKI-Selumetinib complex at PC1 —8.7 nm to 14.7 nm at PC2
15.5 nm-10.9 nm (Figure 8A).

The results showed that the first PC1 carried most of the
motion. For example, PCl had an eigenvalue of ~15.2
(accounting for roughly 71% of the total variance), and the
second component (PC2) had an eigenvalue of ~3.4 (~16% of
variance). Together, PC1 and PC2 explained 87% of the total
conformational fluctuation (dominant motions). These values
indicate that nearly all collective motion is captured by the first
two modes, which is consistent with typical MD PCA results
where PC1 dominates. The calculated values and superimposed
PCA plot show that MEKI1-Alectinib and MEKI-Radotinib
complex display a cluster and compact type of motion
compared to MEK1-Selumetinib complex. The time-dependent
eigenvector traces similarly show that projections onto PC1 and
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PC2 remain relatively stable for the Alectinib and Radotinib
cases, the Selumetinib complex exhibits larger
fluctuations (Figure 8B). Together, the high percentage of
variance in PC1+PC2 and the compact clusters for Alectinib/
Radotinib indicate that most conformational variability is
confined to a few dominant motions.

whereas

3.6 Free energy landscape analysis

Further to describe the structural dynamics of MEK1, MEK1-
Alectinib, MEK1-Radotinib, and MEK1-Selumetinib complexes,
the metastable conformations state, which were dominant during
the simulation, were fetched from the FEL. Different energy
states are indicated by different colors, from highest to lowest,
denoted by red to blue. The FEL of MEKI, MEK1-Alectinib,
MEK1-Radotinib, and MEK1-Selumetinib complexes are given
in Figure 9. The MEK1 FEL map had one long blue energy
minimum and multiple energy funnels linked (Figure 9A). The
MEK1-Alectinib complex map shows a broader area of blue basin
with combined energy funnels (Figure 9B). In contrast, the
MEKI1-Radotinib complex had two blue energy minima and
two separate energy funnels, which indicate two different
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folding states (Figure 9C). The reference MEK1-Selumetinib complex
map shows multiple energy funnels, which are separated from each
other, demonstrating different folding states (Figure 9D). The
resulting PCA analysis and FEL calculation suggested that MEK1-
Alectinib and MEK1-Radotinib complexes were in stable form during
simulations. These observations imply that Radotinib and Alectinib
modulate the conformational flexibility of MEK1 more effectively
than Selumetinib. Their distinct energy basins and stable low-energy
states suggest a reduced likelihood of unfavorable conformational
transitions. This thermodynamic stability further supports their
potential as robust MEKI inhibitors. Collectively, the FEL and
PCA analyses reinforce the structural reliability and inhibitory
promise of these repurposed compounds.

Importantly, both Radotinib and Alectinib are approved kinase
inhibitors with known off-target profiles. Radotinib is a BCR-ABLI
tyrosine kinase inhibitor that also inhibits DDR, EPHB, LYN, and
PDGEFR kinases at low-nanomolar levels (Zabriskie et al., 2015; Liu et al.,
2022). Alectinib is an ALK inhibitor with potent activity against RET
kinase (IC50 =~ 1.9 nM for ALK, 4.8 nM for RET (Kodama et al., 2014).
These multi-kinase activities mean that repurposing them for
MEK1 could bring unintended effects via their original targets.
Therefore, future work should include broad kinase profiling to
confirm MEKI selectivity and assess off-target risks. A key limitation
of this study is its purely in silico nature. All findings must be validated
experimentally; in future work, we plan in vitro kinase assays, cell-based
MEKI activity tests, and in vivo studies to confirm efficacy. Additionally,
biochemical assays will be used to determine the selectivity profiles of
Radotinib and Alectinib against a panel of kinases.

4 Conclusion

The RAS-RAF-MEK-ERK signaling cascade is a critical
pathway implicated in various cancers, with MEKI serving as
a key therapeutic target due to its role in activating ERK1/2.
Although several MEKI1 inhibitors have been approved, their
clinical utility is limited by drug resistance, toxicity, and narrow
therapeutic windows, necessitating the search for alternative
inhibitors with improved profiles. This study employed a
comprehensive computational drug repurposing pipeline to
screen 3,500 FDA-approved against MEKI.
Radotinib and Alectinib emerged as promising candidates,

compounds

exhibiting significantly better binding affinity and interaction
profiles than the reference inhibitor Selumetinib. Detailed
demonstrated that both
compounds formed stable complexes with MEK1, maintaining
structural integrity and favorable biophysical properties
throughout 500-ns trajectories. Principal component and free

molecular dynamics simulations

energy landscape analyses further confirmed their ability to
MEK1 in thermodynamically favorable
Altogether, these findings highlight the
Radotinib and  Alectinib as
MEKI1 inhibitors, warranting further in vitro and in vivo

stabilize
conformations.
potential  of effective
validation. In future work, one can perform biochemical
MEKI1 inhibition assays and cancer cell studies with Radotinib
and Alectinib to verify their efficacy. Selectivity profiling across a
panel of kinases should also be conducted to ensure their action is
specific to MEK1. Overall, our study highlights the potential of
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structure-based drug repurposing to streamline cancer
therapeutic development and paves the way for preclinical
validation of Radotinib and Alectinib as MEKI-targeted
agents. We stress that all predictions here are preliminary;
cell-based and animal experiments are needed to confirm

these repurposing leads.
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