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Background: Sepsis remains a major cause of mortality and morbidity worldwide.
Recent studies suggest that gut microbiota-derived metabolites, such as a-
hydroxybutyrate (a-HB), may play a critical role in the progression of sepsis.
However, the molecular mechanisms underlying a-HB's involvement in sepsis
remain unclear. This study aims to explore the targets of a-HB and their
association with sepsis progression using multi-database data mining,
machine learning, and unsupervised clustering analyses.

Methods: a-HB-related targets were identified through comprehensive data
mining from three databases: SEA, SuperPred, and SwissTargetPrediction.
Sepsis-related targets were obtained from the GEO dataset GSE26440, and
the intersection of these datasets was analyzed to reveal common targets.
Functional enrichment analysis, protein-protein interaction (PPI) network
construction, and machine learning algorithms (L1-LASSO, RF, and SVM) were
applied to identify biomarkers. Additionally, a nomogram was constructed to
predict sepsis progression. Clustering, GSVA, and ssGSEA analyses were
performed to explore sepsis subtypes. Molecular docking simulations was
conducted to investigate interactions between a-HB and key targets.

Results: A total of 42 common targets were identified between a-HB and sepsis,
with significant enrichment in pathways related to immune response, hypoxia,
and cancer. Machine learning-based feature selection identified four robust
biomarkers (APEX1, CTSD, SLC40A1, PIK3CB) associated with sepsis. The
constructed nomogram demonstrated high predictive accuracy for sepsis risk.
Unsupervised clustering revealed two distinct a-HB-related sepsis subtypes with
differential immune cell infiltration patterns and pathway activities, particularly
involving immune and inflammatory pathways. Subtype 1 was predominantly
associated with non-survivors, while Subtype 2 was more frequent among
survivors, showing a significant difference in survival status. Molecular docking
analysis further indicated potential interactions between a-HB and key targets
(APEX1, CTSD, SLC40Al1, PIK3CB), providing insights into the molecular
mechanisms of a-HB in sepsis.
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Conclusion: This study identifies key a-HB-related targets and biomarkers for
sepsis, offering new insights into its pathophysiology. The findings highlight the
potential of a-HB in modulating immune responses and suggest that a-HB-related
targets could serve as promising therapeutic targets for sepsis management.

gut microbial metabolites, sepsis, machine learning, immune response, molecular docking,
personalized medicine, bioinformatics

Introduction

Sepsis continues to be a prominent cause of morbidity and
mortality globally, defined by a disordered immune response to
infection that gives rise to systemic inflammation, multiple organ
dysfunction, and frequently leads to death (Cecconi et al., 2018;
Ackerman et al., 2021). Despite substantial advancements in clinical
management, the early diagnosis and effective treatment strategies
for sepsis remain highly challenging (Gauer et al., 2020; Rello et al.,
2017). Recent studies have placed emphasis on the significance of the
gut microbiota and its metabolites in regulating host immune
responses, influencing the onset and advancement of sepsis (Ma
etal., 2023; Kullberg et al., 2021). For example, it was discovered that
the gut-derived metabolite rhamnose functions as a molecular agent
that enhances the phagocytic ability of macrophages, thereby
offering protection to the host in cases of sepsis (Li et al., 2024).
Additionally, the gut microbial metabolite hyodeoxycholic acid
interacts with the TLR4/MD2 complex, leading to a reduction in
inflammation and providing defense against sepsis (Li et al., 2023).
Among these metabolites, a-hydroxybutyrate (a-HB), a short-chain
organic acid produced through both gut microbial metabolism and
amino acid catabolism and associated with oxidative stress, has
emerged as a potential crucial player in modulating inflammatory
and immune responses (Lv et al, 2023). a-HB demonstrates a
significant correlation with the initiation of sepsis as well as the
mortality rate observed at 28 days (Zhao et al., 2023). However,
comprehensive data regarding its physiological concentration
ranges and specific changes in systemic levels during sepsis
remain limited in the current literature. Furthermore, the
molecular mechanisms underlying o-HB’s influence on sepsis
progression remain poorly understood, and its precise therapeutic
potential and pathophysiological significance in this context require
further clarification.

a-HB has been shown to exert multiple biological effects,
including modulation of immune responses, regulation of cellular
metabolism, and the maintenance of metabolic homeostasis.
Notably, the increased levels of a-HB may represent a new
common risk factor associated with the correlation between
colorectal cancer and diabetes (Lv et al, 2023; Rafaqat et al,
2024). Emerging evidence suggests that metabolites like a-HB
could play pivotal roles in diseases with complex inflammatory
pathways, such as sepsis (Zhao et al., 2023). However, despite its
potential, the relationship between a-HB and sepsis is not well-
characterized, and the molecular targets through which a-HB may
influence sepsis progression remain largely undefined. This lack of
understanding underscores the need for comprehensive studies that
integrate multiple bioinformatics approaches to identify potential
molecular pathways and biomarkers that could inform both early
diagnosis and therapeutic strategies.
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Therefore, in this study, we aim to fill this knowledge gap by
exploring the connection between o-HB and sepsis using multi-
database data mining, machine learning, and unsupervised
clustering analyses. By integrating data from multiple
including SEA, SuperPred, and

SwissTargetPrediction, we identified a set of a-HB-related targets.

bioinformatics resources,
We then cross-referenced these targets with sepsis-related gene
expression profiles derived from the GEO database, revealing a
set of common targets potentially implicated in sepsis progression.
These targets were significantly enriched in immune response,
hypoxia, and cancer-related pathways, suggesting a-HB may
influence sepsis through these biological processes. Through
functional enrichment analyses and protein-protein interaction
(PPI) network construction, we sought to uncover the underlying
biological processes and pathways influenced by a-HB in the context
of sepsis. Furthermore, we applied machine learning algorithms to
identify biomarkers from these targets, which demonstrated high
predictive accuracy for sepsis risk in our nomogram model and may
serve as potential diagnostic indicators. Figure 1 presents the flow
chart of the study. By combining computational approaches with
independent dataset validation, our results offer novel insights into
the molecular mechanisms of a-HB in sepsis, specifically
demonstrating that: (1) a-HB exposure may significantly impact
disease progression through immune/inflammatory pathway

modulation, as evidenced by our unsupervised clustering
revealing two distinct sepsis subtypes with differential survival
outcomes; (2) Molecular docking confirms o-HB’s potential
interactions with key targets (APEX1, CTSD, SLC40A1, PIK3CB),
providing mechanistic explanations for its biological effects.

In summary, this study aims to identify novel therapeutic targets
and biomarkers that may improve the clinical management of sepsis,
as well as to contribute to the growing understanding of how
metabolites  influence

microbiota-derived host-pathogen

interactions in systemic inflammatory diseases.

Methods
Data collection and preparation

The gene expression datasets used in this study were obtained
from the Gene Expression Omnibus (GEO) database. The primary
dataset, GSE26440, comprises 32 healthy control samples and
98 sepsis samples. The datasets GSE13904 (18 healthy controls
and 158 sepsis samples), GSE26378 (21 healthy controls and
82 sepsis samples), GSE9692 (15 healthy controls and 30 sepsis
samples), GSE8121 (15 healthy controls and 60 sepsis samples), and
GSE4607 (15 healthy controls and 69 sepsis samples) were utilized
for validation purposes (Supplementary Table S1). Raw data from
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FIGURE 1

The detailed workflow of the study. This flow chart illustrates the comprehensive steps undertaken in the study, including the identification of a-HB-
related targets through SEA, SuperPred, and SwissTargetPrediction databases. Sepsis-related DEGs were obtained from the GSE26440 dataset. Machine
learning methods (L1-LASSO, RF, SVM) were then employed to identify four signature genes. These genes were validated through independent datasets
and analyzed via molecular docking. Unsupervised clustering revealed two distinct a-HB-related sepsis subtypes, which were further characterized

using enrichment analysis, GSVA, and immune cell infiltration analysis.

GEO database were processed using the R programming language.
The raw data from all datasets were preprocessed and normalized to
ensure consistency and comparability. We used the affy package for
processing Affymetrix microarray data, which included background
correction, normalization, and summarization. Specifically, the
Robust Multichip Average (RMA) method was employed for
normalization, which background noise and
normalizes the expression values across samples. Furthermore,

corrects  for

Combat function from the sva package was used to correct for
batch effects that may arise from differences in experimental
conditions among the datasets.

Identification of a-HB-related targets

To identify o-HB-related targets, we utilized three well-
established databases: Similarity Ensemble Approach (SEA),
SuperPred, and SwissTargetPrediction. For SwissTargetPrediction,
we included targets with a probability greater than 10%. This
threshold ~ was
SwissTargetPrediction employs a 2D and 3D similarity approach

relatively  permissive chosen  because
with known active ligands, and the 10% cutoff has been widely used
in cheminformatics studies to capture potential targets while
maintaining reasonable specificity (Daina et al, 2019). For
SuperPred, we included targets with a probability greater than
50%. This more stringent threshold was selected because
SuperPred predictions are based on structural similarity to
known drugs, and the 50% cutoff represents a balance between
capturing relevant targets and reducing false positives, as
recommended by the database developers (Nickel et al, 2014).

For SEA, we included targets with a p-value less than 0.05. This
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statistical significance threshold is standard for SEA analysis,
representing targets with statistically significant similarity to
known bioactive compounds in the database (Wang et al., 2016).
We then proceeded to integrate gene expression data related to
sepsis from the GSE26440 dataset. We applied the limma package to
perform differential expression analysis, identifying differentially
expressed genes (DEGs) between healthy controls and sepsis
samples. Genes with a false discovery rate (FDR) < 0.05 were
considered statistically significant (Gu et al, 2024). The
intersection of these DEGs with the 95 a-HB-associated targets
led to the identification of 42 common targets, which were
considered potential candidates for further investigation in sepsis
progression.

Heatmap and protein-protein interaction
(PPI) network analysis

To visualize the expression patterns of the 42 a-HB targets, we
performed a heatmap analysis using the pheatmap package in R. The
heatmap displayed distinct expression profiles between the normal and
sepsis groups. Additionally, we constructed a PPI network for these
targets using the STRING database and visualized using Cytoscape
3.9.1. This network provided insights into the potential biological
interactions and pathways involved in sepsis progression.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were conducted to
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gain insights into the biological functions and pathways associated
with the 42 a-HB-related sepsis targets. The GO enrichment analysis
was performed to classify the targets into biological processes,
molecular functions, and cellular components, while the KEGG
pathway analysis focused on identifying significant pathways related
to immune responses, cancer, and sepsis progression. These analyses
were performed using the clusterProfiler R package with a threshold
of adjusted p-value <0.05.

Biomarker identification using machine
learning methods

To identify potential biomarkers for sepsis from the a-HB toxicity
targets, we employed three machine learning algorithms with following
parameters: (1) LASSO regression (via the glmnet package, version
4.1.7): The regularization parameter lambda (A) was optimized using
10-fold cross-validation on the training set, exploring values from
0.001 to 1.0. The “one-standard-error rule” was applied to select the
final A to enhance generalizability. The model used a = 1 for L1 penalty
and standardized predictors. (2) Random Forest (RF) (via the
randomForest package, version 4.7.1.1): Hyperparameters were
tuned via 5-fold cross-validation with grid search. Out-of-bag error
was monitored to prevent overfitting. The final configuration used
500 trees, mtry set to the square root of feature count, and node size of 1,
with gene importance ranked by mean decrease in accuracy. (3) Support
Vector Machine (SVM) (via the el071 package, version 1.7.13):
Hyperparameters were optimized using nested cross-validation with
grid search over cost (0.1, 1, 10, 100) and gamma (0.001, 0.01, 0.1, 1)
parameters. The final model used a radial basis kernel with cost (C) =
2 and gamma (y) = 0.015625. Model performance was evaluated using
multiple metrics: AUC,
Overlapping biomarkers were visualized via the VennDiagram package.

sensitivity, and specificity, precision.

Nomogram construction and validation

A nomogram was constructed based on the expression profiles
of the four identified biomarker genes (APEX1, CTSD, SLC40A1l,
and PIK3CB) to predict the progression of sepsis in patients. Violin
plots were used to visualize the differential expression of these genes
in sepsis patients compared to healthy controls in the three datasets.
The predictive accuracy of the nomogram was assessed using
receiver operating characteristic (ROC) curve analysis, with the
area under the curve (AUC) calculated to evaluate the model’s
performance. For ROC curve analysis, an optimal threshold was
determined using the Youden index to maximize the sum of
sensitivity and specificity. The calibration curve was used to
assess the agreement between predicted and actual outcomes,
while decision curve analysis (DCA) was performed to assess the
clinical utility of the nomogram across different risk thresholds.

Clustering and enrichment analysis of
sepsis subtypes

To explore the impact of a-HB on sepsis progression further, we
utilized the 42 a-HB-related targets to cluster sepsis patients into
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distinct subtypes using the ConsensusClusterPlus package. Principal
Component Analysis (PCA) was conducted using the prcomp
function to visualize the separation between subtypes.
Differentially expressed genes (DEGs) between the two subtypes
were subjected to GO and KEGG enrichment analyses to identify
distinct biological processes and pathways involved in the

progression of sepsis in each subtype.

Statistical analysis of clinical outcomes

Binary clinical outcomes (e.g., survivor vs. non-survivor) were
compared between sepsis subtypes using Chi-square tests to assess
significant differences in mortality rates. Results were visualized as
stacked bar chart generated with the ggplot2 (version 3.4.4) and
ggalluvial (version 0.12.3) packages, illustrating the distribution of
outcomes across subtypes.

Pathway activity evaluation

The Gene Set Variation Analysis (GSVA) was performed using
the GSVA package to evaluate pathway activities between the
identified a-HB-related sepsis subtypes. Heatmaps were generated
to visualize distinct pathway activity profiles. Pathway significance
levels were determined using a false discovery rate (FDR) threshold
of <0.05 to identify significantly altered pathways.

Immune cell infiltration analysis

The single-sample Gene Set Enrichment Analysis (ssGSEA) was
conducted using the GSEABase and GSVA packages to evaluate
immune cell infiltration differences between the two a-HB-related
sepsis subtypes. This approach allowed for the quantification of
immune cell infiltration levels in each sample. A heatmap was
generated to illustrate the differences in immune cell infiltration
between the two subtypes, and box plots were used to visualize the
infiltration patterns of various immune cell types.

Molecular docking of a-HB with key targets

Molecular docking studies were conducted to explore the
interactions between o-HB and the four key sepsis biomarkers
(APEX1, CTSD, SLC40Al, and PIK3CB). The docking
simulations were performed using AutoDock Vina (version
1.5.7). Initially, the 3D structures of the target proteins were
obtained from the Protein Data Bank (PDB) (https://www.rcsb.
org/), and any water molecules, heteroatoms, or bound ligands were
removed using PyMOL (version 2.5.2) to prepare the proteins for
docking. The structure of a-HB was downloaded from the PubChem
database  (https://pubchem.ncbinlm.nih.gov/), and its 3D
PDBQT
AutoDockTools. The ligand was then energy-minimized to

coordinates were converted to format using
ensure stability. A 3D grid box was generated around each
protein’s active site in AutoDockTools, with careful adjustment

of the grid dimensions to encompass the binding site. Docking
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Identification and analysis of a-HB-related targets in the context of sepsis. (A) a-HB related targets were collected from the SEA, SuperPred, and
SwissTargetPrediction databases. (B) Differential expression analysis of sepsis-related dataset GSE26440 from the GEO database. (C) Intersection of
sepsis-associated differentially expressed genes and a-HB related targets revealed 42 common targets potentially involved in sepsis progression. (D)
Heatmap analysis displaying the expression profiles of the 42 intersecting a-HB targets. (E) PPl network of the 42 common targets.

evaluation was based on the binding affinity scores, with lower
energy values indicating stronger binding interactions. The top
binding poses were selected based on their energy values, and the
results were visualized in PyMOL.

Results

Identification and analysis of a-HB-related
targets in sepsis

In this study, we identified a total of 95 a-HB-related targets
through comprehensive data mining from three databases: SEA,
SuperPred, and SwissTargetPrediction (Figure 2A). Subsequently,
we analyzed the gene expression profiles associated with sepsis by
downloading the dataset GSE26440 from the GEO database. We
identified 8,986 sepsis-related targets, highlighting significant
alterations in gene expression between the normal and disease
groups (Figure 2B). To further elucidate the relationship between
a-HB and sepsis progression, we intersected the identified sepsis-
related targets with the a-HB related targets. This analysis revealed
42 common targets that are potentially implicated in the progression
of sepsis (Figure 2C). To visualize the expression patterns of these
42 a-HB targets, we performed a heatmap analysis, which
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demonstrated distinct expression profiles between the normal
and sepsis groups (Figure 2D). Additionally, we constructed a
protein-protein interaction (PPI) network for these targets,
providing insights into the potential biological interactions and
pathways involved in sepsis progression (Figure 2E). These
findings underscore the critical role of a-HB in modulating the
molecular landscape of sepsis, suggesting that these identified targets
may serve as potential biomarkers or therapeutic targets for
managing sepsis.

The functional enrichment analysis of the
42 a-HB-related targets

GO enrichment analysis highlighted several enriched

biological ~processes, molecular functions, and cellular
components. Notably, the targets were significantly associated
with processes such as “cellular response to hypoxia,” “regulation
of reactive oxygen species metabolic process,” and “immune
receptor activity.” Molecular functions included “p53 binding,”
“phosphotyrosine residue binding,” and “G protein-coupled
peptide receptor activity.” Key cellular components identified
were “nuclear chromosome,” “basolateral plasma membrane,”

and “primary lysosome” (Figure 3A). KEGG pathway analysis
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processes, molecular functions, and cellular components. (B) KEGG pathway enrichment analysis of the 42 a-HB targets. The dot plot on the right
illustrates the significance (adjusted p-value) and the number of genes involved in each pathway.

revealed significant enrichment in several pathways linked to
cancer and immune response. Noteworthy pathways included
“PD-L1 expression and PD-1 checkpoint pathway in cancer,”
“HIF-1
pathway.”

signaling pathway,” and
Additionally,
carcinogenesis - reactive oxygen species,”
Figure S1) “Neutrophil trap
(Supplementary Figure S2) and “Renal cell carcinoma” were
identified
analyses

“Sphingolipid signaling

pathways such as “Chemical
(Supplementary
extracellular formation,”
also significantly associated with the
(Figure  3B).  These
comprehensive insights into the potential mechanisms by

which o-HB may influence sepsis progression, highlighting

targets

enrichment provide

critical biological processes and pathways that warrant further
investigation.

Identification of biomarker genes for sepsis
from the a-HB-related targets using
machine learning algorithms

The optimal lambda () value was determined through cross-
validation, significantly narrowing down the number of features
(genes) (Figure 4A). The RF algorithm measured the mean
decrease in accuracy for each gene, providing an importance
ranking. Four genes (APEX1, CTSD, SLC40Al, and PIK3CB)
were identified as the most crucial markers based on their
significant impact on model accuracy (Figure 4B). The
performance of the SVM algorithm was evaluated by 10-fold
cross-validation, where the accuracy increased with the number
of features and finally reached a high point where 18 feature genes
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were identified (Figure 4C). A Venn diagram illustrates the
commonality and differences in biomarkers identified by each
algorithm. Notably, APEX1, CTSD, SLC40A1, and PIK3CB were
consistently selected by all three algorithms, underscoring their
potential as robust marker genes for sepsis diagnosis and
progression (Figure 4D).
effectiveness of combining multiple machine learning methods

These results demonstrate the
to identify robust biomarkers from a-HB targets, providing
valuable insights for the early detection and treatment of sepsis.

Construction and validation of a nomogram

As shown in Figure 5A, violin plots depict the differential
expression of CTSD, SLC40Al, PIK3CB (upregulated), and
APEX1 (downregulated) in sepsis patients compared to the
control group (***p < 0.001). In addition, we validated the
expression of these four diagnostic genes in independent datasets
GSE13904, GSE26378, GSE9692, GSE8121, and GSE4607
(Supplementary Figure S3). A nomogram was constructed based
on the expression profiles of APEX1, CTSD, SLC40A1, and PIK3CB,
allowing for individualized prediction of sepsis risk (Figure 5B).
ROC curve of the model indicates high predictive accuracy with an
AUC of 0.948 (95% CI: 0.907-0.989) (Figure 5C). The calibration
curve shows good agreement between predicted probabilities and
actual outcomes, confirming the model’s predictive validity
(Figure 5D). DCA demonstrates that the nomogram offers a
higher net benefit across different risk thresholds compared to
treating all patients or none, indicating its clinical utility
(Figure 5E). These findings validate the use of the nomogram
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Identification of biomarker genes for sepsis. (A) LASSO regression analysis determined the optimal lambda (A) value through cross-validation,
allowing the selection of the most relevant features (genes) by minimizing binomial deviance. (B) RF analysis ranked gene importance based on the mean
decrease in accuracy. (C) SVM performance was assessed via 10-fold cross-validation, with accuracy plotted against the number of features used,
showing that optimal model performance was achieved with a certain subset of features. (D) The Venn diagram shows the distribution of selected

biomarker genes across the three machine learning algorithms.

based on these four genes for accurately assessing sepsis risk
in patients.

Validation of diagnostic performance of four
genes across five independent datasets

In the GSE13904 dataset (Figure 6A), the AUC values were as
follows: APEX1 (AUC = 0.841), CTSD (AUC = 0.882), SLC40A1
(AUC = 0.804), and PIK3CB (AUC = 0.861). For the
GSE26378 dataset (Figure 6B), APEX1 achieved an AUC of
0.864, CTSD 0.930, SLC40A1 0.893, and PIK3CB 0.912. The
GSE9692 dataset (Figure 6C) showed higher AUC values: APEX1
(AUC = 0.918), CTSD (AUC = 0.916), SLC40A1 (AUC = 0.929), and
PIK3CB (AUC = 0.982). In the GSE8121 dataset (Figure 6D), the
AUC for APEX1 was 0.869, CTSD 0.961, SLC40A1 0.894, and
PIK3CB 0.883. Finally, in the GSE4607 dataset (Figure 6E),
APEX1 showed an AUC of 0.865, CTSD 0.959, SLC40A1 0.884,
and PIK3CB 0.899. These results demonstrate the robust diagnostic
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capabilities of the four genes across multiple datasets, with
consistently high AUC values.

Clustering and enrichment analysis of a-HB-
related sepsis subtypes

As shown in Figure 7A, clustering analysis based on the
expression profiles of the 42 a-HB targets identified two distinct
a-HB-related disease subtypes, referred to as HB subtype 1 and HB
subtype 2. Principal Component Analysis (PCA) confirmed clear
separation between HB subtype 1 and HB subtype 2, accounting for
24.3% and 14.1% of the total variance, respectively (Figure 7B).
Figure 7C presents the survival status analysis, highlighting a
significant difference (p < 0.01) in survival outcomes between the
two a-HB-related sepsis subtypes. a-HB Subtype 1 is predominantly
associated with non-survivors, whereas a-HB Subtype 2 is more
frequent among survivors. Differentially expressed genes between
the two a-HB-related subtypes were subjected to GO enrichment
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predicted probability and actual probability, confirming the model's predictive accuracy. (E) DCA illustrating the net benefit of using the nomogram

across different risk thresholds, compared to treating all patients or none.

analysis. The analysis showed enrichment in biological processes
such as immune response-regulating signaling pathway, cytokine
production regulation, macrophage activation, and cytokine
receptor activity (Figure 7D). KEGG pathway enrichment
analysis of the DEGs between the two subtypes highlighted
several significantly enriched pathways, including Osteoclast
differentiation, Cytokine-cytokine receptor interaction, NOD-like
receptor signaling pathway, TNF signaling pathway, and Toll-like
receptor signaling pathway (Figure 7E). These analyses reveal two
distinct molecular subtypes of sepsis influenced by a-HB exposure,
each characterized by different gene expression profiles and
enriched pathways, providing insights into potential mechanisms
driving sepsis progression and informing targeted therapeutic
strategies.

Pathway activity evaluation between a-HB-
related sepsis subtypes employing GSVA

As shown in Figure 8A, the heatmap of GSVA scores shows distinct
pathway activity profiles between a-HB subtype 1 and a-HB subtype 2.
Notably, a-HB subtype 2 exhibited significant enrichment in various
immune and inflammatory pathways, including regulation of response
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to tumor cells, synaptic vesicle localization, and multiple interleukin-
mediated signaling pathways (such as IL-6, IL-4, IL-2, and IL-15). Box
plots further illustrate the significant differences in GSVA scores for
various pathways between the two subtypes (Figure 8B). Immune and
inflammatory pathways were prominently enriched in a-HB subtype 2,
including: regulation of autophagosome assembly, response to
interleukins (e.g, IL-6, IL-2, IL-15), regulation of response to
interferon gamma and cytokine-mediated signaling pathways,
natural killer (NK) cell proliferation and activation, and toll-like
receptor signaling pathway. Overall, the GSVA analysis underscores
significant pathway-level differences between a-HB subtype 1 and a-HB
subtype 2. The pronounced enrichment of immune and inflammatory
pathways in a-HB subtype 2 suggests distinct molecular mechanisms
underlying sepsis progression in this subtype. These findings provide
valuable insights for potential therapeutic targets and interventions
tailored to each a-HB-related sepsis subtype.

Analysis of immune cell infiltration between
a-HB-related sepsis subtypes via ssGSEA
The heatmap (Figure 9A) of ssGSEA scores highlights distinct

immune cell infiltration patterns, with differences observed across
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various immune cell types. Specifically, a-HB subtype 1 exhibited
significantly higher infiltration levels of DC, iDC, pDC, mast cells,
Tregs, NK cells (particularly the CD56bright subset), and TFH, all of
which play crucial roles in antigen presentation, immune tolerance,
innate immune response, and inflammation. In contrast, a-HB
subtype 2 showed higher infiltration levels of neutrophils and
eosinophils, which are key players in acute inflammation,
phagocytosis, and allergic responses, respectively. The box plots
(Figure 9B) quantitatively confirm these differences, illustrating the
distinct immunological landscapes between the two subtypes. These
findings suggest that the differential immune cell infiltration likely
contributes to the distinct progression and treatment response
profiles observed in the a-HB-related sepsis subtypes, indicating
potential avenues for targeted immunotherapeutic strategies.

Molecular docking analysis of a-HB with
key targets

The docking results, including Vina scores (representing
binding affinity), key interacting residues, and docking grid
dimensions, are summarized in Supplementary Table S2. As
shown in Figure 10A, the molecular docking of o-HB with
APEXI revealed a binding affinity with a Vina score of —4.4. Key
interactions included hydrogen bonds and hydrophobic interactions
with residues D308, H309, F266, L282 and N212. Docking analysis
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of a-HB with CTSD showed a binding affinity with a Vina score
of —4.1. The docking model identified potential interactions with
residues G35, D33, G233, D231 and T234 (Figure 10B). The
interaction of a-HB with SLC40A1 was identified with a Vina
score of —4.8, exhibiting hydrogen bonding and hydrophobic
interactions with residues R466, W470, G353, A350, Q182, and
N185 (Figure 10C). The docking study of a-HB with PIK3CB
indicated a binding affinity with a Vina score of —4.4. The
interactions involved key residues Y698, A664, G666, N667,
R668 and Q174 (Figure 10D). These molecular docking results
suggest that a-HB can potentially interact with key targets
involved in sepsis progression. The identified interactions provide
insights into the molecular mechanisms by which a-HB might
influence the function of these targets, contributing to the overall
understanding of its role in sepsis pathophysiology.

Discussion

The results of this study provide novel insights into the role of a-
HB, a short-chain fatty acid derived from gut microbiota, in
modulating sepsis progression through its interaction with key
molecular targets and pathways. Our comprehensive approach,
integrating bioinformatics, machine learning algorithms and
functional enrichment analyses, has identified o-HB’s targets,
potential biomarkers for sepsis, and disease subtypes influenced
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Clustering and enrichment analysis of sepsis patients based on the a-HB toxicity targets. (A) Heatmap showing the clustering of sepsis patients into

two distinct a-HB-related disease subtypes (HB subtype 1 and HB subtype 2) based on the expression profiles of the 42 a-HB-related targets. (B) Principal
Component Analysis (PCA) plot confirming the separation between HB subtype 1 and HB subtype 2. (C) Bar graph illustrating the proportion of non-
survivors and survivors in each a-HB-related sepsis subtype. (D) GO enrichment analysis of differentially expressed genes between the two a-HB-
related subtypes. (E) KEGG pathway enrichment analysis illustrating significantly enriched pathways between the two subtypes.

by a-HB exposure. However, it is important to acknowledge the
primarily correlational nature of our findings, and that several
potential  confounders and indirect associations  merit
consideration when interpreting these results. While these
findings provide valuable insights into how a-HB relates to sepsis
pathophysiology, a condition characterized by dysregulated immune
responses and systemic inflammation, key limitations warrant
emphasis. Our analysis identifies associations between a-HB
targets and sepsis pathways, yet potential confounding factors
(e.g., patient demographics, underlying comorbidities, medication
use, and sepsis etiological heterogeneity) may influence both a-HB
metabolism and clinical outcomes. Furthermore, the observed
relationships may reflect indirect effects mediated through
complex host-microbiome metabolic networks rather than direct
causal mechanisms.

Functional enrichment analysis several key

highlighted

biological ~ processes, molecular functions, and cellular

components that are associated with a-HB exposure. These
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include cellular response to hypoxia, regulation of reactive
oxygen species (ROS) metabolic process, and immune receptor
activity, all of which are critical in sepsis pathophysiology. Our
findings align with previous studies indicating metabolic alterations,
oxidative stress, and immune dysfunction as key players in sepsis
progression (Ingels et al, 2018; Bavunoglu et al, 2016). The
association of a-HB with cellular response to hypoxia suggests
that a-HB could modulate tissue hypoxia, a common feature in
sepsis due to impaired perfusion and oxygen delivery (Bar-Or et al.,
2015). The mechanistic basis for this association could involve a-
HB’s interference with mitochondrial respiratory chain complexes
or its ability to stabilize hypoxia-inducible factors through direct
protein interactions or epigenetic modifications. Hypoxic stress in
sepsis triggers the activation of hypoxia-inducible factors, which
regulate immune cell activation and inflammation (Vanderhaeghen
et al,, 2020). Our findings imply that a-HB may influence this
response, potentially affecting both the inflammatory cascade and
the resolution of inflammation in septic tissues. This is supported by
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Pathway activity assessment between a-HB-related sepsis subtypes using GSVA. (A) Heatmap of GSVA scores illustrating distinct pathway activities
between a-HB subtype 1 and a-HB subtype 2. (B) Box plots comparing GSVA scores for various pathways between the two a-HB-related subtypes.

***p < 0.001.

studies showing gut microbiota and its metabolites can influence
hypoxic responses, underscoring the microbiome’s role in sepsis
progression (Pral et al., 2021).

The identification of a-HB’s association with ROS metabolism is
highly relevant to sepsis, where excessive ROS production
contributes to cellular damage, organ failure, and immune
suppression (Lopes-Pires et al., 2021). Modulation of ROS by a-
HB might influence oxidative stress pathways and potentially
protect against ROS-induced damage. This aligns with studies
effects of other
metabolites, such as short-chain fatty acids, in mitigating

showing  protective microbiota-derived
oxidative stress during inflammatory conditions (Al-Harbi et al.,
2018). The role of a-HB in ROS regulation presents an interesting
therapeutic target for managing oxidative damage in sepsis.
Moreover, the association of a-HB with immune receptor activity
suggests its potential role in immune modulation. Sepsis is
characterized by an initial hyperinflammatory response, followed
by immune dysfunction and suppression, leading to increased
susceptibility to secondary infections (Chen H. et al, 2023). a-
HB’s potential to modulate immune receptor activity could
influence immune cell signaling and the balance between pro-
inflammatory and anti-inflammatory responses. This is consistent
with findings that gut-derived metabolites, including butyrate and
other short-chain fatty acids, regulate immune responses by
modulating immune cell function and cytokine production (Ney
et al., 2023; Wu et al., 2020).

The KEGG pathway analysis revealed significant enrichment of a-
HB targets in pathways linked to cancer and immune responses, such
as PD-L1 expression and PD-1 checkpoint pathway, HIF-1 signaling
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pathway, and Sphingolipid signaling pathway. These pathways are
particularly relevant to sepsis, as immune dysregulation and tissue
inflammation are central to both sepsis progression and cancer
immunity (Cao et al, 2023). The observed enrichment of PD-1/
PD-LI signaling is intriguing and suggests a testable hypothesis that a-
HB could potentially modulate immune tolerance and contribute to
immune cell exhaustion in sepsis (Kotanides et al., 2020; Liechtenstein
2012).
exhaustion, impairing host defense against infections.

Excessive PD-1 activation can lead to immune
Several
studies have implicated PD-1/PD-L1 signaling in suppressing
immune function during sepsis (Chen Y. et al, 2023; Nakamori
et al, 2020), though this mechanistic link requires experimental
validation to establish causality between a-HB and PD-1/PD-
L1 regulation. The involvement of the HIF-1 signaling pathway,

et al.,

central in cellular adaptation to hypoxia and inflammation
(Balamurugan, 2016), supports the hypothesis that a-HB may
influence responses during sepsis.
Hypoxia-induced activation of HIF-1 in sepsis can drive both

immune and metabolic

inflammatory responses and tissue repair mechanisms (Ruan et al.,
2023). The intersection between a-HB and HIF-1 signaling
underscores a-HB’s potential as a modulator of immune and
metabolic processes during sepsis. Additionally, the sphingolipid
signaling pathway’s enrichment among a-HB toxicity targets is
relevant to sepsis. Sphingolipids, like ceramides, are bioactive
molecules that regulate immune cell activation, inflammation, and
2014; Patwardhan et al, 2016). In sepsis,
sphingolipid metabolism regulates immune responses and influences

apoptosis (Chan et al.,

the balance between pro-inflammatory and anti-inflammatory
signaling (Hering et al., 2024).
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between the two subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.

The application of machine learning algorithms identified
biomarker genes from the a-HB targets, representing a significant
advancement in sepsis diagnostics. The consistent identification of
APEX1, CTSD, SLC40A1, and PIK3CB as crucial markers
underscores their potential clinical utiliy. APEX1 is known for its
role in DNA repair and cellular stress responses (Maia de Oliveira da
Silva et al,, 2019). Similarly, SLC40A1 regulates iron homeostasis
and is associated with inflammatory responses in critically ill
patients (Wang et 2023). CTSD involvement
macrophage activation (Ruiz-Blazquez et 2024), while
PIK3CB, part of the PI3K signaling cascade, is associated with
immune and inflammatory processes (Ye and Zeng, 2022). Their

al., is in

al.,
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recurrent recognition as biomarkers underscores their significance
in sepsis. These findings align with previous research using machine
learning for biomarker discovery in sepsis (Komorowski et al.,
2022). By integrating a-HB targets into machine learning models,
our study provides a unique perspective on how gut microbiota
metabolites may influence sepsis progression through their
interactions with key molecular pathways.

Our clustering analysis revealed two distinct a-HB-related sepsis
subtypes, each characterized by unique gene expression profiles and
enriched pathways. This stratification of sepsis patients aligns with
the growing recognition of sepsis as a heterogeneous syndrome.
Previous studies have categorized sepsis patients based on genomic
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FIGURE 10

Molecular docking analysis of a-HB with key targets. (A) Docking of a-HB with APEX1. (B) Docking of a-HB with CTSD. (C) Docking of a-HB with

SLC40AL. (D) Docking of a-HB with PIK3CB.

and transcriptomic data, highlighting the potential for personalized
medicine in sepsis management (Lukaszewski et al., 2022). Among
the significantly enriched pathways identified between the subtypes
in our study, we hypothesize that the NOD-like receptor signaling
pathway, TNF signaling pathway, and Toll-like receptor signaling
pathway are modulated by a-HB. The NOD-like receptor signaling
pathway is crucial for detecting intracellular pathogens and
initiating immune responses, and its modulation by a-HB could
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influence the inflammatory response in sepsis (Caruso et al., 2014).
The TNF signaling pathway, known for its role in inflammation and
immune regulation, could be affected by a-HB, potentially altering
cytokine production and inflammatory responses (Wallaeys et al.,
2024). The Toll-like receptor signaling pathway is essential for
recognizing pathogen-associated molecular patterns and initiating
immune responses, and a-HB’s influence on this pathway could
impact immune cell activation and cytokine production (Glaser and
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Speer, 2013). We speculate that a-HB may modulate these pathways
by interacting with specific receptors or signaling molecules
involved in these pathways, thereby influencing the downstream
signaling cascades and ultimately affecting the immune response
and inflammation in sepsis. In addition, pathway activity evaluation
using GSVA elucidated differences in immune and inflammatory
pathways between the two a-HB-related subtypes. The pronounced
enrichment of pathways related to immune response and
inflammation in o-HB subtype 2 suggests a more aggressive
inflammatory phenotype. This is corroborated by Antcliffe et al.,
who noted certain sepsis phenotypes associated with heightened
inflammatory responses and worse clinical outcomes (Antcliffe
et al, 2024). Regulation of autophagosome assembly and
responses to interleukins, particularly IL-6, IL-2, and IL-15, may
be crucial in driving this inflammatory phenotype. Elevated levels of
IL-6 have been linked to poor outcomes in sepsis patients,
reinforcing the potential of targeting these pathways for
therapeutic intervention (DeMerle et al., 2024).

The analysis of immune cell infiltration using ssGSEA
provided additional insights into the distinct immunological
landscapes of the two a-HB-related sepsis subtypes. The
higher infiltration of dendritic cells, regulatory T cells, and
natural killer cells in a-HB subtype 1 suggests a more
balanced immune response, which may facilitate effective
the
increased presence of neutrophils and eosinophils in o-HB

pathogen clearance and tissue repair. In contrast,
subtype 2 points to a hyper-inflammatory state, associated
with acute tissue damage and organ dysfunction (Kwok et al,,
2023; Sharma et al., 2023). These findings highlight the potential
for targeted immunotherapeutic strategies considering each
subtype’s unique immune profiles, echoing recent studies
advocating for personalized sepsis treatment approaches
(Sweeney et al., 2018). Critically, the survival analysis depicted
in Figure 7C reveals a significant disparity in outcomes between
these subtypes, with a-HB Subtype 1 predominantly linked to
non-survivors and o-HB Subtype 2 more frequent among
survivors. This survival divergence aligns with the GSVA and
immune cell infiltration results: subtype 1’s balanced immune
response, characterized by regulatory cell infiltration (e.g.,
dendritic and regulatory T cells), may contribute to immune
exhaustion or suboptimal pathogen clearance, exacerbating
mortality risks (Jiang et al., 2012). Conversely, subtype 2’s
hyper-inflammatory phenotype, underscored by neutrophil
and eosinophil infiltration and enriched inflammatory
pathways (e.g., IL-6 response via GSVA), correlates with
improved survival, potentially due to a potent early
inflammatory burst that accelerates pathogen elimination and
recovery, despite risks of tissue damage (Shen et al., 2017).
Collectively, these integrated findings emphasize that o-HB
exposure modulates sepsis outcomes through distinct
inflammatory and immune-balancing mechanisms, informing
future stratification and therapy.

In our study, the binding affinities reported (—4.1 to —4.8 kcal/
mol) are relatively modest, which may indicate weak interactions.
However, it is important to note that even weak interactions can be
biologically relevant in certain contexts. For instance, transient and
low-affinity interactions often play crucial roles in signaling

pathways and regulatory mechanisms (Schreiber and Keating,
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2011). Furthermore, the cumulative effect of multiple weak
interactions can have significant biological outcomes (Scheepers
et al, 2020). Previous studies have shown that similar binding
affinities can still lead to meaningful biological activities
(Kantidze and Razin, 2020). We acknowledge the limitations of
our binding affinity data and propose that future studies involve
functional assays to validate the biological significance of these
interactions.

Despite the significant findings of this study, several
limitations must be acknowledged. Importantly, our study
the
correlational nature of the bioinformatics analysis cannot

design limits our ability to establish causality, as
definitively prove that o-HB directly causes the observed
molecular changes in sepsis. The identified associations may
be influenced by unmeasured confounders or represent
downstream consequences rather than primary causal events.
Firstly, due to constraints in data availability from the GEO
database, our analysis was limited to the survival information of
sepsis patients, and we could not incorporate other clinical
SOFA This the
comprehensiveness of our clinical correlations. Secondly, the

parameters such as scores. restricts

study relies entirely on computational predictions and
bioinformatics analyses without experimental validation in
biological systems. The molecular docking results, pathway
enrichments, and proposed drug-target interactions are purely
computational predictions that require rigorous experimental
verification. The functional roles of all proposed targets
remain to be tested through in vitro and in vivo experiments.
The modest binding affinities observed represent theoretical
predictions that need biochemical validation to confirm their
biological relevance. Additionally, the generalizability of our
findings is constrained by the reliance on specific datasets;
different cohorts may exhibit varying results. Future studies
should

including cell-based assays, animal models, and clinical studies

include comprehensive experimental validation
and use larger, diverse patient cohorts to strengthen the
translational potential of our findings. Future experimental
studies should focus on dose-response relationships, temporal
through

interventions to establish causal relationships between a-HB

analyses, and mechanistic validation targeted
exposure and sepsis outcomes. This limits the ability to
confirm the identified targets and pathways’ functional roles
in sepsis. Additionally, the generalizability of our findings is
constrained by the reliance on specific datasets; different cohorts
may exhibit varying results. Future studies should include
experimental validation and use larger, diverse patient cohorts
to strengthen the translational potential of our findings. Finally,
while we identified potential biomarkers and molecular subtypes,
further research is necessary to establish their clinical utility and

therapeutic relevance in sepsis management.

Conclusion

In conclusion, our study provides compelling evidence for the
role of a-HB in modulating sepsis progression through its influence
on immune responses, oxidative stress, and cellular signaling
pathways. The identification of robust biomarkers and distinct
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sepsis subtypes lays the groundwork for future research aimed at
elucidating the complex interplay between metabolic byproducts
and host responses in sepsis. As we advance towards a more
personalized approach to sepsis management, the insights gained
from this study may inform the development of targeted therapies
that address the unique molecular characteristics of a-HB-related
sepsis subtypes. Future investigations should focus on the functional
validation of identified biomarkers and the exploration of
therapeutic strategies that leverage the distinct immune profiles
observed in these subtypes.
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