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Lung cancer is the major cause of cancer-related deaths worldwide and may
occur as a multistep progression. Lung disorders, such as pneumonia and lung
injury (Phase 1), induce inflammatory responses, activate fibroblasts, leading to
collagen deposition and the formation of fibrotic lesions. Pulmonary fibrosis (PF)
and chronic obstructive pulmonary disease (COPD) (Phase I), further induce
endoplasmic reticulum stress and DNA damage, leading to cellular mutations that
increase the risk of cancer and promote lung cancer (Phase lll). Based on the fact
that disease progression is a progressive and dynamic process, new drugs are
urgently required to prevent the progression of lung diseases to cancer.
Artemisinin and its derivatives have anti-viral, anti-inflammatory, anti-fibrotic,
immunoregulatory, and anti-cancer activities. Hence, we reviewed the multi-step
actions of artemisinin and its derivatives on the trilogy from lung diseases to lung
cancer, and investigated the underlying mechanism involved. Substantially,
actions of anti-inflammation, oxidative stress and apoptosis produced by
artemisinin and its derivatives were found throughout the three phases, and
NF-xB, Keapl/Nrf2 and PI3K/Akt may be the key signaling pathways. Specifically,
in phase of inflammation and injury (phase 1), artesunate, dinydroartemisinin, and
artemether alleviate the symptoms of pneumonia and lung injury by regulating
inflammatory responses, oxidative stress, apoptosis, and endoplasmic reticulum
stress. In the precursor phase (phase ), artesunate and dihydroartemisinin exert
antifibrotic and antimycobacterial properties and ameliorate PF and COPD by
inhibiting inflammation, modulating oxidative stress, and decreasing cell
proliferation. In the cancer phase (phase Ill), artemisinin, artesunate, and
dihydroartemisinin could modulate glycolysis, promote apoptosis, ferroptosis,
and autophagy, inhibit cell proliferation, invasion, and angiogenesis, and alleviate
radiation resistance to exert their anticancer effects. Additionally, current
research is focused on nanoscale delivery systems to increase the
bioavailability and improve drug stability, to enhance the therapeutic efficacy
of these compounds. Collectively, artemisinin and its derivatives are the potential
clinically useful therapeutic agents for protecting lungs and hampering the
dynamic development processes of lung diseases to lung cancer.

artemisinin, artemisinin derivatives, lung disorders, lung cancer, multi-step progression
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GRAPHICAL ABSTRACT

1 Introduction

Lung cancer is the leading cause of cancer-related mortality
globally with an estimated 80,000 deaths annually. The mortality
from lung cancer is increasing as the population grows and ages
(Kocarnik et al., 2022; Fan et al., 2023; Sun et al., 2023; Sung et al,,
2021). The incidence and mortality rates are higher in developing
countries than in developed countries, exacerbating global disease
burden and economic strain (Apple et al., 2023).

Normal lung cells become malignant due to genetic mutations
induced by several factors, such as environmental and genetic
factors. These mutations occur in genes that regulate cell cycle,
DNA repair, and angiogenesis and favor cell growth and survival,
resulting in abnormal cell growth and division, unlimited
proliferation and spreading of cells (by overriding the normal cell
cycle regulation and evading programmed cell death), and tumor
formation (Long et al, 2019; Baykara et al, 2015). The
transformation from a normal to malignant phenotype involves
key alterations, such as inactivation of tumor suppressor genes,
activation of proto-oncogenes, dysregulation of apoptosis and
telomerase control, sustained angiogenesis, and tissue invasion
2005).
development of lung cancer is a multistep process, early

(Breuer et al, Fortunately, the occurrence and
detection of cancer at the pre-invasive stage may provide an
opportunity to inhibit or slowdown the progression of malignant
disease, ultimately improving the prognosis in patients (Lantuéjoul
et al., 2009; Mascaux, 2008).

The World Health Organization Classification specifies lung
cancer precancerous lesions as squamous epithelial atypia and
carcinoma in situ, atypical adenomatous hyperplasia, and
infiltrative idiopathic pulmonary neuroendocrine cell hyperplasia,
which are the early warning signals for the development of lung
cancer (Kerr, 2001). Although only 15%-20% of idiopathic
pulmonary fibrosis (IPF) cases will progress to lung cancer (Yao
etal,, 2025), pulmonary diseases such as pneumonia, lung injury, PF,

tuberculosis, and COPD are considered risk factors for lung cancer
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(Li C. et al.,, 2022; Bhat et al., 2022; Wang L. et al, 2023). The
“inflammation-fibrosis-cancer” cascade is not an inevitable
pathway, but it does create a favorable environment for tumor
development (Feng et al, 2025). In other words, people with
pulmonary diseases are at an increased risk of developing lung
cancer (Brenner et al.,, 2012; Brenner et al., 2011).

Pneumonia is mainly treated with antibiotics to eliminate
microorganisms. PF has no specific drug, and slowing down the
progression of the disease to alleviate the symptoms is the main goal
of treatment. The treatment for tuberculosis includes the long-term
use of anti-tuberculosis drugs (Khan et al., 2021; Nguyen et al., 2022;
Min et al,, 2022). COPD is treated with inhaled medications (e.g.,
bronchodilators and steroids) to ameliorate symptoms, and smoking
cessation along with a pulmonary rehabilitation program are
recommended to improve lung function (Gupta et al, 2019).
Common treatment options for lung cancer include surgical
resection, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy (Sowa et al., 2017). Collectively, these treatment
approaches focus on eliminating infection, immunomodulation,
mechanical ventilation, and removal of malignant tissue (surgical
interventions). Unquestionably, innovative drugs which can treat
lung diseases and inhibit their dynamic development progression to
lung cancer are attractive.

Universally acknowledged that artemisinin and its derivatives
are the most effective drugs for treating drug-resistant malaria and
have a fast-acting and low-toxicity profile. Artemisinin is derived
from the plant Artemisia annua L., and its common derivatives
include artesunate, dihydroartemisinin, artemether (Posadino et al.,
2023; Tang et al., 2023). Evidence is mounting that artemisinin and
its derivatives can reduce the disease burden of lung cancer and
inhibit the progression of lung diseases to lung cancer. Here, we
focused on the multistep pathogenesis of lung cancer, discussed the
progression from pneumonia to lung cancer, and investigated the
regulatory effect of artemisinin and its derivatives on each step of
cancer progression. In addition, toxic side effects of drugs and
delivery routes of artemisinin and its derivatives were reviewed.
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2 Lung injury to lung cancer: a
multistep dynamic
development process

The lungs are the central organs in the human respiratory
system, carrying several important functions, such as respiratory
regulation, immune function, and pulmonary circulation (Schneider
et al, 2021). The success or failure of pulmonary defense
mechanisms determines the emergence of clinical diseases.
Pulmonary defense is dependent on the immune and nervous
systems. Immune defense is the ability of cells (such as
neutrophils and macrophages) and molecules in the lungs to
clear pathogens from the alveoli and prevent them from entering
the bloodstream (Hiroki et al., 2021). Neurological defenses include
aerodynamic filtration, ciliary motility, and other forces that detect
external threats through sensory neurons and drive the movement of
respiratory fluids (Green et al,, 1977). The disruption of these
defense mechanisms by various factors leads to lung diseases,
which can increase the risk of lung cancer (Shehata et al., 2023;
Zou et al., 2022; Cha et al., 2023; Hamada et al., 2023; Hu et al., 2021;
Lu et al,, 2022; Zhu et al,, 2020). It is evident that multiple lung
diseases are interconnected, and the evolving transition from lung
injury to lung cancer is a dynamic development process.

Pneumonia is a lung infection caused by bacteria, viruses, or
fungi (Michelet et al, 2021). Microbial pathogens enter the
respiratory tract, triggering an inflammatory response that
damages lung tissue (Tian et al.,, 2023). In addition, inflammatory
response increases the permeability of the alveolar walls, leading to
the leakage of fluid and cells from the alveoli and the formation of
parenchymal lung lesions (Holloway et al., 2018). The uncontrolled
inflammatory responses may aggravate lung infections and cause
serious lung damage (Garg et al., 2021). Hence, lung injury is a more
serious disorder compared with pneumonia. In addition to infection
and inflammation, lung injury is usually caused by trauma and
several other factors (Habet et al., 2023). The inflammatory response
is further exacerbated in lung injury, leading to diffuse damage to
alveolar epithelial cells, decrease in lung surface-active substances,
destruction of the alveolar walls, increased permeability of the
basolateral membranes, accumulation of intra-alveolar fluid,
accumulation of polymorphonuclear leukocytes, parenchymal cell
damage, and interstitial edema (Meng et al., 2018). Ultimately,
continued damage to the lung epithelium due to uncontrolled
inflammation leads to abnormal lung tissue repair. Moreover,
inflammatory response activates fibroblasts, leading to increased
collagen synthesis. This collagen is deposited in the lung tissue to
form fibrotic lesions (Ammar et al, 2019; Wei et al,, 2023).
Accordingly, we refer to pneumonia and lung injury as the phase
| of dynamic development processes of lung diseases to lung cancer.

PF involves fibrotic tissue proliferation in the lungs. Its
pathologic progression involves complex interactions between
epithelial cells, mesenchymal stem cells, fibroblasts, immune cells,
and endothelial cells (Zhang and Wang, 2023). Fibrosis, overgrowth,
sclerosis, and scarring of various tissues are attributed to the
expansion  of  activated  mesenchymal  stromal  cells
(myofibroblasts), leading to excessive deposition of extracellular
matrix components in basement membranes and interstitial
tissues (Makena et al, 2023). Gradual loss of elasticity and
function of lung tissue occurs as the fibrous tissue proliferates
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and deposits, leading to dyspnea and other clinical symptoms
(Marts et al, 2019). Molecular and cellular processes, such as
myofibroblast/mesenchymal transition, myofibroblast activation
and uncontrolled proliferation, endoplasmic reticulum stress,
altered expression of growth factors, and oxidative stress, link PF
to lung cancer and increase the risk of cancer development by 7%-
20% (Ballester et al., 2019).

In addition, lung damage and fibrosis are frequently observed in
tuberculosis (Ravimohan et al., 2018). It is a chronic infectious
disease caused by Mycobacterium tuberculosis, which enters the
lungs and triggers an immune response that results in the
formation of tuberculous nodules (Huang et al, 2022). These
nodules contain macrophages and lymphocytes that control the
spread of bacilli (Fallahi-Sichani et al., 2010). However, these
nodules develop into foci if the immune response fails to control
the infection (Khan et al., 2019). Tuberculosis is a known risk factor
for lung cancer because chronic inflammation and fibrosis may
induce genetic mutations and DNA damage, leading to lung cancer
(Schabath and Cote, 2019; Hwang et al., 2022).

COPD is a chronic inflammatory disease characterized by
airway obstruction, alveolar destruction, and reduced lung
function. The disease is projected to become the third leading
cause of death worldwide by 2030 (Li et al., 2023). Patients with
COPD have a 4-6 times higher risk of lung cancer compared with
non-COPD patients (Shih et al, 2021). Smoking is the most
common cause of COPD and lung cancer, and approximately
85%-90% of cases are associated with exposure to tobacco smoke
(Czarnecka-Chrebelska et al., 2023). Harmful substances in tobacco
smoke trigger an inflammatory response in the airways, leading to
increased chemotaxis of bronchial mucosal cuprocytes and mucus
secretion. The subsequent release of inflammatory cells can damage
lung tissue leading to PF, destruction of the alveolar walls, and
reduced lung function (Cheng et al, 2015). In addition,
inflammation can increase DNA damage and mutations, leading
to tumor proliferation, anti-apoptotic effects, angiogenesis, invasion,
and metastasis (Zhou et al., 2023). In the continuous progression of
pneumonia and lung injury, various lung diseases (PF, tuberculosis
and COPD) emerge, all of which can directly raise the risk of lung
cancer. Thus, we define them as the phase Il of the dynamic
development processes.

Lung cancer is a malignant tumor segregated into two main
groups, namely non-small cell lung cancer (NSCLC) and small-cell
lung cancer (SCLC), with NSCLC accounting for 80%-85% of the
diagnosed cases (Guo et al, 2021). Inflammation, immunity,
oxidative stress, cell proliferation, apoptosis, and mitochondrial
dysfunction play important roles in the development and
progression of lung cancer (Liu J. et al., 2023; Wang et al., 2024a;
Pang et al., 2024). Inflammation can damage lung tissue and induce
DNA damage in lung cells, mitochondrial DNA damage leads to the
dysregulation of mitochondrial quality control, which lays the
foundation for the malignant transformation from stage II (such
as pulmonary fibrosis) to stage IIT (lung cancer), thereby increasing
the risk of lung cancer (Taucher et al, 2022). Under normal
circumstances, immune cells can inhibit the development of lung
cancer by recognizing and removing abnormal lung cells. In
contrast, tumor cells often evade immune surveillance through
various “immune escape” mechanisms to avoid recognition and
elimination, thereby promoting tumor growth and metastasis (Rui
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FIGURE 1
Multistep pathogenesis of lung cancer.

et al,, 2023). In addition, oxidative stress, mitochondrial quality
control and mechanisms involved in cell proliferation, apoptosis,
and cell cycle regulation are closely related to the occurrence and
development of lung cancer (Deng et al., 2013; Larson-Casey et al.,
2020; Chang et al., 2023). Lung cancer represents the final stage of
the development processes and is classified as phase Ill.

Overall, prior lung disease increases the risk of lung cancer
(Brenner et al., 2012; Brenner et al., 2011). Lung cancer is a multistep
and multidimensional process, pneumonia and lung injury are
inflammatory diseases that increase the risk of lung cancer, PF,
tuberculosis, and COPD are precursor diseases that further promote
the development of lung cancer (Figure 1). Compared with treating
cancer, the approach of prevent is more feasible and practical,
identifying risk factors and implementing prevention strategies
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are key to reduce the global burden of lung cancer (Garrison
et al., 2021).

3 Artemisinin and its derivatives

Artemisinin, a sesquiterpene lactone, is a first-line drug for the
treatment of malaria. It was first extracted from A. annua L. by Tu
Youyou and colleagues in 1972 (Fikadu and Ashenafi, 2023),and is a
colourless crystal with the molecular formula C,sH,,0s. The
metabolic pathway of artemisinin primarily involves hepatic and
intestinal metabolism. In hepatic metabolism, the CYP450 enzymes
convert artemisinin into metabolites for easier excretion through
oxidation, reduction, and hydrolysis processes (Asimus et al., 2007).
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Artemisinin and its derivatives.

Furthermore, specific bacteria in the intestinal microbiota can
metabolize artemisinin via hydroxylation and sulphonation, these
metabolites then pass into the bloodstream through the liver and
kidneys before being eliminated from the body. Artemisinin has
poor water and fat solubility, poor stability, and low oral
bioavailability, limiting its clinical applications (Yu et al., 2012).
several artemisinin derivatives,

Fortunately, including

dihydroartemisinin, artesunate and artemether have been
synthesized (Figure 2). These derivatives are structurally slightly
different but have similar therapeutic effects, anti-parasitic for
instance,  anti-tumor, anti-inflammatory, anti-viral, and
dermatological treatments (Huang et al., 2023). Particularly, they
have higher bioavailability and longer half-lives than artemisinin
(Kol et al., 2022).

Artemisinin’s biological activity is linked to its peroxy bridge,
derivatives are created by modifying its structure while retaining the
peroxy bridge. Currently, all derivatives modify the C-9 and C-10
positions, with C-10 being the most common. Dihydroartemisinin,
the simplest derivative, is obtained by reducing the carbonyl group at
the C-10 position to a hydroxyl group, resulting in a molecular

formula of C;sH,40s. Studies show it has a longer half-life and
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H3C

Artemether

higher bioavailability, but poor aqueous solubility (Zang et al., 2014;
Morris et al., 2011). Artesunate, with a molecular formula of
C190gHyg, is derived from dihydroartemisinin and succinic
anhydride. It exhibits mild acidity, can penetrate biofilms, and
possesses high efficacy, low toxicity, and high tolerability
(Michener et al., 2023; Lin et al.,, 2022). Artemether is obtained
by replacing the hydrogen atom on the hydroxyl group at the C-10
position with a hydrocarbon group. Compared to other derivatives,
artemisinin ether derivatives are more fat-soluble but less water-
soluble, with low bioavailability (de Vries and Dien, 1996).

Artemisinin and their derivatives have a wide range of
pharmacologic effects, including anti-inflammatory, antioxidant,
antifibrotic, and antitumor effects, in addition to their broad-
spectrum antimalarial activity. These compounds have been
investigated for the treatment of rheumatoid arthritis, renal
injuries, gastric cancer, lung cancer, and other diseases (Yang
et al, 2023). Although these studies are currently in the basic
research phase, some clinical trials have shown promising results.
In this review, we focused on the multistep pathogenesis of lung
cancer and investigated the regulatory effect of artemisinin and its
derivatives on each step of cancer progression.
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TABLE 1 Effects of artemisinin and its derivatives on inflammation and injury.

10.3389/fphar.2025.1602581

Disease Modeling Inhibitory effect Stimulatory References
method effect
Radiation Wistar rat 6MV-X line was DHA 60 mg/kg WBC, NF-«kB, TNF-q, IL-6 Lu et al. (2022)
pneumonitis irradiated with 15 Gy
radiation dose
Influenza A ICR mice Influenza A virus AS 30, 60, TLR4, NF-«B (p65), TNF-a, IL- SUI et al. (2016)
virus 120 mg/kg 6, IL-1p
Pneumonia
Pneumocystis SD rats DXM AS 60 mg/kg Pneumocystis TLR2 Goodman et al.
pneumonia (2003)
Pneumocystis SD rats DXM DHA 60 mg/kg Pneumocystis, NO, TNF-a, CD4" T cells, IFN-y Li et al. (2023)
pneumonia
Pneumocystis SD rats DXM Artemether 100 mg/kg Pneumocystis, IL-6, IL-2 Zhu et al. (2020),
pneumonia YANG et al. (2021)
Hyperoxia- C57BL/6 mice Hyperoxia (75% AS 15 mg/kg TNF-a, IL-6, IL-1B, NLRP3, SOD, GSH Meng et al. (2022)
induced lung oxygen), 14 days ASC, caspase-1, MDA, p-NF-«kB
injury (p65), p-IxBa
Acute lung SD rats LPS AS 7.5, 15, MPO, Apoptotic cells, NLRP3, SIRT1 Wang et al. (2024b)
injury NR8383 cells 25 mg/kg (in caspase-1, ASC, caspase-3
Vivo)
5, 10, 20 pg/
mL (in vitro)
Acute lung C57BL/6 mice Intestinal ischemia/ AS — MDA, MPO, IL-1p, TNFa, SOD, Bdl-2, Zhang et al. (2020a)
injury reperfusion CXCL1, MCP-1, TUNEL- P-AKT, HO-1
positive cells, Bax, caspase-3
Acute lung mice LPS AS 5, 10, 20, TNF-a, IL-1p, IL-6, W/D, lung GSH Hao et al. (2022)
injury RAW264.7 cells 50 pg/mL injury score, MPO,
(in vitro) inflammatory cell infiltration
10 mg/kg (in
Vivo)
Acute lung SD rats LPS AS 15 mg/kg MPO, W/D, lung injury score, p-mTOR, p-Akt, | Zhangetal. (2023a)
injury TUNEL-positive cells, cl- PI3K
caspase-3
Acute lung C57BL/6 mice LPS DHA 75 mg/kg Macrophages, Neutrophils, SOD, GSH, Nrf2, Zhao et al. (2017)
injury MPO, LDH, IL-1p, TNF-q, IL-6, HO-1
ROS, MDA, W/D, p-p65, p-I-kB
Acute lung A549 LPS AS 10, 20, W/D, TNF-q, IL-1p, IL-6, TLR4, Nrf2, HO-1 Ng et al. (2014)
injury BALB/c mice 40 mg/kg MPO, MDA, NF-kB, p-p65,
p-I-xB, macrophages,
neutrophils
Oxidative injury BALB/c mice Cigarette smoke AS 30 mg/kg Macrophages, neutrophils, Nrf2 Holloway et al.
of the lung 16HBE eosinophils, lymphocytes, IL-8, (2018)
MDA, 3-NT, SOD
Suppurative Kunming mice Cecal ligation and AS 15 mg/kg TNF-q, IL-6, COX-2, iNOS, Nrf2, HO-1 Huang et al. (2019)
lung injury puncture NF-xB
Lung injury SD rats Paraquat AS — IL-10, TNF-a, TGF-p1 Cao et al. (2016)
Lung injury BALB/c mice Cigarette smoke AS 10, 30, IL-1B, MCP-1, IP-10, KC, Nrf2, CAT Zheng et al. (2021)
BEAS-3B 100 mg/kg | NOX2, TNF-a, TGE-1, MIP-
2a, iNOS, MMP-9, TIMP-1,
GM-CSF, 3-NT, 8-isoprostane,
8-OHdG, AKT, P-AKT, p44/
42 MAPK
Lung injury SD rats Ischemia/reperfusion AS 100 mg/kg TNF-a, IL-1p, IL-18, MPO, SOD Liu et al. (2023b)
MDA, PERK, ATF4,
CHOP, Fe**
(Continued on following page)
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TABLE 1 (Continued) Effects of artemisinin and its derivatives on inflammation and injury.

Disease Animal/ Modeling Drug Dosage Inhibitory effect Stimulatory References
cell method effect
Lung injury SD rats hemorrhagic shock DHA 6, 12 mg/kg W/D, MPO, MDA, IL-12, IL-1p, = SOD Jiang et al. (2015)
TNF-q, TLR4, MyD88, p-NF-
kB (p65)
Radiation- C57BL/6 mice Whole lung was DHA 25 mg/kg TGF-f, TNF-q, ROS, SOD Chang et al. (2024)
induced lung irradiated with 20 Gy mitochondrial ultrastructure
injury radiation dose damaged
Acute lung white pigs Ventricular ART 4.8 mg/kg TNF-a, IL-1, IL-6, HMGB1,  OI Xie et al. (2023)
injury fibrillation method TLR4, NF-«B (p65), ELWI, PVP

Abbreviations: SD, Sprague Dawley, DXM, Dexamethasone; LPS, Lipopolysaccharide; DHA, Dihydroartemisinin; AS, Artesunate; ART, Artemisinin; TNF, Tumor necrosis factor; WBC, white
blood cell, IL, Interleukin; TLR, Toll-like receptor; GSH, glutathione; SOD, Superoxide dismutase; MDA, Malondialdehyde; MPO, Myeloperoxidase; NLRP3, NOD-like receptor thermal protein
domain associated protein 3; SIRT, Silent information regulator; W/D, Wet weight/dry weight; ELWT, Extravascular lung water index; PVB, Pulmonary vascular permeability; OI, Oxygenation

index.

4 Literature search

PubMed and China Knowledge Network were searched from the
start date to October 2023. Search terms included “artemisinin”,
“artesunate”, “dihydroartemisinin”, “artemether”, “artemisinin
“sodium artesunate”,
“pulmonary  nodules”, “lung

“pneumonia”, “lung injury”, “chronic obstructive pulmonary

dimer”, “lung, pulmonary fibrosis”,

“tuberculosis”, cancer”,
disease”. The research papers published on the use of artemisinin
and its derivatives for the treatment of lung cancer and diseases that
increase the risk of cancer were included in the analysis. Finally, we
studied drugs including artemisinin, dihydroartemisinin, artesunate,
and artemether, the diseases including pneumonia, lung injury, lung
fibrosis, and lung cancer, the details of including literature were
listed at Tables 1-3. The types of research studies were animal
experiments, cellular experiments, or clinical trials.

5 Mechanisms by which artemisinin and
its derivatives ameliorate the risk of
lung cancer

5.1 Inflammation and injury (phase |):
pneumonia and lung injury

In the inflammation and injury phase (phase |), artemisinin and
its derivatives are primarily used to alleviate pneumonia and lung
injury from various causes (Table 1). The mechanism may be
through modulation of immunity, antioxidant, apoptosis and
endoplasmic reticulum stress (Figure 3).

5.1.1 Suppression of inflammation to enhance
immunomodulation

Radiation pneumonia, influenza A virus pneumonia, or
Pneumocystis carinii pneumonia triggers the infiltration of
numerous inflammatory cells, leading to lung damage (Vlahos
et al,, 2011; Hoving et al,, 2023; Gelaw et al., 2023; Yang et al.,
2022). Artemisinin and its derivatives play a crucial role in
combating these Concretely, artesunate,
dihydroartemisinin, and artemether decrease the expression of

diseases.

tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and
interleukin-2 (IL-2), increase the expression of toll-like receptor 2
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(TLR2), CD4" T cells, inhibit
inflammation, and enhance immunity, ultimately, the number of
P. carinii encapsulated in the lungs decreased (Liu, 2021; Zhou et al.,
2008; Zhou et al., 2007a; Zhou et al., 2007b). Artesunate decreases
the inflammatory response and alleviates influenza A virus

and Interferon-y (IFN-y),

pneumonia by inhibiting the toll-like receptor 4 (TLR4)/nuclear
factor kappa-B (NF-kB) signaling pathway (ZHOU et al., 2022).
Dihydroartemisinin inhibits the activation of the NF-kB signaling
pathway, reduces the expression of inflammatory factors (TNF-a
and IL-6), and decreases leukocyte counts for the treatment of
radiation pneumonitis induced by A6MV-X-rays (SUI et al., 2016).

Excessive production of inflammatory factors can lead to lung
damage (Goodman et al., 2003). Artesunate and dihydroartemisinin
may ameliorate lung tissue inflammation through the HMGB1/
TLR4/NF-«B pathway and alleviate lung injury induced by various
factors, these compounds decrease inflammatory cell infiltration,
immune cell (macrophages, neutrophils, eosinophils, and
lymphocytes) counts, and inflammatory mediator (TNF-a, IL-1p,
IL-6, IL-10, IL-12, and TGEF-P) levels (Li et al.,, 2023; YANG et al,,
2021; Luo et al., 2016; Xie et al., 2023; Jiang et al., 2015; Meng et al.,
2022; Hao et al., 2022). Moreover, artesunate inhibits appendage
ligation and puncture-induced NF-kB activation in lung tissue and
decreases the mRNA and protein levels of COX-2 and iNOS (Cao

et al.,, 2016).

5.1.2 Antioxidant potential

Extensive results carried out show that artesunate and
dihydroartemisinin ameliorate oxidative stress in hyperoxia-
induced and lipopolysaccharides (LPS)-induced lung injury in a
these
nuclearrespiratoty factor 2 (Nrf2) levels in reactive oxygen

dose-dependent manner, compounds may increase
species (ROS)-sensitive cells. Further, increased Nrf2 levels
promote the expression of HO-1, superoxide dismutase (SOD),
and glutathione (GSH) and decrease that of malonic dialdehyde
(MDA) (Chang et al, 2024), simultaneously, Nrf2 negatively
regulates the activation of LPS-induced NF-kB signaling, inhibits
the activity of the NF-kB pathway, and
NLRP3 inflammatory vesicles (Xie et al, 2023; Huang et al,
2019; Zhao et al, 2017). These results demonstrated that the

antioxidant potential of artesunate depends on the Nrf2 protein,

suppresses

and is closely related to the Nrf2-mediated signaling pathway (Luo
et al., 2016).
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TABLE 2 Effect of artemisinin and its derivatives on precursor phase.

Disease

Animal/cell

Modeling
method

Drug

Inhibitory effect

10.3389/fphar.2025.1602581

Stimulatory
effect

References

Pulmonary Wistar rats Bleomycin DHA 30, 60, Ashcroft Score, HYP, IL-1f, IL-6, Michelet et al.
fibrosis 100 mg/kg TNFa, CCL3, TGF-B1, JAK2, (2021)
p-JAK2, STAT3, p-STATS3,
Inflammatory cell
Pulmonary SD rats Silica suspension | DHA 75 mg/kg HYP, collagenous fiber, TGF-1, Ji et al. (2023)
fibrosis Smad2/3, Col-I,
Pulmonary SD rats Bleomycin DHA 50 mg/kg Pulmonary fibrosis, a-SMA, MDA E-cadherin, Nrf2, Wang et al.
fibrosis HO-1, SOD, GSH (2016)
Pulmonary SD rats Bleomycin AS 100 mg/kg a-SMA, collagen, Notchl, Jaggedl, Xu et al. (2024)
fibrosis Primary lung NICD, Hes-1
fibroblasts
Pulmonary SD rats Bleomycin AS 100 mg/kg Alveolar catarrh, Fibrosis, IV-Col, You et al. (2022)
fibrosis Primary lung MMP-9, MMP-1, TIMP-1, TIMP-2
fibroblasts
Pulmonary SD rats Bleomycin DHA 25, 50, Szapiel Score, HYP, TGF-p1, TNF- Liu et al. (2017)
fibrosis 100 mg/kg a, a-SMA, NF-kB
Pulmonary SD rats Bleomycin AS 100 mg/kg Ashcroft score, HYP, TGF-f1, Zheng et al.
fibrosis Smad3, HSP47, a-SMA, Col-I (2019)
Idiopathic RLE-6TN TGF-p1 AS 2.6, 52,104, | Cell proliferation, EMT, Smad3, Smad7 Yang et al. (2018)
pulmonary 20.8 umol/L | ACTAZ2, vimentin
fibrosis
Pulmonary HFL-1 — AS 1, 10, Cell cycle was arrested at the GO/ Apoptosis rate, Bax | Pan et al. (2021)
fibrosis 100 mg/L G1 phase, Bcl-2, survivin, Col-III,
Col-I
Pulmonary Human lung TGF-B1 DHA 30 pm Cell viability, Fe**, FTH1, NCOA4, — Dengetal. (2018)
fibrosis fibroblasts a-SMA
Tuberculosis Mycobacterium — ART — — bactericidal effect Wang et al.
tuberculosis (2014)
Tuberculosis Sprague-Dawley M. tuberculosis ART, 3.5 mg/kg Mycobacterium tuberculosis Bactericidal effect Kiani et al.
rats AS (2023)
Tuberculosis M. tuberculosis — ART — DosRST — YU (2021)
Tuberculosis ATCC35838 — DHA — Destroys the bacterial cell wall Bacteriostatic rate Zhang (2010)
COPD SD rats Cigarette smoke AS 25, 50, IL-6, IL-8, TNF-a, ICAM-1, ROS, GSH, PPAR-y Wang et al.
HBSMC 100 mg/kg a-SMA, cyclin D1, TGF-f1, Smad- (2015)
2/3

Abbreviations: COPD, Chronic obstructive pulmonary disease, SD, Sprague Dawley; TGF-B1, Transforming growth factor-p1; LPS, Lipopolysaccharide; DHA, Dihydroartemisinin; AS,

Artesunate, ART, Artemisinin; TNF, Tumor necrosis factor; IL, Interleukin; HYP, Hydroxyproline; CCL, Chemokine (C-C motif) ligand; JAK, Janus Kinase, STAT, Signal transduction and
transcriptional activator; Col, Collagen, GSH, Glutathione; SOD, Superoxide dismutase; MDA, Malondialdehyde; Nrf2, Nuclear factor erythroid2-related factor 2; HO-1, Heme Oxygenase-1; a-
SMA, a-Smooth Muscle Actin; NICD, Notch intracellular domain; MMP, Matrix metalloproteinases; TIMP, Tissue inhibitor of metalloproteinase; HSP, Heat shock protein; EMT, Epithelial-
mesenchymal transition; BCL, B-cell lymphoma; Bax, BCL2-Associated X; FTHI, Ferritin Heavy Chain 1; NCOA4, Nuclear receptor coactivator 4; ROS, Reactive oxygen species; PPAR,

Peroxisome proliferator activated receptor.

Catalase is a metalloprotein oxidoreductase, which converts
H,0, into H,O and O,. A further novel finding is that
artesunate promoted the activity of catalase and decreased the
nicotinamide adenine dinucleotide phosphate (NADPH) protein
levels, artesunate inhibited the PI3K and p42/22 MAPK signaling
pathways along the way (Ng et al., 2014).

5.1.3 Apoptosis inhibitor

Multiple studies have confirmed that inefficient cell burial, such
as the phagocytic clearance of apoptotic cells, is a key factor in
inflammation and tissue damage in conditions like pneumonia and
lung injury (Zheng et al,, 2021; Zhang X. et al,, 2023; Wang et al.,
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2024b). Hence, reducing apoptosis plays a crucial role in
pneumonia treatment.

Artesunate treatment decreased TUNEL-positive cell counts and
inhibited cl-cysteinyl asparaginase-3 (cl-CASP-3)
expression, and protected the cells from LPS-induced acute lung
injury, notably, the effect of artesunate was attenuated when the cells
were treated with a PI3K inhibitor LY294002, suggesting that the
mechanism may involve the AKT/PI3K axis (Zhang E. et al., 2020).
Another study suggested that artesunate ameliorated LPS-mediated
release of apoptotic proteins NLRP1, CASP-3, ASC, and CASP-1 in
NR8383 cells by regulating SIRT1 expression in vivo (Liu Z. et al.,
2023). In addition, artesunate activated the AKT and HO-1 signaling

apoptosis,
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TABLE 3 Effect of artemisinin and its derivatives on lung cancer.

Disease

Animal/cell

Modeling
method

Inhibitory effect

10.3389/fphar.2025.1602581

Stimulatory
effect

References

Gefitinib-resistant A549 cells Gefitinib DHA 12.5, 25, 50 uM PARP, Bcl-2, cell Caspase-3, LC3, ROS, Cao et al. (2022)
lung viability, GSH, GPX4, Beclinl, Apoptosis rate
adenocarcinoma FTH, p62
NSCLC A549, A549 cells DHA 0, 5, 10, 25, 50, | Cell proliferation, Bcl-2, = Apoptosis rate, TUNEL Choi (2017)
HCCB827 cells 100 uM Bel-xL, Ki-67 Positive cells, PARP
BALB/c nude 10, 50 mg/kg
mice
Lung cancer Lewis cells, DHA 5, 10 mg/kg PCNA, Ki67, GPX4 Apoptosis rate, Bax, Zheng and
A549 cells, HMGB1, MHC-I, CRT, Abramovitch
C57BL mice HSP 90, COX2 (2020)
NSCLC H1975, A549, — Pyronaridine 0, 5, 10, 20, Cell proliferation, cell Apoptosis rate, P21, Li et al. (2021a)
H1650, 30 pmol/L cycle G2 arrested, PARP, JNK, DR5,
H460 cells p-EGFR, p-PI3K, caspase-3, caspase-7,
p-Akt, cyclin Bl caspase-8
NSCLC H1975 cells, LLC cells DHA, AS AS: 0-100 pM, Growth rate, Ki-67, — Zhang et al. (2008)
H358 cells, 25 mg/kg, DHA: Glucose, ATP, lactic
C57 BL/6 mice 12.5 mg/kg acid, GLUT 1, HK 2,
LDHA, p-ERK, c-Myc
NSCLC Lewis cells, A549, LLC cells AS 3 mg/kg Survivin, p-AKT c-caspase-3 Zhong et al.
A549 cells (2022)
C57BL/6 mice
lung cancer C57BL/6 mice LLC cells DHA 12.5 mg/kg CD206, Arg-1, AKT, CD86, iNOS, COX-2 Xing et al. (2022)
m-TOR
Radioresistant lung A549 cells 40 Gy of X-rays DHA — Radioresistance, MLC3- — Han et al. (2022)
cancer II/LC3-1, CIRBP,
PINK1/Parkin
Lung cancer C57BL/6 mice LLC cells DHA 5, 10, 30, Fe’*, GPX4, ROS/LPO, CD 86, COX-2, MDA, Han et al. (2023)
60 pug/mL CD206 p53, y-H2A X, NF-«B,
Bax, caspase-3
NSCLC — — ART B — — Connexin 43, Lai et al. (2023)
MAPK, Fe*,
NSCLC LLC, chlorin e6 DHA — GPX4 ROS Xiao et al. (2022)
NSCLC A549, H1299 cells — AS 30 pg/mL Number of invaded — Garg et al. (2021)
cells, HuR, MMP-9
NSCLC C57BL/6 mice H1975, LLC cells AS 30, 40, 60 mg/kg | TAZ, ANKRDI, PD-L1, CD8 Zheng et al. (2017)
CD274, Ki67,
NSCLC A549 cells — AS, DHA 10 uyM caspase-3, p-ACTB, TFRC Hu et al. (2023)
xCT, VDAC
NSCLC A549, LLC cells LLC cells DHA 12.5, 25, CDK2, CDK4, Ki67, — Li et al. (2022b)
C57BL/6 mice 50 mg/kg Bcl2, Bcl-xl, p-mTOR,
HIF-1a, cyclin DI,
cyclin E1
Lung cancer A549 cells, nude A549 cells AS 200 mg/kg Cyclin B1, P34, Bcl2, | P21, P53, Bax, caspase-3, =~ Zhangetal. (2021)
mice p-P38, p-JNK, p-ERK caspase-7, caspase-9
Lung cancer A549, H1299 cells — AS 10 yM NQO-1, Keapl, Nrf2 — Yan et al. (2018)
NSCLC H1975, A549 cells — AS 50 pg/mL FN1, N-cadherin, E-cadherin Zhang et al.
vimentin, (2022a)
Lung cancer NCI-H23 cells, NCI-H23 cells DHA 30 mg/kg PRIM2/SLC7A11, cell — Hill et al. (2021)
XWLC-05 cells, viability, B-catenin
nude mice
Lung cancer A549 cells, BALB/ A549 cells DHA 50, 100, CD31, NG2, HIF-1a, — Yuan et al. (2020a)
¢ mice 200 mg/kg VEGF, MVD,
(Continued on following page)
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TABLE 3 (Continued) Effect of artemisinin and its derivatives on lung cancer.

Modeling Drug

method

Disease Animal/cell

Dosage

10.3389/fphar.2025.1602581

Stimulatory References

effect

Inhibitory effect

Lung cancer LLC cells, C57BL/ LLC cells ART
6 mice
NSCLC A549 cells, PC-9 — DHA

cells, WI-38 cells

50 mg/kg

0, 20, 40, 60 uM

LMVD, VEGEF-C, p-p38 Survival rate Hu et al. (2022)

Glucose, ATP, lactic Cai et al. (2021)
acid, p-mTOR, p-S6,

GLUT1

Apoptosis rate

Abbreviations: NSCLC, Non Small Cell Lung Cancer; DHA, Dihydroartemisinin; AS, Artesunate; ART, Artemisinin; PARP, poly-ADP-ribose polymerase; ROS, Reactive Oxygen Species; GSH,
Glutathione; FTH, Ferritin Heavy Chain; Bcl, B-cell lymphoma; GPX, Glutathione Peroxidase; PCNA, Proliferating Cell Nuclear Antigen; Bax, BCL2-Associated X; HMGB, High mobility group
box; MHC, Major histocompatibility complex; CRT, Calreticulin; HSP, Heat shock protein; COX, Cyclooxyganese; EGFR, Epidermal Growth Factor Receptor; PI3K, Phosphatidylinositol 3-
hydroxy kinase; DR, Death Receptor; JNK, c-Jun N-terminal kinase; ATP, Adenosine triphosphate; GLUT, Glucose transporter; HK, Human kallikrein; LDHA, Lactate dehydrogenase A; ERK,
Extracellular signal-regulated kinase; c-Myc, Cellular-myelocytomatosis viral oncogene; AKT, Protein Kinase B; CD, Cluster of differentiation; iNOS, Inducible Nitric Oxide Synthase; mTOR,
Mammalian target of rapamycin; CIRBP, Cold-inducible RNA-binding protein; MDA, Malondialdehyde; MMP, Matrix metalloproteinases; Nrf2, Nuclear factor erythroid2-related factor 2;
LPO, Lipid Peroxidation; NF-kB, Nuclear factor-kappa B; MAPK, Mitogen-activated protein kinase; ANKRD, Ankyrin Repeat Domain; TFRC, Transferrin Receptor; ACTB, Actin beta; CDK,
cyclin-dependent kinase; HIF, Hypoxia inducible factor; FN, Fibronectin; VEGF, Vascular Endothelial Growth Factor; MVD, Microlymphatic vessel density.
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pathways, decreased the expression of TUNEL and Bax proteins,
and increased Bcl-2 expression to alleviate acute lung injury induced
by intestinal ischemia/reperfusion in mice (Ji et al., 2023).

5.1.4 Endoplasmic reticulum stress

Qian et al. reported that the protein kinase r-like endoplasmic
reticulum kinase (PERK), activating transcription factor 4 (ATF4),
and the C/EBP homologous protein (CHOP) expressions were
increased and Fe*' concentrations were elevated in rats with
ischemia/reperfusion lung injury, suggesting that this injury may
trigger iron-dependent cell death by activating the endoplasmic

reticullum.  artesunate combined with  dexmedetomidine
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downregulated PERK, ATF4, and CHOP expression, reduced
iron concentration, and attenuated iron death to ameliorate lung
injury in ischemia/reperfusion rats (Xu et al., 2024).

5.2 Precursor phase (phase II): PF,
tuberculosis, and COPD

In precursor phase (phase Il), artemisinin derivatives
exhibited anti-fibrotic, anti-inflammatory, anti-bacterial, and
anti-oxidative stress to ameliorate PF, tuberculosis, and COPD
(Figure 4; Table 2).
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5.2.1 Antifibrotic effects

Dihydroartemisinin and artesunate exhibit significant potential
in combating PF. Dihydroartemisinin reduced hydroxyproline levels
and decreased the Ashcroft scores in a dose-dependent manner,
alleviating PF in a bleomycin induced PF model (You et al.,, 2022).
Another study demonstrated through masson staining that
dihydroartemisinin treatment decreased the number of collagen
fibers in the alveolar wall and around blood vessels in PF (Zheng
et al, 2019). Artesunate inhibited the Notch signaling pathway,
decreased Jaggedl, NICD, and Hes-1 protein expression, reduced
TGF-induced a-smooth muscle actin (a-SMA) and collagen content
in fibroblasts, and inhibited the differentiation of fibroblasts into
myofibroblasts (Liu et al., 2017). In addition, artesunate inhibits PF
by regulating the expression of the profibrotic proteins, type IV
collagen, TIMP-1/2, MMP-2/9, TGF-B1, Smad3, HSP47, a-SMA,
and type I collagen (Wang et al,, 2016; Wang et al., 2015).

5.2.2 Ameliorating inflammation and
oxidative stress

Dihydroartemisinin reduces the expression of TGF-PI, a key
factor in fibrosis, and inhibits the activation of JAK2 and STATS3,
thereby decreasing the expression of the inflammatory factors, such
as IL-1pB, IL-6, TNF-a, and chemokine ligand 3, and reducing the
2022). The Smad
proteins are specific intracellular signal transduction molecules of

infiltration of inflammatory cells (You et al,

the TGF-P1 family, and dihydroartemisinin inhibits the expression
of Smad2/3 the (Zheng 2019).
Dihydroartemisinin treatment markedly reduces the number of

in rat serum et al,

neutrophils and macrophages and decreases the expression of
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inflammatory stressors in the lung tissue of PF rats, which may
be mediated by the inhibition of the NF-kB signaling (Deng et al.,
2018). In addition, dihydroartemisinin regulates the oxidative stress
through the Nrf2/HO-1 signaling pathway, leading to a decrease in
MDA and a-SMA levels and an increase in SOD, GSH, and
E-cadherin levels (Yang et al, 2018). Artesunate treatment of
COPD rats reduces IL-6, IL-8, TNF-a, and ICAM-1 expression,
reverses smoking-induced increase in ROS levels and reduction in
GSH levels, and attenuates inflammatory infiltration and oxidative
2021). From these results it is clear that
dihydroartemisinin and artesunate can ameliorate inflammation

stress (Pan et al,
and oxidative stress.

5.2.3 Inhibits cell proliferation and
promotes apoptosis

Recent studies indicate that artesunate offers benefits in
enhancing the cell cycle, suppressing hyperproliferation, and
inhibits TGF-B1-induced
(EMT) and RLE-
6TN cell proliferation by upregulating Smad7 mRNA and protein

stimulating apoptosis. Artesunate

epithelial-to-mesenchymal differentiation
expressions and downregulating Smad3, ACTA2, and Vim mRNA
2014). inhibited the
proliferation of HFL-I cells in a time- and concentration-

expressions (Wang et al, Artesunate
dependent manner, and apoptotic cells were seen after staining
with Hochst33258. The progression of HFL-I cells from the G1 to
the S phase was blocked, resulting in a build-up of cells in the
G1 phase (which were unable to enter the S phase), a relative
increase in the number of cells in the G2/M phase, a decrease in
the expression of Bcl-2 and survivin mRNA, an increase in the

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1602581

Xie et al.

10.3389/fphar.2025.1602581

———— — — —

2

LA_rte’su/n:_it’eJ Dihydroartemisinin @m Artesunate /Dihydroartemisinin
CD8

Epithelial cells Tumour cell Macrophages Neutrophil
—~a— (4

ECM

Fiber cell  Erythrocyte

FIGURE 5

PD-L1, ANKRD1, MHC-I

Caspase-3, Caspase-7, Caspase-8...
Cytokines:TNF-a, IL-6...MCP-1, MIP-2a...COX-2, Inos, CD206, CD86,CD31,NG2...

(P21)Cyclin

LUTI, HK2, LDHA —» ATP, Lactic acid

Bax, Bcl2, Bel-xl, Survivin, LC3-I/LC3-T

Multifunctional mechanisms of artemisinin and its derivatives against lung cancer.

expression of Bax mRNA, and an increase in the number of
apoptotic cells (Zhang, 2010). In addition, artesunate decreased
a-SMA and cell cycle protein D1 levels and inhibited cell
proliferation by targeting the PPAR-y/TGF-B1/Smad2/3 signaling
pathway (Pan et al,, 2021).

5.2.4 Promotes iron-mediated autophagy

Wang et al. used dihydroartemisinin to intervene in a fibrotic
cell model established using a human embryonic lung fibroblast cell
line and found that dihydroartemisinin inhibited cell viability,
decreased Fe®" levels, and inhibited the expression of ferritin
heavy chain 1 (FTHI1) and nuclear receptor coactivator 4
(NCOA4) genes and proteins. Specifically, dihydroartemisinin
reduced Fe** levels at an early stage and triggered iron
autophagy, resulting in the degradation of iron autophagy-related
proteins, FTH1 and NCOA4, followed by an increase in Fe** levels
(YU, 2021). Thus, dihydroartemisinin may have a dual role in
inhibiting oxidative stress at the early stage and promoting iron-
autophagy in the later stage.

5.2.5 Antimycobacterial effects

Artemisia annua, artemisinin, and their derivatives have a
bacteriostatic effect on M. tuberculosis (Kiani et al., 2023; Gu
et al,, 2021; Zheng et al,, 2017; Choi, 2017). Dihydroartemisinin
co-administration  mitigates rifampicin resistance, disrupts
Mpycobacterium bovis cell wall integrity, and promotes the
inhibition of mycobacteria (Gu et al, 2021). DosRST is a two-
component regulatory pathway induced by host immune signals
(e.g. hypoxia, nitric oxide, and carbon monoxide), and inhibition of

DosRST decreases the reservoirs of persistent drug-resistant bacteria
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in the host (Zheng and Abramovitch, 2020). Artemisinin inhibits the
DosRST signaling and thus reduces the M. tuberculosis (Zheng
et al.,, 2017).

5.3 Cancer phase (phase lll): lung cancer

Artemisinin and its derivatives, alone or in combination, can be
effective in controlling precancerous diseases and lung cancer
development and progression. Despite the limited number of
clinical studies, the anti-lung cancer efficacy of artemisinin and
its derivatives shows promise. The results of three lung cancer-
related clinical trials showed that artesunate combined with
chemotherapy upregulated the CD39, CD279, and GrzB
expression in CD8" and CD4" T cells in patients with lung
cancer, thereby modulating the immune function of T-cell
subsets. This improved the disease control rate and near-term
survival and prolonged the time to progression of disease in
patients with advanced NSCLC without an increase in adverse
reactions (Xing et al., 2022; Zhang et al., 2008).
that
dihydroartemisinin and artesunate can regulate inflammation,

Fundamental research indicated artemisinin,
oxidative stress, glycolysis, ferroptosis, inhibit cell proliferation,
promote apoptosis (Figure 5), alleviate lung cancer symptoms
and reduce drug resistance (Table 3). However, in the current
experimental reports, due to the large heterogeneity between
experiments, it is not possible to obtain the differences in drug
responses of artemisinin and its derivatives in treating different
subtypes of lung cancer (such as EGFR mutations and KRAS

mutations) (Cai et al., 2021; Yan et al., 2018; Cao et al.,, 2022).
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More subtype-specific preclinical trials are expected to further
explore the drug advantages.

5.3.1 Suppressing inflammation and enhancing
immunomodulation

Artesunate inhibits NSCLC cell growth by inhibiting the TAZ/
PD-LI signaling and increasing CD8" T cell infiltration (Cao et al.,
2022). Dihydroartemisinin downregulates B7-H3 but not PD-L1
expression on NSCLC cells. Notably, B7-H3 participates in
dihydroartemisinin-mediated antitumor effects by increasing
intratumoral CD8" T lymphocyte counts in NSCLC (Hu et al,
2023). Han et al. found that dihydroartemisinin promoted
immunogenic death in lung cancer mice, increased the
expression of related proteins (MHC-I, CRT, and HSP90), and
upregulated HMGBI1 expression (Han et al, 2023). In addition,
dihydroartemisinin increased the expression of M1 phenotype-
related molecules (CD86, iNOS, and Cox-2) and decreased that
of M2 phenotype-related molecules (CD206 and Arg-1). Therefore,
dihydroartemisinin promoted the macrophage M0/M1 phenotypic
shift and acted as an immunomodulator for macrophage M2 to
M1 reprogramming (possibly by regulating the AKT/mTOR
pathway) (Xiao et al,, 2022).

5.3.2 Antioxidant effects

Artesunate activates the protective Keapl/Nrf2 pathway in lung
cancer cells, improving cellular antioxidant defenses (Hill et al.,
2021). Dihydroartemisinin treatment results in high levels of ROS
and significantly inhibits A549 cell proliferation (Lai et al., 2023).
Artesunate and dihydroartemisinin reduce the voltage-dependent
anion channel 1 protein levels and cleavage CASP-3, possibly
mediating mitochondrial disruption through ROS (Zhang
et al., 2021).

5.3.3 Inhibition of cell proliferation and promotion
of apoptosis

Dihydroartemisinin inhibited the proliferation of A549/HCC
827 cell lines in a dose-dependent manner, and HCC 827 cells were
more sensitive to dihydroartemisinin inhibition compared with
A549 cells (Hu et al, 2023). Dihydroartemisinin significantly
downregulates NSCLC proliferation-associated factors (Ki-67 and
PCNA) and increases the percentage of TUNEL-positive cells (Hu
et al., 2023). Artesunate inhibits the proliferation of A549 cells and
reduces the number of positive cells. Notably, it is more effective in
combination with cisplatin (Li W. et al., 2021).

CASP-3 is upregulated after dihydroartemisinin intervention in
A549-GR cells, whereas PARP and Bcl-2 are downregulated,
alleviating gefitinib resistance and increasing apoptosis (Lai et al.,
2023). In addition, the expression of the apoptotic protein Bax was
synchronously enhanced (Han et al., 2023). Pyrrolidine (artemisinin
synthetic drug) can upregulate DR5 expression by activating JNK,
triggering the TRAIL-induced apoptosis pathway, and upregulating
the expression of PARP, caspase-3, caspase-7, and caspase-8 (Zhong
et al, 2022). Artesunate promotes apoptosis in A549 cells by
inhibiting the AKT/survivin signaling (Zhang W. et al, 2022).
Artesunate combined with induces

cisplatin morphologic

changes, such as cellular crumpling, nuclear chromatin

condensation, and irregular shape. The combined treatment
downregulates the activity of the anti-apoptotic molecule Bcl-2,
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upregulates the expression of the pro-apoptotic molecules P53 and
Bax, and increases the activity of caspases to promote endogenous
apoptosis. Notably, the synergistic effect of the combination therapy
may be mediated by the P38/[NK/ERK MAPK pathway (Li W.
et al., 2021).

5.3.4 Ferroptosis induction
inhibits the
expression of the ferroptosis-related proteins GPX4 and FTH in

Dihydroartemisinin downregulation of the
gefitinib-resistant A549 cells, thereby contributing to free iron
release (Lai et al, 2023). Dihydroartemisinin-triggered iron death
of tumor-associated macrophages releases ROS/LPO, inducing the
expression of COX-2 and accumulation of MDA. Consequently,
DNA damage occurs, which activates downstream NF-kB to
remodel tumor-associated macrophages to the M1 phenotype (Li
LG. et al,, 2022). Dihydroartemisinin inhibits GPX4 and enhances
ROS production to promote the therapeutic effects of chlorin e6-
induced photodynamic therapy in lung cancer (Han et al., 2022).
Ferritin-1, a ferroptosis inhibitor, restores dihydroartemisinin-
induced decrease in cell viability and cell death in NCI-H23 and
XWLC-05 cells. Notably, dihydroartemisinin inhibits proliferation
and colony formation and induces ferroptosis in lung cancer cells by
inhibiting the PRIM2/SLC7A11 axis (Yuan B. et al., 2020).

5.3.5 Inhibition of cell invasion and migration
Artesunate inhibits the proliferation, migration, and invasion of
A549 and H1299 cells and induces their apoptosis, possibly due to
reduced HuR and MMP-9 protein expressions (Hu et al., 2022).
the of
BTBD549 and increases the levels of epithelial cell markers
(E-calmodulin), whereas the levels of mesenchymal cell markers

Artesunate treatment downregulates transcription

(including N-calmodulin, vimentin, and FNI1) are significantly
reduced. Artesunate suppresses EMT in a dose-dependent
manner, thereby suppressing the migratory capacity of NSCLC
cells (Wang et al., 2020).

5.3.6 Cell cycle blockade

Pyrrolidine inhibits the EGFR/PI3K/Akt signaling pathway,
increases P21 expression, decreases cyclin Bl expression, and
inhibits EGFR-dependent NSCLC cell growth and cell cycle
blockade in the G2 phase (Zhong et al., 2022). Artesunate blocks
the cell cycle in the GO/G1 phase in both H1975 and LLC cells and
induces G2/M cell cycle blockade in H460 cells (Cao et al., 2022).
The combination of artesunate and cisplatin significantly enhances
cell cycle arrest in the G2/M phase, upregulates P21 expression, and
downregulates cyclin B1 and P34 expression (Li W. et al., 2021).
Dihydroartemisinin can induce A549 cell cycle arrest by reducing
the expression levels of key GO/G1 regulators, including cyclin
dependent kinase 2 (CDK2), cyclin dependent kinase 4 (CDK4),
and cyclin El, and the mTOR/HIF-1a signaling is one of the
potential key pathways involved (Li Y. et al.,, 2021).

5.3.7 Autophagy inducing effect

Autophagy was significantly upregulated in A549-GR cells after
dihydroartemisinin treatment, and the expression of LC3 and
Beclinl  (autophagy-related  proteins)  increased,
p62 decreased (Lai et al, 2023). Dihydroartemisinin reduced

while

LC3-II/LC3-1 expression, inhibited mitochondrial autophagy, and
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ameliorated radioresistance in the lung cancer A549 cell line
(A549R), the key target of which may be cold-inducible RNA-
binding protein (Wu et al., 2022).

5.3.8 Inhibition of angiogenesis
inhibited
decreasing the expression of HIF-1a, VEGF, and endothelial cell-

Dihydroartemisinin tumor vascularization by
specific marker (CD31 and NG2) proteins, leading to a significant
reduction in microvessel and mature vessel density in a time-
dependent manner (Zhang et al., 2013). Artemisinin significantly
reduced p38 MAPK phosphorylation of VEGF-C in a dose-
dependent manner and had a significant inhibitory effect on
tumor lymphatic microvessel density in the peritumor area,
ultimately increasing the survival of lung cancer mice (Wang
et al., 2008).

5.3.9 Regulation of glycolysis
Artesunate the

c-Myc

and  dihydroartemisinin ~ downregulate
inhibit

expression, and decrease glucose transporter protein (GLUTI),
(HK  2),
dehydrogenase A concentrations in a dose-dependent manner.
ATP

production decrease in NSCLC cells, leading to the inhibition of

extracellular signal-regulated kinase activity,

human myosin-releasing enzyme and lactate

Consequently, glucose uptake, content, and lactate

aerobic glycolysis in vitro and in vivo (Zhang Y. et al, 2022).
of GLUT1 inhibits
mTOR, decreasing glucose uptake and glycolytic metabolism in
NSCLC cells (Mi et al., 2015).

Artemisinin and its derivatives have therapeutic effects on

Dihydroartemisinin-induced  inhibition

asthma, respiratory distress syndrome, novel coronavirus
pneumonia, pulmonary hypertension, and silicosis (Zhang M.
et al., 2023; Zhou et al., 2021; Cai et al., 2022; Xin et al., 1998;
Cui et al, 2022). Overall, artemisinin and its derivatives are
promising therapeutic agents for lung diseases. Subsequent
studies should focus on the therapeutic effects of artemisinin and
its derivatives in other lung diseases in addition to their effects in
pre-cancerous lung diseases. In addition to artesunate and
dihydroartemisinin, other derivatives, such as artemisinin dimer
and artesunate sodium, can also be evaluated for their role in the

prevention and treatment of Lung cancer.

6 Mechanism of artemisinin and its
derivatives in the multistep dynamic
development process of lung cancer

High mobility group box 1 protein (HMGBI1) is an upstream
signaling protein that regulates inflammation and activates TLR4.
TLRs are a family of innate immune recognition receptors that
activate myeloid differentiation factor 88 and NF-«kB (Yuan et al,
2023), NF-xB is a transcription factor that plays a key role in cellular
inflammatory and immune responses (Yuan J. et al, 2020).
Artesunate and dihydroartemisinin may exert
immunomodulatory effects by regulating HMGB1 expression,
inhibiting TLR4/NF-kB activation, decreasing TNF-a, IL-6, IL-1f,
iNOS, and Cox-2 expression, and attenuating inflammation caused
by pneumonia, lung injury, lung fibrosis, and lung cancer (Deng et

al,, 2018; Han et al., 2023).
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TGE-B1
differentiation

is a cytokine that regulates cell growth and
the
fibroblasts into myofibroblasts, which then synthesize and release

and promotes transformation of lung
high concentrations of matrix proteins components into the
extracellular matrix, leading to lung fibrosis. The Smad proteins
are specific intracellular signaling molecules of the TGF family.
TGF-B1 signaling induces the phosphorylation of JAK2, which
the JAK2/STAT3
inflammatory response and fibrosis. Dihydroartemisinin reduces
the expression of TGF-P1 and, Smad2/3, inhibits the activation of
JAK2/STATS3, attenuates the expression of inflammatory factors (IL-

activates signaling pathway to promote

6, TNFa, and chemokine ligand 3), and reduces the infiltration of
inflammatory cells (You et al., 2022; Zheng et al., 2019). In addition,
dihydroartemisinin can inhibit PD-L1 expression, promote T-cell
growth, and increase the killing capacity of T cells. Ultimately,
dihydroartemisinin prevents tumor immune escape by inhibiting
the TGF-p, PI3K/Akt, and STAT3 signaling pathways to promote
tumor eradication (Zhang E. et al., 2020; Zhang H. et al., 2020).

Nrf2 is an important initiator of the oxidative stress pathway.
The activated Nrf2 translocates to the nucleus and regulates the
transcription of antioxidant proteins such as HO-1. ROS are mainly
generated by redox reactions and have a dual role in tumor cells.
SOD, GSH, and MDA are the common biomarkers of oxidative
stress. Artesunate and dihydroartemisinin reduced oxidative stress
in lung tissues in a dose-dependent manner by modulating the
Keapl/Nrf2 signaling pathway. Notably, Nrf2 translocates to the
nucleus in ROS-sensitive cells, increases the antioxidant HO-1
levels, decreases the MDA levels, and increases the SOD and
GSH activities (Xie et al., 2023; Huang et al., 2019; Zhao et al,
2017; Xin et al., 1998). In addition, artesunate can enhance the
antioxidant defense system and prevent oxidative damage in the
lungs by inhibiting the PI3K and p42/22 MAPK signaling pathways,
decreasing the levels of oxidative biomarkers (8-IPS, 8-OHdG, and
3-NT), promoting anti-hydrogen peroxide dismutase activity in
lung tissues, and decreasing the expression of NADPH (Ng
et al., 2014).

The combination of artesunate and dihydroartemisinin
PERK, ATF4, and CHOP, Fe**
concentration, attenuates iron-induced cell death, and ameliorates

downregulates reduces
lung injury (Xu et al., 2024). Dihydroartemisinin decreases GPX4,
FTHI1, and NCOA4 expression and reduces Fe>" levels by inhibiting
the PRIM2/SLC7A11 axis (YU, 2021; Lai et al, 2023; Yuan B.
et al., 2020).

Artesunate may inhibit the proliferation of lung cancer cells,
downregulate the expression of anti-apoptotic molecules Bcl-2 and
survivin, upregulate the expression of pro-apoptotic molecules
P53 and Bax, and increase the activity of caspases and apoptosis
rate through the PPAR-y/TGF-B1/Smad2/3, AKT/Survivin, P38/
JNK/ERK, and MAPK pathways (Pan et al., 2021; Wang et al., 2014;
Zhang, 2010; Li W. et al,, 2021; Xin et al., 1998). This compound
increases the expression of E-calmodulin, decreases the levels of
N-calmodulin, vimentin, and FN1, inhibits EMT, and decreases the
migratory ability of NSCLC cells (Wang et al., 2020). Moreover,
artesunate induces the G2/M cell cycle blockade in HFL-I and
H460 cells and blocks the cell cycle in the GO/G1 phase in
H1975 and LLC cells. Notably, the combination of artesunate
with cisplatin enhanced cell cycle blockade in the G2/M phase
(Zhang, 2010; Cao et al., 2022; Li W. et al,, 2021).
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Dihydroartemisinin inhibited the proliferation of A549 and
HCC827 addition,
dihydroartemisinin treatment significantly downregulated Ki-67,
PCNA, PARP, and Bcl-2 expressions, upregulated cysteine 3 and
Bax expressions, and increased the percentage of TUNEL-positive

cells in a dose-dependent manner. In

cells. Moreover, dihydroartemisinin may decrease the expression
levels of the key GO/G1 regulators, CDK2/4, and cyclin E1 through
the mTOR/HIF-1a signaling, thereby inducing A549 cell cycle blockade
and alleviating gefitinib resistance (Hu et al., 2023; Lai et al,, 2023; Li Y.
et al, 2021). Overall, artemisinin and dihydroartemisinin regulate
multiple pathways, such as TLR4/NF-kB, Keapl/Nrf2, mTOR/HIF-
la, PI3K/Akt, AKT/mTOR, JAK2/STAT3, and MAPK, by modulating
cellular processes including inflammation, immunity, oxidative stress,
ferroptosis, apoptosis, cell proliferation, and cell cycle arrest. Thereby,
they ameliorate lung cancer precursor lesions such as pneumonia, lung
injury, PF, and COPD, consequently reducing the risk of cancer. In
addition, artemisinin and its derivatives regulate several cellular
processes, including glycolysis, angiogenesis, and cellular autophagy,
even when lung injury, PF, and COPD are not involved. These research
directions may be explored in the future.

7 Adverse effects of artemisinin and its
derivatives and current management
approaches

7.1 Adverse effects and safety of drugs

Artemisinin and its derivatives have minimal adverse reactions
and side effects (Lee et al., 2010; Asghari et al., 2015). Trendfilova
et al. reported that artemisinin and its derivatives are unlikely to
cause adverse effects in humans, probably due to the low clinical
doses and the short duration of administration (Trendafilova et al.,
2020). Whereas, several studies have demonstrated that high-dose
and long-term administration of artemisinin-based drugs has
effects
experimental animals (e.g., rhesus monkeys, rats, and dogs), and

gastrointestinal, neurotoxic, and cardiotoxic in
the most common adverse effects are nausea, vomiting, and
dizziness (Li et al.,, 2019; Li X. et al., 2022).

More specifically, oral administration is safer than intramuscular
injection in animal models because artemisinin is present in
experimental animals for a long period after its slow release from
intramuscular formulations, leading to severe side effects (Gordi and
Lepist, 2004). Intramuscular injection of artemether was more
neurotoxic than that of artesunate in a mouse model, suggesting
differences in the optimal dosing of different derivatives
(Nontprasert et al, 1998; Efferth and Kaina, 2010). Therefore,
artemisinin and its derivatives need to be extensively tested in
clinical trials for selecting drugs, dosage regimens, duration of

therapy, and route of administration for different lung diseases.

7.2 Current management approaches: to
optimize drug delivery systems

Despite the promising pharmacologic effects of artemisinin and its
derivatives, their clinical applications are limited due to their poor
solubility, short half-life in blood circulation,

aqueous low
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bioavailability, and poor stability (Alven and Aderibigbe, 2020; Qian
et al, 2021). In recent years, several micro/nanoscale delivery systems,
such as polymer-drug nanoparticles, micelles, lipid nanoparticles, and
liposomes have been developed to improve the therapeutic efficacy and
reduce the adverse effects of these compounds in lung cancer and
precancerous diseases (Abdelaziz et al., 2018; Kim et al., 2023).

7.2.1 Polymer-drug nanoparticles

The protective coating of polyethylene glycol (PEG) inhibits the
detection and clearance of nanoparticles by the immune system and
prolongs drug circulation time (Steffes et al, 2020). Hao et al.
synthesized PEGylated artesunate precursor drug (mPEG-ART)
and found that the precursor drug ameliorated LPS-induced
acute lung injury, suggesting its potential use as an anti-
inflammatory agent (Hao et al., 2022).

Dai et al. linked dihydroartemisinin to a multi-armed PEG, and
this coupling increased the dihydroartemisinin loading capacity,
enhanced the water solubility, and increased the half-life of the drug
in blood circulation, resulting in better inhibition of tumor growth
(Dai et al, 2014). Kumar et al. synthesized a new hyaluronic
acid-dihydroartemisinin conjugate in which the hydroxyl group
of dihydroartemisinin was covalently linked to the carboxyl group of
hyaluronic acid to increase the drug loading capacity by 12% and
improve the therapeutic efficacy (Kumar et al., 2019). Sun et al.
encapsulated dihydroartemisinin in gelatin or hyaluronic acid
nanoparticles using an electrostatic field system to form polymers
of approximately 30-40 nm diameter, and the encapsulation
efficiencies were 13% and 35% with gelatin and hyaluronic acid,
which the of
dihydroartemisinin (Sun et al., 2014).

respectively, improved bioavailability

7.2.2 Lipid nanoparticles

Folic acid-modified PEGylated paclitaxel and artemether solid
lipid nanoparticles (SLNs) were prepared using a high-pressure
homogenization technique. SLNs showed enhanced cytotoxicity
and increased relative drug bioavailability. Pharmacodynamic
studies confirmed the enhanced anticancer potential of the SLN
formulations without any hepatic or renal toxicity (Khatri et al.,
2020). Chen et al. used the ROS-responsive fraction of thioacetal to
bridge cinnamaldehyde and dihydroartemisinin. The precursor
drug combined with photodynamic therapy enhanced the
antitumor effect of dihydroartemisinin by laser irradiation-
induced ROS degradation in cancer cells (Chen et al., 2022).

7.2.3 Liposomes

Liposomes are the biocompatible, degradable, non-toxic, and non-
immunogenic structures prepared from phospholipids and cholesterol
(Najlah et al,, 2019). Fu et al. constructed a biomineralized liposome
(LDM) by incorporating dihydroartemisinin into the liposome core and
encapsulating pH-responsive calcium phosphate on the liposome
surface as a shell (Fu et al, 2023). Drug delivery to the lungs
through nebulization resulted in approximately 6.80-fold higher drug
accumulation in lung lesions compared with the delivery through
intravenous injection. Degradation of the shell induced Ca*" burst to
create a “Ca’* burst-endoplasmic reticulum stress—iron apoptosis”
cycle, enhancing iron apoptosis in lung cancer cells. Consequently,
LDM promoted tumor elimination in vitro and in vivo. Hu et al
prepared liposomes of artesunate using the film dispersion method and
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lyophilized the preparation to obtain liposomal artesunate dry powder
inhalers, which showed potent anti-inflammatory effects in acute lung
injury treatment (Hu et al, 2016). In addition, the liposomal
bioavailability of artesunate and
dihydroartemisinin in the lungs and increased the therapeutic

formulation improved the
efficacy of drugs.

7.2.4 Other drug delivery systems

Non-ionic surfactant vesicles (Niosomes) are a new type of
nanocarriers optimal for encapsulating lipophilic and hydrophilic
drugs (Gharbavi et al., 2018). Shahbazi et al. prepared artemisinin
and metformin (ART + MET)-loaded PEGylated niosomes in
different dosages using the thin film hydration method and
found that these niosomes had higher antiproliferative effects on
A549 lung cancer cells compared with free ART-MET (Shahbazi
et al., 2023). ART-loaded porous polylactic acid-hydroxyacetic acid
copolymer microspheres were prepared using the emulsification
solvent volatilization method. The microsphere-released drug was
effectively taken up by A549 cells and had a strong inhibitory effect
on cell migration and invasion by inducing apoptosis and cell cycle
arrest in the G2/M phase (Xiong et al., 2021).

7.2.5 Potential for drug modification

The dimers of artemisinin and the development of hybrid drugs
have shown significant potential. Dimers enhance activity by linking
two molecules of artemisinin, such as a 2-5-fold increase in anti-
malarial activity and stronger inhibition of the PI3K/Akt pathway,
which can overcome tumor resistance (Capci et al., 2021; Yue et al.,
2023; Chen et al.,, 2025; Jiang et al., 2025). Hybrid drugs integrate
heterogeneous active units; for example, artemisinin-indirubin
hybrids can fight cancer through dual pathways, with an efficacy
increase of more than threefold. These modifications break through
the limitations of single-target approaches, have the advantage of
multi-pathway intervention, and can also optimize toxicological
properties through structural design (Xu et al., 2023; Wang et al,,
2023b; Wang P. et al, 2023; Wang et al., 2023d). However,
controllable synthesis, compatibility with delivery systems, and
insufficient clinical evidence are current challenges. It is
necessary to combine computational design with intelligent
delivery to promote transformation and provide new pathways
for the treatment of pulmonary diseases.

7.3 Future possibilities and current
limitations

Artemisinin and its derivatives have demonstrated remarkable
multi - stage intervention characteristics and hold significant
potential for clinical translation. In particular, their dual role in
preventing the progression of lung injury - fibrosis - cancer and
enhancing chemotherapy sensitivity will make a substantial
contribution to the future development of medicine. As a
paradigm for the development of natural product drugs,
artemisinin compounds offer new ideas for overcoming clinical
challenges such as drug resistance in current targeted therapies,
and their broad - spectrum biological activity based on the peroxide
bridge structure is expected to break through the limitations of
traditional single - target drugs.
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However, there are still multiple challenges in moving from basic
research to clinical application. First, the safety profiles under different
formulations (such as nanoformulations vs traditional formulations),
routes of administration (inhalation vs intravenous), and dose
gradients have not been fully clarified, especially the need for
systematic evaluation of neurotoxicity and immune regulation
effects with long - term use. Second, although there is abundant
evidence from basic research, there is still a significant evidence gap in
clinical trials targeting populations, lacking large sample size data to
support efficacy and safety. In addition, like all natural products,
efficient targeted delivery of artemisinin compounds remains a key
bottleneck restricting clinical translation, and their pharmacokinetic
defects such as poor water solubility and short plasma half - life
urgently need to be optimized.

8 Summary

This review highlighted the fact that the dynamic development
processes of lung diseases to lung cancer, elaborated on the
pathologic states of pre-lung cancer diseases and the mechanisms
by which they progress to lung cancer. In addition, we discussed the
therapeutic effect of artemisinin and its derivatives on different
diseases that increase the risk of lung cancer and explored the
common regulatory mechanisms. Finally, we summarized the
development of targeted drug delivery systems for artemisinin
and its derivatives.

Pneumonia, lung injury, PF, tuberculosis, and COPD increase
the risk of lung cancer to varying degrees. Artemisinin and its
derivatives can reduce DNA damage, oxidative stress, and
inflammation, inhibit cell proliferation, promote apoptosis, and
regulate the cell cycle through multiple pathways, such as the
TLR/NF-kB, Keapl/Nrf2, and PI3K/Akt signaling pathways,
thereby exerting a therapeutic effect on lung cancer and pre-lung
cancer diseases. Moreover, these compounds can regulate glycolysis,
inhibit angiogenesis, increase cellular autophagy, and repair lung
injury. Nanoscale delivery systems,
nanoparticles, micelles, and liposomes, are being developed to

such as polymer-drug

increase their bioavailability and improve drug stability, which
will improve the therapeutic efficacy.

Artemisinin and its derivatives can be used as both anti-lung
cancer and lung protective agents in clinical application. Current
research focuses on artesunate and dihydroartemisinin. However,
clinical trials to verify their efficacy are still lacking. Future studies
should focus on more artemisinin derivatives, and clinical trials
should be conducted to validate the efficacy of artemisinin-based
approaches for the prevention and treatment of lung cancer.
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