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Background: Screening for gastric intestinal metaplasia (GIM) holds significant
importance for the early detection of gastric cancer. To help clinicians identify
high-risk GIM patients and determine the timing of gastric mucosal biopsy, we
aim to develop a predictive model for the occurrence of GIM in patients.
Methods: Patients were collected from the First Affiliated Hospital of Dalian
Medical University, following rigorous inclusion and exclusion criteria. Initially, the
VarSelRF algorithm identified independent variables linked to GIM development.
We employed eight machine learning algorithms, including Decision Trees (DT),
Elastic Net (ENet), K-Nearest Neighbors (KNN), LightGBM, Random Forest (RF),
eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), andMulti-
Layer Perceptron (MLP) to construct predictive models. Their performances were
benchmarked using ROC curves, calibration curves, and decision curve analysis
(DCA) curves. We also applied SHAP values to interpret the RF model, quantifying
the contribution of each feature to predictions. Additionally, a web-based
calculator was developed based on the RF model to facilitate practical clinical
applications.
Results: Among the 975 patients examined, 322 individuals were pathologically
confirmed to have GIM. Eleven independent variables significantly contributed to
GIM occurrence, including gastric mucosal atrophy, H. pylori infection, direct
bilirubin (DBIL), creatinine (Crea), smoking and alcohol history, gender, alanine
aminotransferase (ALT), age, albumin/globulin ratio (ALB/GLO), and gamma-
glutamyltransferase (GGT). The RF model demonstrated strong performance
among the eight machine learning algorithms tested, achieving an AUC of
0.8167 in the testing dataset, along with a specificity of 85.5% and a sensitivity
of 57.0%. The model’s interpretive capabilities were enhanced by SHAP values,
which helped clinicians understand the decision-making process. The resulting
web-based calculator serves as a practical tool for clinicians.
Conclusion: This study highlights the innovative use of serological biomarkers to
assess the risk of GIM. We found that certain markers related to liver and kidney
function are strong predictors of GIM development. Additionally, the application
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of SHAP values improves the understanding of how features contribute to
predictions, while the newly developed web-based calculator offers a practical
tool for clinicians to evaluate GIM risk more easily.

KEYWORDS

gastric intestinal metaplasia, machine learning, clinical indicators, serological
test, screening

1 Introduction

Gastric cancer is the sixth most common malignancy worldwide
and the third leading cause of cancer-related deaths, imposing a
significant economic burden globally (Bray et al., 2018). Patients
with advanced gastric cancer commonly experience symptoms such
as stomach pain, weight loss, anemia, and cachexia, which severely
reduce their quality of life (Smyth et al., 2020). Despite surgery
combined with postoperative adjuvant chemotherapy, the 5-year
survival rate for patients with advanced gastric cancer remains below
30%. In contrast, early gastric cancer patients who receive timely
treatment, such as endoscopic submucosal dissection (ESD), can
achieve a 5-year survival rate as high as 90%–95% (Maruyama et al.,
2006). However, the onset of early gastric cancer is usually subtle
and easy to ignore. In that way, early identification of precancerous
lesions is particularly important.

Gastric adenocarcinoma develops through a cascade that begins
with chronic superficial gastritis, progresses to chronic atrophic
gastritis, and then to intestinal metaplasia and dysplasia before
culminating in adenocarcinoma. Regular monitoring of
precancerous conditions, such as chronic atrophic gastritis and
gastric intestinal metaplasia (GIM), is crucial for the timely
detection of early gastric cancer. Intestinal metaplasia refers to
the replacement of gastric mucosa with intestinal epithelial cells,
leading to fundamental tissue changes (Leun et al., 2002). This
process is pivotal in the transition from precancerous disease to
malignancy (Song et al., 2015).

Currently, gastroscopy combined with tissue biopsy is the only
golden standard for diagnosing GIM. However, due to its high cost,
invasive nature, and high dependence on pathologists, patient
compliance is low (Malfertheiner et al., 2017). Although auxiliary
examinations such as imaging and biomarkers have relatively better
compliance, their clinical diagnostic specificity is inconclusive.
Therefore, there is an urgent need for an effective and easily
accessible tool to predict intestinal metaplasia of the gastric
mucosa at an early stage, helping clinicians decide when to
perform gastric mucosal tissue biopsy.

Intestinal metaplasia results from the gradual replacement of
gastric mucosal cells by intestinal epithelial cells, often linked to
gastric mucosal gland atrophy and H. pylori infection (Li et al.,
2018). Recent studies have demonstrated that H. pylori infection
extends beyond localized gastric pathology and may affect distant
organ function through systemic inflammatory pathways (Santos
et al., 2020). The key virulence factor γ-glutamyltranspeptidase
(GGT) of H. pylori catalyzes glutathione degradation in the
gastric mucosa, generating reactive oxygen species (ROS) and
activating pro-inflammatory pathways such as NF-κB (Chen
et al., 2023). These inflammatory mediators enter the systemic
circulation and can trigger systemic inflammatory responses,
subsequently affecting the metabolic functions of organs

including the liver and kidneys (Wang et al., 2014; Koenig and
Seneff, 2015). Furthermore, reduced gastric acid secretion from
mucosal atrophy elevates intragastric pH, promoting abnormal
colonization of intestinal flora and increasing the risk of bile
reflux, both of which contribute to the development and
progression of intestinal metaplasia. Additionally, bile reflux can
impair gastric mucosal repair mechanisms (Shi et al., 2022).
Research by Shahid et al. has identified distinct serum protein
profiles in patients with gastric cancer, gastric ulcers, and gastritis
(Aziz et al., 2022). Studies have shown that kidney function markers
(such as serum creatinine and blood urea nitrogen) in H. pylori-
infected patients may undergo subtle changes that correlate
with the degree of gastric mucosal atrophy. Therefore, serum
hepatorenal function markers may serve as biomarkers reflecting
systemic inflammation and oxidative stress, indirectly predicting the
degree of gastric mucosal pathology to some extent. Hepatorenal
function tests are routine clinical examinations with standardized
detection methods, stable and reliable results, easily accessible
data, and low cost. Compared to expensive endoscopic
examinations, serological markers offer non-invasive and
convenient advantages, making them more suitable for large-scale
screening and early prediction. However, due to the complexity and
diversity of these serological indicators, the sensitivity and specificity
of a single indicator are limited. Therefore, it is necessary to
comprehensively consider multiple factors and explore their
predictive utility in GIM in depth.

Therefore, this study aims to develop a model for the early
prediction of GIM by using common serum markers related to liver
and kidney function, as well as potential risk factors for GIM.
Candidate indicators include patients’ basic information,
potential factors of known gastric-related diseases, serum markers
of liver function and kidney function. In the modeling process, eight
different machine learning algorithms were employed to construct
the models, including Decision Tree (DT), Elastic Net (ENet),
K-Nearest Neighbors (KNN), LightGBM, Random Forest (RF),
eXtreme Gradient Boosting (XGBoost), Support Vector Machine
(SVM), and Multilayer Perceptron (MLP). Through internal
validation, the effectiveness of various model algorithms was
compared, and their predictive capabilities were evaluated to
determine the optimal model. Finally, an online calculation
platform was developed based on the optimal model to facilitate
the early diagnosis of patients with GIM.

2 Materials and methods

2.1 Patients population

Inclusion criteria were as follows: 1) Inpatients at the First
Affiliated Hospital of Dalian Medical University from January to
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December 2023. 2) Patients who underwent gastroscopy and
endoscopic biopsy during hospitalization. 3) Completed basic
serological tests such as liver function, kidney function, and H.
pylori testing during hospitalization. 4) Patients without serious
diseases affecting the heart, lungs, liver, kidneys, or blood
system. 5) Patients over 18 years of age who signed an
informed consent form. Exclusion criteria were as follows: 1)
Patients diagnosed with gastric cancer or other malignant
tumors. 2) Patients with a history of gastric surgery. 3)
Patients previously diagnosed with autoimmune gastritis and
other autoimmune related disease.

As illustrated in Figure 1, this flowchart provides a detailed
overview of the patient screening and inclusion process, facilitating
an understanding of the methodology behind participant selection
in this study. A total of 1,178 individuals meeting the criteria were
screened for inclusion in this study cohort. Based on the exclusion
criteria, 160 patients were diagnosed with gastric cancer or other
malignant tumors, 2 patients were diagnosed with autoimmune-
related gastritis, and 41 patients had undergone gastric surgical
treatment. Therefore, a total of 975 patients met the criteria for
inclusion in this study. The studies involving humans were approved
by the institutional Ethics Review Board of First Affiliated Hospital
of Dalian Medical University. The ethical approval number for this

study is PJ-KS-KY-2024-574. The study were conducted in
accordance with the Declaration of Helsinki.

2.2 Data collections

This study retrospectively reviewed electronic medical records
and laboratory management systems to collect patient
demographics, established potential predictors of gastric-related
diseases, and common blood test indicators. The list of screened
and enrolled patients was collected using the Yidu Cloud software of
the First Affiliated Hospital of Dalian Medical University. Patient
demographics included age, sex, BMI, family history of cancer,
smoking history, and alcohol consumption habits. Established
potential predictors of gastric-related diseases included H. pylori
infection status, grading of gastric mucosal atrophy, gastric mucosal
histopathology biopsy results, and gastroscopic findings such as bile
reflux diagnosed by gastroscopy. The classification of gastric
mucosal atrophy was based on the Kimura-Takemoto
Classification (Kotelevets et al., 2021), with levels assigned as C1-
C2 for grade 1, C3-O1 for grade 2, and O2-3 for grade 3.
Additionally, grade 0 indicates the absence of gastric mucosal
atrophy. In the gastric mucosal tissue samples, HE staining was

FIGURE 1
Flowchart depicting patients’ enrollment process. This flowchart illustrates the detailed screening and inclusion process of patients, highlighting the
steps taken to ensure appropriate enrollment in the study. The process outlines the initial number of candidates screened, the criteria for inclusion and
exclusion, and the final count of patients enrolled (n = 975), providing insights into the patient selection methodology used in the study.
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used to observe whether the gastric mucosal epithelium contained
cells similar to those of the small intestinal epithelium, such as
columnar epithelium, goblet cells, or Paneth cells. In addition, if
immunohistochemical staining was positive for small intestinal
mucin (MUC2), intestinal metaplasia was diagnosed. The above
data collection was performed by two independent researchers.
Disagreements were resolved by a third researcher. Routine
laboratory indicators included glucose (Glu), total bilirubin
(TBIL) indirect bilirubin (IBIL), direct bilirubin (DBIL), total
protein (TP), albumin (ALB), albumin/globulin ratio (ALB/GLO),
prealbumin (PA), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), gamma-glutamyltransferase (GGT),
cholinesterase (ChE), total bile acids (TBA), alkaline phosphatase
(ALP), glycocholic acid (GCA), homocysteine (Hcy), estimated
glomerular filtration rate (eGFR), creatinine (Crea), uric acid
(UA), cystatin (Cys). Data collection for this article was
retrospective, and missing data was inevitable. To avoid the
impact of missing data on the analysis, we imputed the missing
values. We first calculated the proportion of missing values for each
variable. All variables had missing data rates below 10%
(missingness 0%–2.8%). Then we imputed missing categorical
data by the cohort mode and missing continuous data by the
cohort median. In addition, among all evaluation indicators,
those with a missing data rate of 10% or higher were excluded
from the analysis. Finally, the data was standardized. Data extraction
and cleaning were performed using R software.

2.3 Predictive model construction and
evaluation

The patients were randomly divided into a training dataset and a
testing dataset in a 7:3 ratio. Before modeling, variable selection was
conducted on training set. Then, we employed a comprehensive
suite of eight machine learning algorithms to develop robust
predictive models. These algorithms were carefully selected to
encompass a diverse range of approaches, from traditional
statistical methods to advanced ensemble techniques and neural
networks. The implemented models include: Decision Tree (DT),
Elastic Net (ENet), K-Nearest Neighbors (KNN), LightGBM,
Random Forest (RF), eXtreme Gradient Boosting (XGBoost),
Support Vector Machine (SVM), and Multilayer Perceptron
(MLP). Model training employed five-fold cross-validation on the
training set and Hyperparameters for each model are provided in
Supplementary Table S1. The predictive performance of each model
was evaluated using ROC curves in both the training and testing
datasets (Obuchowski and Bullen, 2018; Cabot and Ross, 2023; Van
Calster et al., 2018). The prediction model with the best performance
on the testing set was ultimately selected (Vickers et al., 2016). The
interpretation of the prediction model was carried out using SHAP
(Shapley Additive exPlanations) method, which accurately
calculates the contribution and impact of each feature on the
final prediction (Li et al., 2023). We computed SHAP with the R
package fastshap. For global importance, we summarized feature
importance as mean(|SHAP|) and displayed it with horizontal bar
plots. In summary plots, for continuous features, we used beeswarm-
style summary plots to show the distribution of SHAP values for
each feature. For categorical features, we visualized per-level SHAP

distributions using boxplots with overlaid points. The SHAP values
provide critical insights into the impact of individual features on
model outcomes.

2.4 Statistical analysis

All statistical analyses and calculations were conducted using R
version 4.2.2. Categorical variables are presented as totals and
percentages, with group differences assessed using the chi-square
test. Continuous variables following a normal distribution are
expressed as means and standard deviations, whereas those not
following a normal distribution are described using medians and
quartiles. A t-test was employed for normally distributed variables,
while the Mann-Whitney U test was used for non-normally
distributed variables to compare these continuous variables
between two groups. For all analyses, we considered a p-value of
less than 0.05 to be statistically significant.

3 Results

3.1 The characteristics of patients

The total number of patients undergoing gastroscopy at First
affiliated hospital of Dalian Medical University was 3,518 in 2023.
Among them, 1,178 patients met the inclusion criteria. Based on the
exclusion criteria, a total of 975 patients were included in the study.
The specific flowchart is shown in Figure 1. Of these patients, 322
(32.98%) were pathologically confirmed to have GIM, while 653
(66.67%) belonged to the non-atrophic intestinal metaplasia
group. The distribution of gastric mucosal atrophy severity in
this study cohort, as classified by the Kimura-Takemoto system,
exhibited a diverse pattern. The largest group comprised patients
with grade 1 gastric mucosal atrophy (C1-C2), accounting for
50.57% of the population, representing mild atrophic changes.
This was followed by patients with non-atrophic gastritis at
30.52%, indicating inflammation without significant atrophy.
Grade 2 gastric mucosal atrophy patients constituted the third
largest group at 15.93%, signifying moderate atrophic
progression. Notably, grade 3 atrophy patients represented the
smallest fraction at 2.98%, reflecting advanced atrophic changes.
This distribution highlights a predominance of mild to moderate
gastric mucosal alterations in the study population, with a
substantial proportion showing early-stage atrophy or non-
atrophic gastritis. This distribution pattern provides valuable
insights for clinical practice.

The positive rate forH. pylori infection was 44.44%, with 28.40%
ofH. pylori eradication. The average age of the patients was 66 years,
with 49.03% being male. The median BMI was 24.24. Among the
patients, 16.31% had a smoking history, and 13.03% had a history of
alcohol consumption. The incidence of cholecystitis and bile reflux
was 4.92% and 6.15%, respectively, both under 10%. Serological test
indicators, which did not follow a normal distribution, are presented
using medians and quartiles. Table 1 summarizes patient
characteristics and shows significant differences in gastric atrophy
grading, H. pylori infection, gender, age, smoking history, alcohol
history, crea, and GGT between GIM and non-GIM groups (p <
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TABLE 1 The baseline characteristics of the study cohort.

Classification Variable Level Overall
(N = 975)

Gastric Intestinal Metaplasia
(N = 322)

non-Gastric Intestinal Metaplasia
(N = 653)

p

Demographics Age 66.000 [59.000, 71.000] 67.000 [60.000, 72.750] 66.000 [59.000, 71.000] 0.0231

Gender Female 497 (50.97) 123 (38.20) 374 (57.27) <0.0001

Male 478 (49.03) 199 (61.80) 279 (42.73)

Body Mass Index (BMI) 24.240 [22.000, 26.560] 24.260 [22.225, 26.837] 24.240 [22.000, 26.470] 0.2808

Smoking History Neversmoked 803 (82.36) 244 (75.78) 559 (85.60) 0.0007

Smoker 159 (16.31) 73 (22.67) 86 (13.17)

Formersmoker 13 (1.33) 5 (1.55) 8 (1.23)

Alcohol Consumption History No 848 (86.97) 268 (83.23) 580 (88.82) 0.0194

Yes 127 (13.03) 54 (16.77) 73 (11.18)

Past Medical History Biliary Tract Diseases (Cholelithiasis and Cholecystitis) No 927 (95.08) 310 (96.27) 617 (94.49) 0.2914

Yes 48 (4.92) 12 (3.73) 36 (5.51)

Helicobacter pylori Infection Rate Negative 264 (27.16) 7 (2.17) 257 (39.54) <0.0001

Positive 432 (44.44) 203 (63.04) 229 (35.23)

Eradication 276 (28.40) 112 (34.78) 164 (25.23)

Endoscopic Indicators Mucosal Atrophy No 297 (30.52) 2 (0.62) 295 (45.31) <0.0001

C1 - C2 492 (50.57) 180 (55.90) 312 (47.93)

C2 - O1 155 (15.93) 113 (35.09) 42 (6.45)

O2 - O3 29 (2.98) 27 (8.39) 2 (0.31)

Bile Reflux No 915 (93.85) 306 (95.03) 609 (93.26) 0.3475

Yes 60 (6.15) 16 (4.97) 44 (6.74)

Laboratory Tests Glucose (Glu) 5.120 [4.678, 5.990] 5.265 [4.738, 6.055] 5.090 [4.660, 5.935] 0.1044

Total Protein (TP) 65.800 [62.500, 69.800] 65.850 [62.225, 69.800] 65.800 [62.500, 69.800] 0.9901

Total Bile Acids (TBA) 3.700 [2.300, 5.900] 3.500 [2.300, 5.900] 3.700 [2.300, 5.900] 0.7986

Alkaline Phosphatase (ALP) 70.000 [57.000, 85.000] 68.000 [56.000, 85.000] 70.000 [58.000, 84.750] 0.3309

Indirect Bilirubin (IBIL) 4.500 [2.950, 8.600] 4.600 [3.000, 8.200] 4.400 [2.900, 8.600] 0.8402

Total Bilirubin (TBIL) 12.000 [9.100, 15.600] 11.600 [9.000, 15.400] 12.200 [9.100, 15.800] 0.1937

(Continued on following page)
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TABLE 1 (Continued) The baseline characteristics of the study cohort.

Classification Variable Level Overall
(N = 975)

Gastric Intestinal Metaplasia
(N = 322)

non-Gastric Intestinal Metaplasia
(N = 653)

p

Direct Bilirubin (DBIL) 3.700 [2.400, 5.600] 3.700 [2.500, 5.600] 3.700 [2.400, 5.600] 0.9825

Alanine Aminotransferase (ALT) 16.000 [12.000, 22.500] 17.000 [12.000, 24.000] 16.000 [12.000, 22.000] 0.175

Aspartate Aminotransferase (AST) 18.000 [15.000, 22.000] 19.000 [16.000, 23.000] 18.000 [15.000, 22.000] 0.3346

Albumin/Globulin Ratio (ALB/GLO) 1.600 [1.400, 1.800] 1.600 [1.400, 1.800] 1.600 [1.400, 1.800] 0.6415

Albumin (ALB) 40.600 [38.300, 43.100] 40.500 [38.100, 43.200] 40.600 [38.500, 43.100] 0.754

Gamma-Glutamyl Transferase (GGT) 20.000 [15.000, 30.000] 21.000 [15.000, 32.000] 19.000 [14.000, 30.000] 0.0316

Homocysteine (HCY) 11.150 [9.300, 13.800] 11.300 [9.400, 14.765] 11.050 [9.203, 13.275] 0.1106

Proalbumin (PA) 241.000 [212.000, 276.000] 244.000 [211.000, 279.000] 240.000 [212.000, 274.250] 0.6016

Uric Acid (UA) 315.000 [258.750, 371.000] 316.000 [258.000, 372.000] 313.000 [259.000, 370.000] 0.7881

Creatinine (Crea) 64.500 [54.000, 77.000] 68.000 [57.000, 79.000] 63.000 [53.000, 75.000] 0.0008

Estimated Glomerular Filtration Rate (eGFR) 90.000 [86.140, 92.125] 90.000 [87.740, 91.457] 90.000 [84.510, 92.740] 0.9354

Cereuloplasmin (CG) 1.360 [1.100, 1.600] 1.300 [1.100, 1.600] 1.385 [1.110, 1.600] 0.3962

Cholinesterase (ChE) 376.000 [300.000, 7117.000] 373.000 [301.000, 6990.000] 376.500 [300.000, 7181.000] 0.6875

1Categorical data are expressed as percentages (%), while Continuous data are represented using the median and interquartile range (median [IQR]).
2Continuous data from the serological testing indicators, including Total Protein (TP) (g/dL), Total Bile Acids (TBA) (μmol/L), Alkaline Phosphatase (ALP) (U/L), Direct Bilirubin (DBIL) (mg/dL), Indirect Bilirubin (IBIL) (mg/dL), Alanine Aminotransferase (ALT)

(U/L), Aspartate Aminotransferase (AST) (U/L), Albumin (ALB) (g/dL), Gamma-Glutamyl Transferase (GGT) (U/L), Homocysteine (HCY) (μmol/L), Proalbumin (PA) (mg/L), Uric Acid (UA) (mg/dL), Creatinine (CRE) (mg/dL), Estimated Glomerular Filtration

Rate (eGFR) (mL/min/1.73 m²), Ceruloplasmin (CG) (mg/dL), and Cholinesterase (ChE) (U/L) are all based on standardized data.
3Chi-square tests were used for categorical variables to compare proportions.
4Continuous variables were analyzed using t-tests for normally distributed data and Mann-Whitney U tests for non-normally distributed data.
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0.05). This suggests that these independent variables may be
associated with GIM.

3.2 Independent clinical variable screening

A correlation analysis of above mentioned variables is presented
in Figure 2A, where a heatmap visualizes the strength of the
relationships between variables, providing an initial indication of
their intercorrelations. Subsequently, we employed the VarSelRF
algorithm to assess the significance of these variables. The findings
reveal that selecting 11 variables resulted in the lowest Out of Bag
(OOB) error for the model (Figure 2B). These variables, ranked by
importance (Figure 2C), are as follows: gastric mucosal atrophy, H.
pylori infection, gender, DBIL, Crea, smoking history, alcohol
history, ALT, age, ALB/GLO, and GGT. Based on these results,
we have identified 11 critical clinical variables for predicting GIM,

thereby providing robust evidence for constructing the
predictive model.

3.3 Construction and evaluation of
predictive models

To develop a prediction model for GIM, we utilized the 11 key
variables identified previously. This study employed eight machine
learning algorithms, including DT, ENet, KNN, LightGBM, RF,
XGBoost, SVM, and MLP. The performance of models were
comprehensively evaluated using various metrics such as ROC
curve, calibration curve, and DCA curve. Figures 3, 4 illustrate
the performance of the models on both the training and
testing datasets.

In the training dataset, the ROC curve shows that most models
perform well on the training dataset, fluctuating between 0.8033 and

FIGURE 2
Independent variables Screening for gastric intestinal metaplasia. (A)Heatmap of correlation analysis between variables. (B) The VarSelRF algorithm
calculates the OOB (Out Of Bag) standard error. (C) Evaluation of variable importance and rank them.
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0.9287. Among them, the areas under the ROC curves of KNN, DT,
and RF models are all greater than 0.9 (Figure 3A). The calibration
curve also suggests that, except for the significant deviation between
the predicted probability and the actual probability of the SVM
algorithm, most models have achieved good probability calibration
on the training dataset. Especially the DT, ENet, KNN, RF, and
XGBoost prediction models (Figure 3B). In addition, the DCA curve
indicates that within most threshold ranges, most models such as
DT, RF, KNN, SVM, etc. can benefit from extreme strategies such as
“Treat all” or “Treat none” (Figure 3C). Subsequently, we tested
these models in the testing dataset, and the area under the ROC

curve of the RF model showed a maximum value of 0.8167
(Figure 4A). The calibration curve also indicated that the
predictive model of the RF curve showed a good fit (Figure 4B),
and the DCA curve showed that in most threshold ranges, the RF
model achieved the highest net benefit in extreme strategies such as
“Treat all” or “Treat none” (Figure 4C).

To clearly show the prediction capability of the RF model,
Figures 5A,B present the confusion matrices for the RF model in
training and testing datasets, respectively. In the training set (n =
682), the random forest (RF) model correctly classified 372 non-
intestinal metaplasia cases and 199 gastric intestinal metaplasia

FIGURE 3
Evaluation of various machine learning algorithm models on the training dataset. (A) ROC curves illustrating the performance of each algorithm in
the training dataset; (B)Calibration curves showing the predicted probabilities against actual outcomes in the training dataset; (C)Decision Curve Analysis
(DCA) curves evaluating the clinical utility of the algorithms in the training dataset. The caption indicates that the different colored lines represent the
following algorithms: Red for Decision Tree (DT), Blue for eXtreme Gradient Boosting (XGBoost), Light green for K-Nearest Neighbors (KNN), Green
for LightGBM, Cyan for Random Forest (RF), Pink for Multilayer Perceptron (MLP), Purple for Support Vector Machine (SVM), Orange for Elastic Net (ENET).
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(GIM) cases. The model demonstrated robust performance on the
training data, with a sensitivity of 70.1%, specificity of 93.5%,
positive predictive value (PPV) of 88.4%, negative predictive
value (NPV) of 81.4%, and an overall accuracy of 83.7%. In the
testing set (n = 293), the model accurately predicted 141 of 165 non-
GIM cases and 73 of 128 GIM cases. The testing results yielded a
sensitivity of 57.0%, specificity of 85.5%, PPV of 75.3%, NPV of
71.9%, and an accuracy of 73.0%. These findings indicate robust
performance of the RF model in predicting GIM. Through a
comprehensive evaluation, we validated the effectiveness of the
eight machine learning algorithms in constructing predictive
models for GIM. We analyzed the performance and clinical
applicability of each model from multiple perspectives. Based on
model evaluations, particularly their performance on testing

datasets, we found that the RF model excelled in prediction
accuracy and stability. By aggregating multiple decision trees via
bootstrap sampling (bagging) and averaging their predictions, RF
achieves superior generalization performance. Consequently, we
selected the RF algorithm as the predictive model for GIM in
this study.

3.4 Interpretability analysis of the RF
prediction model

In the application of machine learning models, elucidating the
decision-making process and quantifying the contribution of
individual features to predictive outcomes are crucial for clinical

FIGURE 4
Evaluation of variousmachine learning algorithmmodels on the testing dataset. (A) ROC curves illustrating the performance of each algorithm in the
testing dataset; (B) Calibration curves showing the predicted probabilities against actual outcomes in the testing dataset; (C) Decision Curve Analysis
(DCA) curves evaluating the clinical utility of the algorithms in the testing dataset. The caption indicates that the different colored lines represent the
following algorithms: Red for Decision Tree (DT), Blue for eXtreme Gradient Boosting (XGBoost), Light green for K-Nearest Neighbors (KNN), Green
for LightGBM, Cyan for Random Forest (RF), Pink for Multilayer Perceptron (MLP), Purple for Support Vector Machine (SVM), Orange for Elastic Net (ENET).
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interpretability. SHAP values offer a theoretically consistent and
clinically intuitive framework for model interpretation. This
approach conceptualizes each feature as a “contributor” to the
predictive outcome, employing cooperative game theory
principles to fairly allocate the “prediction impact” among all
features. Through SHAP-based analysis, clinicians can not only
identify the relative importance of predictive variables but also
discern their directional influence on model outputs, thereby
enhancing the clinical utility and trustworthiness of machine
learning applications in medical decision-making.

In this study, SHAP values were utilized to determine the
roles of 11 independent variables in the RF model (Figure 6).
Figure 6A illustrates the SHAP values of categorical variables,
including the grade of gastric mucosal atrophy, H. pylori status,
gender, smoking history, and alcohol history. A SHAP value
greater than 0 for an independent variable suggests a promoting
effect on GIM outcomes, whereas a value less than 0 indicates an
inhibitory effect. Gastric mucosal atrophy at grade 2 or grade
3 are identified as risk factors for GIM, whereas grade 0 and grade
1 serve as protective factors. Factors such as H. pylori infection,
successful H. pylori eradication, being male, smoking, being a
former smoker, and having a history of alcohol consumption all
positively contribute to the pathogenesis of GIM outcomes. In
contrast, the absence of H. pylori infection, being female, and
having no history of smoking or drinking indicate a negative
impact on the pathogenesis of GIM outcomes. We also illustrate
the SHAP values for continuous variables (Figure 6B), with red
representing smaller observed values and blue indicating larger
ones. In general, a higher observed SHAP value corresponds to a
greater risk of GIM. Variables such as age, the ALB/GLO ratio
and Crea are positively correlated with the occurrence of GIM,
while DBIL and GGT are negatively correlated with the
occurrence of GIM. As for ALT, it did not significantly
demonstrate either a positive or negative effect on GIM
outcomes regardless of whether the SHAP value was high or low.

3.5 Establishment of a web-based calculator

Among the models constructed using eight machine learning
algorithms, the RF model demonstrated superior performance. To
assist clinicians in assessing the risk of GIM in patients and
determining the necessity of gastric endoscopy biospy, this study
developed a web-based calculator based on the RF model (https://
fahdmu.shinyapps.io/GIMprediction/). This tool aims to enhance
clinical decision-making by providing an efficient and accessible
platform for GIM risk evaluation (Figure 7).

4 Discussion

Gastric intestinal metaplasia (GIM) represents a pivotal
precancerous disease in the gastric carcinogenesis cascade,
serving as a potential critical biomarker for early gastric cancer
development. The timely identification of GIM enables effective
surveillance, facilitates early intervention, and ultimately enhances
patient prognosis and quality of life. While endoscopic screening
awareness has improved, the implementation of risk-stratified
screening strategies for high-risk GIM populations offers dual
benefits: optimizing the diagnostic yield of endoscopic biopsies
while simultaneously reducing healthcare expenditures and
improving resource allocation efficiency.

To address the need for more precise risk stratification, this
pioneering study developed a novel predictive model by
integrating hepatorenal function biomarkers (GGT, DBIL,
Crea, ALB/GLO, ALT) with established risk factors including
gastric mucosal atrophy grading and H. pylori infection status.
Through comprehensive evaluation of eight distinct machine
learning algorithms, the RF model emerged as the optimal
predictor, demonstrating superior performance metrics across
both training and validation datasets compared to alternative
approaches. This model not only enhances the identification of

FIGURE 5
The confusion matrices of the RF model. (A) The confusion matrix of the RF model in training dataset. (B) The confusion matrix of the RF model in
testing dataset.
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high-risk GIM individuals but also provides a foundation for
personalized intervention strategies, thereby improving clinical
outcomes and resource utilization.

The development of GIM is characterized by the progressive
replacement of gastric mucosal cells with intestinal epithelial cells, a
process that fundamentally alters the cellular microenvironment.
This transformation not only disrupts normal tissue architecture but
also creates conditions conducive to cellular dysplasia. The
microenvironmental changes are further exacerbated by
alterations in blood supply, which stimulate gastric mucosal
epithelial cells through the release of inflammatory factors.

Simultaneously, the repair capacity of these epithelial cells is
critically dependent on their nutritional status, highlighting the
intricate interplay between systemic factors and local
tissue responses.

Given the systemic nature of these changes, molecular indicators
in the blood emerge as valuable biomarkers for monitoring early
GIM progression. Recognizing the clinical relevance of this
approach, and considering the shared risk factors between
gastric-related diseases and hepatorenal disorders, this study
focused on clinically accessible serological indicators of liver and
kidney function. The rationale for this selection is further supported

FIGURE 6
SHAP values based on RFmodel. (A) SHAP values of categorical variables. (B) SHAP values of continuous variables. SHAP values >0 indicate increased
risk contribution toward GIM, while a SHAP value <0 indicates a risk factor that inhibits GIM outcomes. The color gradient represents the feature value,
transitioning from blue (low feature value) to red (high feature value). (C) The mean SHAP value of all variables.
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by the fact that gastric mucosal repair and function are heavily
reliant on the supply of nutrients through the bloodstream.

The interpretability of medical diagnostic models is critical for
physician acceptance and clinical implementation. In this study,
SHAP value analysis was employed to assess model interpretability,
revealing that gastric mucosal atrophy andH. pylori infection are the
primary predictors of GIM. These findings align with established
research (Tong et al., 2024; Arai et al., 2022; Iwaya et al., 2023),
further validating the model’s clinical relevance. The Kimura-
Takemoto classification provides additional context: grade 2 and
grade 3 gastric mucosal atrophy are identified as significant
promoting factors for GIM, whereas grade 1 atrophy does not
exhibit the same association. This suggests that GIM
development likely requires a more extensive background of
gastric mucosal atrophy, underscoring the importance of
assessing the severity of atrophy in risk stratification. However,
the model’s reliance on prior information regarding the extent of
gastric mucosal atrophy introduces a limitation in its applicability.
This prerequisite highlights the necessity of initial gastric endoscopic
mucosal biopsy, particularly for patients without prior endoscopic
screening. Such an approach not only ensures accurate risk
assessment but also reinforces the critical role of baseline
endoscopic evaluation in a comprehensive gastric cancer
prevention strategy. In summary, while the model’s dependency
on prior endoscopic data may restrict its immediate applicability, it
emphasizes the importance of integrating endoscopic evaluation
into routine clinical practice for effective risk assessment and
prevention of gastric cancer.

In this study, both H. pylori infection and eradication were
identified as positive factors for GIM outcomes. Previous H. pylori
infection may promote GIM by releasing effector proteins (e.g., CagA
and VacA) (Wang et al., 2014; Polk and Peek, 2010; Peek and Blaser,
2002), causing irreversible gastric mucosal damage. Although H. pylori

eradication had a significantly lower SHAP value than infection,
indicating a weaker promoting effect, it remains clinically important.
However, it should be noted that the lack of analysis regarding the
timing of eradication and treatment adherence may introduce bias in
these findings, as these factors could significantly influence the
outcomes. Additionally, demographic and lifestyle factors such as
male gender, older age, smoking history, and alcohol consumption
were significant contributors to GIM outcomes (Yuan et al., 2023; Liu
et al., 2024; Tan et al., 2021). High ALB/GLO ratios and abnormal levels
ofDBIL, GGT, andALTwere also identified as independent risk factors.
Impaired liver function may reduce the synthesis of albumin and
antioxidants (e.g., glutathione), weakening gastric mucosal repair
capacity and exacerbating damage. Clinical studies have shown that
gastritis patients are more prone to hypoalbuminemia and elevated
fibrinogen levels (Aziz et al., 2022). The ALB/GLO ratio, it reflects the
balance between synthetic function (albumin) and immune or
inflammatory activity (globulins), representing the body’s nutritional
status and immune capacity. Albumin functions as a major plasma
antioxidant, and reduced levels intensify oxidative damage to the gastric
epithelium (Zhang et al., 2020). This balanced ratio may play a crucial
role in the gastric stem cell niche and significantly influences GIM
development. As for GGT, it serving as a key enzyme in glutathione
metabolism, exhibits increased expression that indicates heightened
oxidative stress and contributes to gastricmucosal damage, a recognized
driving factor in gastric carcinogenesis (Salvatori et al., 2023).
Furthermore, abnormal bile acid metabolism, particularly in bile
reflux (e.g., deoxycholic acid), impairs gastric mucosal repair by
inhibiting the FXR receptor and downregulating tight junction
protein and TFF1 expression (Zhou et al., 2018). Elevated creatinine
levels reflect impaired renal clearance function, leading to the
accumulation of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6)
that can systemically affect gastric mucosa and promote metaplastic
changes (Li et al., 2024; Teng et al., 2023; Jones et al., 2015; Wang et al.,

FIGURE 7
A web-based calculator for predicting GIM based on RF model.
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2022). These findings align with our results, highlighting the
multifaceted mechanisms underlying GIM development.

The innovation of this study is highlighted in two key aspects.
First, it incorporates objective serummarkers into the GIM prediction
process and establishes an interpretable machine learning model. This
approach not only enhances the model’s transparency and user
understanding but also sheds light on a potential mechanistic link
between hepatorenal function and GIM. Second, the study introduces
a simple, accurate, and continuous GIM prediction tool designed to
assist primary care physicians in the initial screening of high-risk
populations. Unlike existing GIM prediction models, which
predominantly rely on the technical expertise required for
chromoendoscopy or electronic chromoendoscopy, this model
significantly reduces the dependency on advanced equipment and
specialized endoscopic skills. This innovation has the potential to
predict GIM occurrence in advance, guide clinicians in determining
the optimal timing for gastric mucosal biopsies, facilitate timely
interventions, and ultimately improve patient outcomes.

However, this study is not without limitations. First, the lack of
multi-center clinical samples hindered external validation of the
model, which is crucial for generalizing its applicability. Second, the
retrospective collection of serological indicators inevitably resulted
in missing data. Although missing data were supplemented, this
approach may still constrain the exploration of risk factors and
underlying mechanisms associated with GIM. Future directions
should focus on conducting multi-center validation studies to
evaluate the model’s applicability across different populations and
clinical settings. Additionally, prospective cohort studies could play
a vital role in systematically collecting clinical data on risk factors
associated with GIM. Furthermore, integrating this predictive model
with endoscopic findings has the potential to improve diagnostic
accuracy, helping clinicians determine the optimal timing for gastric
mucosal biopsies and facilitating timely interventions. These actions
would greatly enhance the model’s refinement and maximize its
utility in clinical practice.

5 Conclusion

In summary, we developed a RF model to predict GIM by
integrating demographic information, medical history, and clinical
findings. This study highlights the innovative application of
serological indicators as significant predictors of GIM
development, revealing a potential link between hepatorenal
function and GIM. Importantly, this tool may enable early
identification of at-risk patients who could benefit from
surveillance endoscopy, addressing the limitations of invasive
screening methods. Additionally, we created a web-based calculator
to assist clinicians in efficiently identifying high-risk populations,
enhancing clinical decision-making and improving patient outcomes.
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