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Background: Large language models (LLMs) have shown the ability to diagnose
complex medical cases, but only limited studies have evaluated the performance
of LLMs in the development of evidence-based treatment plans. The purpose of
this evaluation was to test four LLMs on their ability to develop safe and
efficacious treatment plans on complex patients managed in the intensive
care unit (ICU).
Methods: Eight high-fidelity patient cases focusing on medication management
were developed by critical care clinicians including history of present illness,
laboratory values, vital signs, home medications, and current medications. Four
LLMs [ChatGPT (GPT-3.5), ChatGPT (GPT-4), Claude-2, and Llama-2–70b] were
prompted to develop an optimized medication regimen for each case. LLM
generated medication regimens were then reviewed by a panel of seven
critical care clinicians to assess safety and efficacy, as defined by medication
errors identified and appropriate treatment for the clinical conditions.
Appropriate treatment was measured by the average rate of clinician
agreement to continue each medication in the regimen and compared using
analysis of variance (ANOVA).
Results: Clinicians identified a median of 4.1–6.9 medication errors per
recommended regimen, and life-threatening medication recommendations
were present in 16.3%–57.1% of the regimens, depending on LLM. Clinicians
continued LLM-recommended medications at a rate of 54.6%–67.3%, with GPT-
4 having the highest rate of medication continuation among all LLMs tested (p <
0.001) and the lowest rate of life-threatening medication errors (p < 0.001).
Conclusion: Caution is warranted using present LLMs for medication regimens
given the number of medication errors that were identified in this pilot study.
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However, LLMs did demonstrate potential to serve as clinical decision support for
the management of complex medication regimens given the need for domain
specific prompting and testing.
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Introduction

Large language models (LLMs) have demonstrated proficiency
across a wide spectrum of natural language processing (NLP) tasks,
including notable achievements like passing medical licensing
exams and making correct diagnoses of complex patient cases
(Kanjee et al., 2023; Gilson et al., 2023). However, these tasks have
largely focused on highly structured problems of disease diagnosis,
and LLMs have undergone limited evaluations for the more
unstructured task of choosing the correct treatment course for
the diagnosed disease (Bužančić et al., 2024; Hsu et al., 2023;
Kunitsu, 2023).

Comprehensive medication management (CMM) refers to
“the standard of care that ensures each patient’s medications are
appropriate, effective for the medical condition, safe given the
comorbidities and other medications being taken, and able to be
taken as intended.” (ASHP, 2025) Each year, there are
approximately 1.8 million adverse drug events (ADEs) in
hospitalized patients with estimates that 9,000 patients die as
a direct result of a medication error (Leape et al., 1999; Nuckols
et al., 2014; Slight et al., 2018). Costs related to medication errors
exceed $40 billion (Tariq et al., 2024). Given the morbidity and
cost to the healthcare system associated with ADEs, evaluating
novel tools such as LLMs for the potential to facilitate CMM
activities and improve medication safety is essential (Kwan et al.,
2025). LLMs process text and understand human language in
large quantities and at rapid speeds, which can be helpful in fields
such as healthcare and medication management, which include
large amount of information processing (Kwan et al., 2025).
Thus far, LLMs have been tested specifically in the realm of
medication management for deprescribing benzodiazepines,
identifying drug-herb interactions, and performance on a
national pharmacist examination (Bužančić et al., 2024; Hsu
et al., 2023; Kunitsu, 2023). However, there have been no
investigations for the potential for LLMs to aid in
delivery of CMM.

The purpose of this pilot study was to compare performance of
four LLMs [ChatGPT (GPT-3.5), ChatGPT (GPT-4), Claude-2, and
Llama-2–70b] in conducting CMM for complex medication
regimens for critically ill patients.

Methods

Study design

The primary objective was to evaluate the capabilities of LLMs in
generating safe and efficacious treatment plans for complex patient
cases. This involved a carefully structured prompting process,
intended to elicit the most accurate and clinically relevant

responses from the LLMs. Our study used a comparative analysis
approach, testing four advanced LLMs: GPT-3.5, GPT-4, Llama-
2–70b, and Claude-2. These LLMs were chosen to parallel other
exploratory analyses by our team and were thought to be
representative of LLM capability and functionality (Chase et al.,
2025; Yang et al., 2024). Seven distinct patient cases were used in the
fall of 2023, with one that served as an initial example for single-shot
prompting, and the subsequent seven cases utilized as actual test
scenarios. All test scenarios were entered in separate chats. ChatGPT
was accessed via the chatbot interface using the standard settings of
temperature = 0.7 and Top P = 1.0. Llama-2–70b was also used with
the standard settings. The primary outcomes were based on the
safety and efficacy of the recommended scenarios, as assessed by a
panel of seven critical care clinicians. Safety was measured by the
rate of clinician-identified medication errors and life-threatening
medication errors recommended by the LLMs. Efficacy was
measured by the average rate of clinician continuation of
medications recommended by the LLMs. Other outcomes
included the overall agreement of clinicians with the
recommended regimen based on a five-point Likert scale and
characterization of reasons for discontinuation of medications
recommended by LLM.

LLM testing

A total of eight patient cases were developed by critical care
clinicians, with one used as an example in the prompting process.
These patient cases included traditional critical care disease states,
including sepsis, pneumonia, shock, diabetes, etc. Medication-
related problems were intended to reflect critically ill patients
cared for in the intensive care unit (ICU), and included
evaluations for gastrointestinal ulcer prophylaxis, venous
thromboembolism prophylaxis, antibiotic selection, sepsis
management, etc. Cases incorporated a history of present
illness, relevant laboratory and vital sign data, home
medications, and current medications. The patient cases
included a “ground truth” which was a list of appropriate
medications determined to be the most correct approach to
their management by the panel of clinicians, which was agreed
upon via majority vote prior to LLM testing. The ground truth was
provided to the LLM in the initial prompting process but then was
asked to be generated by the LLM in the new patient scenario
process. The approach employed a one-shot prompting with in-
context learning designed to guide the LLMs through a structured
evaluation of the patient cases to generate an optimized
medication regimen (Holmes et al., 2023). This approach is
especially beneficial in complex decision-making tasks, such as
medical treatment planning, where contextual understanding and
synthesis of information are crucial.
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One-shot prompting with in-context
learning process

1. Initial Example Prompting: “Please review the case below and
pay close attention to how the ground truth section at the end is
structured.” This step involved providing the LLMs with a
comprehensive patient case, including detailed medical history,
current treatment plans, and the ground truthmedication plan.
The LLMs were instructed to closely analyze the structure and
formatting of the ground truth section, which outlined the

updated medication plan. This initial example served as a form
of single-shot prompting, aiming to familiarize the LLMs with
the expected output format and clinical reasoning required for
generating appropriate medication plans.

2. New Patient Scenario Prompting: “Now, I will give you a
separate case, please review all the information given and
based on it provide a new updated prescribed medication
list exactly like how the ground truth section is structured
and formatted in the example given before.” Following the
initial example, the LLMs were presented with new patient

FIGURE 1
Methodology for LLM-assessment of comprehensive medication management Created with biorender.com. O2, oxygen; Glc, serum glucose; gm,
Gram; HR, heart rate; ICU, intensive care unit; K, serum potassium; L/min, liters per minute; LLM, large language model; MAP, mean arterial pressure;
mcg/kg/min, microgram per kilogram per minute; mg, milligram; MRSA PCR, methicillin-resistant staphylococcus aureus nasal polymerase chain
reaction; Na, serum sodium; NLF, non-lactose fermenting; PRN, as needed; Q12H, every 12 h; Q24H, every 24 h; Q6H, every 6 h; Q8H, every 8 h; RR,
respiratory rate; SBP, systolic blood pressure; SCr, serum creatinine; TID, three times daily; Tmax, maximum temperature; unit/hr, unit per hour; WBC,
white blood cell.
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scenarios, each featuring unique conditions, clinical scenarios,
and medications challenges. The LLMs were tasked with
synthesizing this information to propose an updated
medication plan, mirroring the structure and format of the
ground truth example provided earlier.

A panel of seven critical care board-certified and critical care
residency trained pharmacists was then asked to review the
medication regimen generated by each of the four LLMs for the
7 test patient cases. Individuals were blinded to model identity and
to each other. Each individual was asked to review the generated
medication regimen and provide the following information: (1)
itemized “continue” or “discontinue” recommendations for each
medication in the recommended regimen with brief rationale, (2)
reasons for discontinuation including overt error, therapy
optimization, lack of indication, or other, (3) binary evaluation of
the presence of at least one life-threatening recommendation made
by the LLM, (4) perceived agreement with the overall medication
regimen recommended by the LLM on a 1-5 Likert Scale with
1 being strongly disagree and 5 being strongly agree, and (5) any
qualitative comments on perception of the medication regimens.
The decision to “continue” or “discontinue” was based on the
ground truth which was approved by a majority vote prior to the
testing. The presence of a potential life-threatening medication
regimen was at the clinician’s discretion. The methods are
summarized in Figure 1.

Data Analysis: All statistical analyses were conducted in R
version 4.3.1 (2023–06–16). (Team, 2025) The rate of
continuation of medications was compared between each LLM
using analysis of variance (ANOVA) with a Tukey’s post-hoc test
for pairwise comparisons. Identification of life-threatening errors
was compared with Chi-squared test for overall comparison. Chi-
squared test with Bonferroni adjustment was used for pairwise
comparisons. The median rate of agreement of pharmacists with

medication regimen on the Likert Scale was assessed with the
Kruskal-Wallis test with a post-hoc Dunn’s test with Bonferroni
correction for pairwise comparisons. Descriptive analyses were
conducted on all variables. Data are reported as mean and
standard deviation or median and interquartile range based on
parametricity of data.

Data availability: De-identified case prompts are provided in the
Appendix. LLM outputs, clinician item-level ratings and analysis
code available upon request.

Use of Generative AI: Generative AI was used as a study
instrument but was not used for preparation of this manuscript.

Institutional Review Board: The University of Colorado
Institutional Review Board determined this study to be exempt
(COMIRB 24–2328).

Results

The panel consisted of 7 critical care clinicians with board
certification in critical care pharmacotherapy. Demographic
characteristics are provided in Supplemental Content–Table 1.
Patient-case prompts are located in the Supplemental
Content–Supplementary Appendix 1.

As a measure of efficacy, when clinicians evaluated the LLM-
generated medication regimens the median percent of medications
continued by each clinician was highest for GPT-4 (67.3% ± 18.1%)
followed by GPT-3.5 (59.7% ± 17.5%), Llama-2–70b (55% ± 17.7%),
and Claude-2 (54.6% ± 15.4%). Upon post-hoc pairwise analysis,
GPT-4 had a significantly higher rate of continuation compared to
Llama-2–70b (p = 0.003) or Claude-2 (p = 0.002). These results are
summarized in Table 1.

For overall agreement with the LLM-generated regimen, the
Likert scores were significantly different among LLMs (χ2 = 15.93,
p = 0.001). Post-hoc pairwise comparison showed that GPT-4 had a

TABLE 1 Pooled rate of medication continuation per LLM.

LLM Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 All
casesa

p-value

GPT-3.5 Continuation rate,
median (IQR)

54.6
(43.2–54.5)

66.7
(45.8–70.8)

66.7
(50–77.8)

55.6
(52.8–66.7)

57.1
(42.9–57.1)

85.7
(64.3–89.3)

61.1
(55.9–70.6)

59.7
(±17.5)

<0.001

Total medications, n 11 12 18 10 7 14 17 89

GPT-4 Continuation rate,
median (IQR)

64.3
(57.7–67.9)

84.2
(78.9–86.5)

66.7
(55.6–77.8)

57.1
(57.1–60.7)

44.4
(27.8–55.6)

86.7 (80–90) 76.5
(66.7–88.2)

67.3
(±18.1)a,b

Total medications, n 14 19 18 14 9 15 17 106

Llama-
2-70b

Continuation rate,
median (IQR)

60 (50–70) 59 (50–76.2) 72.3
(67.3–79)

33.3 (30–59) 55.6
(44.4–55.6)

63.2
(52.6–68.4)

40 (30–45) 55 (±17.7)a

Total medications, n 15 21 22 15 9 19 10 111

Claude-2 Continuation rate,
median (IQR)

54.6
(50–59.1)

46.7
(46.7–53.3)

60 (55.2–70) 55.6
(44.4–77.8)

62.5
(37.5–62.5)

41.7
(37.5–62.5)

62.5
(50–62.5)

54.6
(±15.4)b

Total medications, n 11 15 15 9 8 12 8 78

LLM: large language model, IQR: interquartile range.

Median percentage of medications that were deemed appropriate for continuation by clinician panel after reviewing LLM-generated medication list.

a, b: rows with matching superscripts are significantly different from each other upon pairwise comparison using Tukey’s test for multiple comparisons (ex. GPT-4, is significantly different

compared to both Llama-2–70b and Claude-2). Adjusted p-values for pairwise comparisons using Tukey’s test: GPT-3.5 vs. GPT-4, p = 0.131; GPT-3.5 vs. Llama-2–70b, p = 0.593; GPT-3.5 vs.

Claude-2, p = 0.446; aGPT-4, vs. Llama-2–70b, p = 0.003; bGPT-4, vs. Claude-2, p = 0.002; Llama-2–70b vs. Claude-2, p = 0.999.
aAll cases reports the mean (±standard deviation) for all clinician reviews of all cases for that LLM (n = 49 [7 cases multiplied by 7 clinician responses]).
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significantly higher rate of agreement compared to Llama-2–70b or
Claude-2 but other comparisons were not different (see Table 2).
Table 3 summarizes rationales for clinician discontinuation of
medications in the LLM-generated pharmacotherapy regimen.
The median number of medication errors identified by the
clinician panel in the pharmacotherapy regimens generated by
each LLM were 32, 29, 48, and 34 for GPT-3.5, GPT-4, Llama-
2–70b, and Claude-2, respectively, with a total of 224, 222, 325, and
246 errors identified in total for each LLM. Therapy optimization
was recommended by the clinician panel for 140 medications in the
pharmacotherapy regimens generated by GPT-3.5 and GPT-4,
180 medications in Llama-2–70b, and 138 medications in the
pharmacotherapy regimen generated by Claude-2. And Claude-2,
while optimization was recommended for 147 medications in the
pharmacotherapy regimen generated by Llama-2–70b. Lack of
indication was identified by the clinician panel for 58 medication
recommendations in GPT-3.5, 68 medication recommendations for
GPT-4, 104 medication recommendations for Llama-2–70b, and
64 medication recommendations for Claude-2.

As an assessment of safety, the presence of potentially life-
threatening recommendations was assessed by clinicians in 57.1% in
Claude-2 recommendations followed by 38.8% GPT-
3.5 recommendations, 28.6% of Llama-2–70b recommendations,
and 16.3% of GPT-4 recommendations. Upon pairwise analysis,
GPT-4 had significantly fewer potentially life-threatening errors
than GPT-3.5 (p = 0.013) or Claude-2 (p < 0.001) and Llama-
2–70b had significantly fewer potentially life-threatening errors than
Claude-2 (p = 0.0043) (see Table 4). All other comparisons were
non-significantly different. Life-threatening errors per case and a

description of those errors are reported in the Supplementary
Content- Tables 2, 3.

Discussion

In an early evaluation of the ability of LLMs to provide CMM for
complex, critically ill patients, a high rate of life-threatening
medication recommendations were provided. Of the four LLMs
tested GPT-4 had the best performance, demonstrating the highest
rates of clinician agreement and lowest rates of life-threatening
medical errors. Although the outputs demonstrated contextual grasp
of domain-specific content (e.g., correctly matching drugs with
doses and routes and matching certain therapies with diseases),
LLMs did not consistently evaluate patient specific cases. This study
patently supports a stepwise prompting and implementation
approach for LLMs in the CMM space.

Using LLMs for medication management has untapped potential
given the prolific use of prescription medications and risk for ADEs
(Sikora, 2023). However, there are significant challenges that must be
overcome. Most LLMs are trained on a widely available corpus (e.g.,
the Internet), which creates the potential for problems in domains
marked by highly technical language or rarely occurring scenarios, as
is a hallmark of medical and pharmacy domains (Clusmann et al.,
2023; Soroush et al., 2024). Medication use is fraught with errors, so
identifying ‘ground truth’ remains a perennial challenge. Additionally,
high-quality CMM requires a combination of both recall-based
knowledge and application-oriented skills to understand how the
individual drug, dose, and formulation interact with the patient,

TABLE 2 Pooled median Likert scores expressing clinician agreement with each LLM-generated medication regimen.

LLM Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Overall score, median (IQR)

GPT-3.5 3 (2–3) 1 (1–1.5) 3 (2.5–3.5) 2 (2–3) 1 (1–2) 3 (2.5–4) 1 (1–2) 2 (1–3)

GPT-4 3 (2.5–3.5) 3 (2–3.5) 3 (2.5–3.5) 2 (2–3) 2 (1–2) 3 (2.5–4.5) 2 (1–3) 3 (2–3)ab

Llama-2–70b 2 (2–3) 2 (1–2.5) 3 (2–3) 2 (2–3) 1 (1–2) 1 (1–2.5) 1 (1–1) 2 (1–3)a

Claude-2 2 (2–2.5) 1 (1–2) 2 (2–2.5) 2 (1–2) 1 (1–2) 1 (1–2.5) 1 (1–1) 2 (1–2)b

LLM: large language model, IQR: interquartile range.

a, b: rows with matching superscripts are significantly different from each other upon pairwise comparison using Dunn’s test with Bonferroni correction for multiple comparisons (ex. GPT-4, is

significantly different compared to both Llama-2–70b and Claude-2).

Adjusted p-values for pairwise comparisons.
aGPT-4, vs. Llama-2–70b, p = 0.0014.
bGPT-4, vs. Claude-2, p < 0.001; All other pairwise comparisons, non-significant.

TABLE 3 Reason for discontinuation of medications by the clinician panel.

Error type GPT3.5, median (IQR) GPT4, median (IQR) Llama-2–70b, median (IQR) Claude-2, median (IQR)

Overt error 2 (1.5–3) 1 (0–2) 3 (0.5–7) 4 (2–6.5)

Therapy optimizationa 19 (16.5–19.5) 19 (17–19.5) 22 (21–30.5) 21 (16–24)

Lack of indication 10 (5.5–11) 7 (6.5–13.5) 12 (10–20) 9 (6–12)

Other 1 (1–2) 0 (0–0.5) 1 (0–1.5) 1 (0–3)

For each model the reported median represents the median number of errors reported per clinician across all cases.

LLM, large language model; IQR, interquartile range.
aTherapy optimization would include anything that was deemed not optimal by the clinician panel but not necessarily harmful to the patient (ex. If the LLM, selected a twice daily blood pressure

medication as opposed to a simpler once daily regimen, or if it selected an antibiotic that more commonly causes side effects as opposed to a better-tolerated regimen).
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disease, and other medications in a given context to ascertain risk
and benefit profiles (Bainum et al., 2024; Branan et al., 2024).
Practice-based expertise that encompasses a wide array of
relatively rare scenarios is also hard to replicate in datasets.
Owing to the challenges as well as potential dangers associated
with poor performance, there have been calls for thoughtful
evaluation of LLMs prior to use in the healthcare setting (Ayers
et al., 2024).

As a key finding of this study, in holistic evaluation clinicians
ranked the highest performing LLM as amedian 2 out of 5 on level of
agreement (i.e., disagree). It is worth noting that given the
complexity of the cases and the nuance of clinical practice, there
can be differences between a reasonable choice and the best choice.
Similarly, “medication error” is a broad term, inclusive of minor
oversights with little potential to cause patient harm as well as
critical mistakes that can result in significant adverse outcomes).
However, our study categorized the reasons why clinical experts
discontinued medications recommended by the LLMs and found a
high rate of life-threatening pharmacotherapy recommendations,
pointing to a concerning knowledge gap for LLMs. For example, in
one case with a patient experiencing elevated intracranial pressure,
one LLM recommended administering a 250 mL bolus of 23.4%
hypertonic saline, a medication that is typically administered as a
30 mL bolus when treating neurologic emergencies: if this had
occurred in practice, it would likely have led to significant
morbidity and mortality for the patient and notable quality
improvement and root cause analysis processes.

There was also a lack of consistency in LLM recommendations
across cases with similar features. For example, GPT-
3.5 recommended vancomycin in two cases, but different dosing
strategies. In one case, it simply recommended vancomycin
1,250 mg x1 with no mention of target trough concentrations,
but in another case it recommended 1,250 mg every 12 h with a
target trough of 15–20 mg/L. Similarly, GPT-4 had inconsistent
recommendations with regards to stress-dose steroids in septic
shock. In one case it recommended the addition of steroids for a
patient on norepinephrine alone, but in a second case it did not add
steroids for a patient on norepinephrine plus vasopressin. This
inconsistency in recommendations raises concerns about the
background logic being applied by LLMs.

Another observed pattern was a predisposition to continuing
medications in the “current medications” content of the case
presented to the LLM. This could include continuing a
medication without a clear indication for prior-to-admission use
(e.g., baclofen in a patient without spasticity) or continuing
medications exactly as written in the “current medications” (e.g.,
“norepinephrine 0.09 mcg/kg/min” rather than norepinephrine
titrated to a MAP goal). These patterns give the sense that LLMs
are simply transcribing data rather than evaluating the medications
on their merits. Other observations included that the LLMs
struggled to provide appropriate renal dose adjustments based on
patient conditions and committed frequent opioid-related errors
(e.g., administering an oral medication intravenously or intravenous
opioids to non-intubated patients).

There were some positive observations with regard to data
synthesis, particularly with GPT-3.5 and GPT-4. In case 5, GPT-
3.5 picked up on “sepsis” in the case and recommended crystalloid
30 mL/kg for the patient in line with best practice guidelines for
sepsis management (Evans et al., 2021). Unfortunately, the patient
had already received resuscitation, so repeating 30 mL/kg would
likely not be indicated. Nonetheless, this observation suggests a
stronger ability to collect information from the history of present
illness compared to Llama-2–70b or Claude-2. Similarly, in case 4,
GPT-4 picked up on “reduced oral intake” in the history of present
illness and recommended a fluid bolus “to address dehydration from
reduced oral intake”. This represents an impressive ability to collect
and synthesize data before making recommendations.

Our methodology was structured to maximize LLM
understanding and application of clinical knowledge in the
formulation of medication plans (Zhao et al., 2023). By
employing reasoning engines (i.e., chain of thought) and one-
shot prompting via emphasizing the importance of the in-context
demonstration for formatting, we aimed to enhance the models’
ability to process and apply complex medical information. This was
further supported by the comparative analysis of the responses
across different LLMs, providing insights into their respective
capabilities and limitations in medical decision-making tasks.
Throughout the study, the effectiveness of the one-shot
prompting with in-context learning and the chain-of-thought
method was assessed based on the accuracy and clinical relevance

TABLE 4 Medication errors.

LLM Total errors (across all
cases), median (IQR)

Caseswith at least 1 clinician reporting a
life-threatening error, n (%)

N = 7

Rate of life-threatening
errorsa, n (%)

N = 49

Chi-square
p-value

GPT-3.5 32 (27–34) 7 (100) 19 (38.8)a <0.001

GPT-4 29 (28–34.5) 3 (43.9) 8 (16.3)b,c

Llama-
2–70b

48 (44–49) 6 (85.7) 14 (28.6)d

Claude-2 34 (33–35) 7 (100) 28 (57.1)c,d

a, b, c: rows with matching superscripts are significantly different from each other upon pairwise comparison using Chi-squared test with Bonferroni correction for multiple comparisons (ex.

GPT-4, is significantly different compared to both GPT-3.5 and Claude-2).
apercentage is calculated using cases that were assessed as having a potential life threatening error divided by total cases (n = 49).

Adjusted p-values for pairwise comparisons.
bGPT-3.5 vs. GPT-4, p = 0.013, GPT-3.5 vs. Llama-2–70b, p = 0.29, GPT-3.5 vs. Claude-2, p = 0.069, GPT-4, vs. Llama-2–70b, p = 0.15.
cGPT-4, vs. Claude-2, p < 0.001.
dLlama-2–70b vs. Claude-2, p = 0.0043.
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of the medication plans generated by the LLMs. The structured
approach and comparative analysis offer valuable contributions to
the ongoing exploration of the potential of LLMs in healthcare
applications, particularly in the context of medication management
and treatment planning. The refinement of chain-of-thought (or
related concepts like tree-of-thought and graph-of-thought) in
combination with zero or few shot learning are rapidly
implementable methods even as new medication knowledge and
LLM technology progress, which are helpful for keeping such
technology up to date. Indeed, this strategy is particularly helpful
in healthcare where labeled data (i.e., a dataset with annotated
‘correct’ answers) are scarce and because the prompts support in-
context learning, which can strengthen and accelerate the exhaustive
fine-tuning process (Ma et al., 2024; Guan et al., 2023). Reasoning
engines break up problems into steps from which logical inferences
can be made. Our team has shown that zero- and few-shot learning
can contribute to dealing with unseen scenarios that lack training
datasets, including a new abductive reasoning method via natural
language processing (Zhong et al., 2025).

Reasoning engines are useful because they reduce hallucinations
and support assessment for logical or training gaps (Holmes et al.,
2023; Wei et al., 2022). This structured approach to reasoning can be
particularly beneficial in capturing the nuances of clinical decision-
making. This study used a one-shot prompting approach in which
each model was shown an example case that included a complete
“ground truth”medication plan before generating new responses. The
exemplar was designed to illustrate how outputs should be structured
and reasoned through, not to provide clinical content for reuse.
Nevertheless, this setup introduces a potential for in-context
leakage: the models could have inferred therapeutic logic or
stylistic patterns from the exemplar rather than developing their
own reasoning independently. Although the exemplar and test
cases involved different patients and clinical details, some overlap
in themes (such as sepsis or shock management) may have subtly
influenced model outputs. Recognizing this trade-off is important.
The exemplar likely improved consistency and formatting across
models but may have partially guided their clinical reasoning.
Future research could reduce this risk by randomizing or rotating
exemplars, using multiple independent examples, or adopting a zero-
shot design to isolate genuine model reasoning and generalizability.

This evaluation assesses the ability of LLMs to manage complex
medication regimens, with strengths including the establishment of
a clinically valid ground truth and inclusion of a diverse clinician
panel. However, some limitations exist including that the LLM was
not provided all information generally available in the electronic
health record and the LLMs were tested on a small number of cases
which had similarities throughout and lacked repeating trials to
evaluate consistency of model performance. Future analyses would
benefit from repeated prompting as well as sensitivity analyses with
different model settings. Additionally, the LLMs used were not
specifically designed for healthcare-specific assessments, so they
likely lacked prior training in these areas. Our analysis was
intended to sample LLM capability with different complex cases
in critical care, but we recognize that differences in cases (sepsis vs.
stroke) may account for some of the variability. However, this proof-
of-concept analysis was not designed to explore that component.
Additionally, at the time of testing, the LLMs selected were the most
up-to-date LLMs available on the market. We recognize that newer

models have since been release; however, the latest work suggests
that while these models have improved computing capacity, human
alignment and domain specific testing remain important.

Ground truth is difficult to establish, as it does still require some
aspect of clinical acumen: it is important that future evaluations
consider how to account for stylistic variation that is within the
confines of evidence-based medicine and not truly reflective of LLM
performance. Clinicians may have different opinions on error
assessment and adverse event likelihood that may have led to
heterogeneity in the “ground truth” determination: this is
particularly true in critical care, which observes practice variation
given clinical uncertainty in the treatment of various disease states.
While our panel attempted to reference guidelines wherever possible,
this is a limitation of the study due to practice variation. In clinical
scenarios where the guidelines may not be fully applicable to the
patient or where there may be several appropriate courses of action,
the “ground truth”may be difficult to determine. Though out of scope
for this exploratory analysis, establishing how LLMs should act in the
setting of clinical uncertainty (i.e., when the ground truth is unknown)
is an essential step for their clinical use. In this case, our panel expected
to the LLMs to make recommendations that do not overtly cause
harm (e.g., high doses of potassium in the setting of renal failure
leading to life-threatening arrythmias), to make use of available
guidelines whenever available, and to treat the conditions stated in
the cases (e.g., antibiotics for sepsis). There is more recent work with
LLMs teaching them to say “I do not know,” which may also be a
future expectation (Zhang et al., 2024). Notably, the criteria used for
evaluating these LLM-generated treatment plans is not standardized
and involved human review (instead of automation). Objective,
standardized, and ideally automated means of establishing clinical
acceptance criteria and performance benchmarking for clinical NLP is
an essential area for future development. Indeed, the FDA’s recent
viewpoint in JAMA specifically stated that industry and other
stakeholders must improve quality assurance and evaluation of
artificial intelligence so that there can be consistency and rigor in
the critique of artificial intelligence studies (Warraich et al., 2025).

Despite the limitations of this proof-of-concept analysis,
findings suggest that available training and fine-tuning methods
may support the use of LLMs for treatment selection. The pipeline
necessary to develop LLMs to assist with CMM will likely include a
thoughtful integration of domain-specific demonstrations including
prompt engineering and real-life human feedback and direct
preference optimization combined with infrastructure that allows
for continual updates as medication knowledge expands. Though
these undertakings are time- and resource-intensive, the potential
shown here supports future investigations.

Conclusion

Using present LLMs as a clinical support tool warrants caution,
as without thoughtful human interaction, generated
recommendations could cause overt harm. However, there is
potential for specifically engineered LLMs tailored for medication
management given a thoughtful training and fine-tuning paradigm
and appropriate clinical benchmarking. Further development is
necessary before LLMs can be reliably used as a clinical support
tool given their underperformance in this analysis.
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