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Background: Mycoplasma pneumoniae (MP) is a leading cause of community-
acquired pneumonia in children, with a significant increase in incidence
following the COVID-19 pandemic. The emergence of macrolide-resistant
M. pneumoniae (MRMP) has complicated treatment, leading to the concept
of macrolide-unresponsive M. pneumoniae pneumonia (MUMPP), defined as
lack of improvement after 72 h of macrolide therapy. Early identification of
MUMPP is critical for timely intervention and improved outcomes. This study
aimed to develop and validate a nomogram for early prediction of MUMPP
in children.

Methods: We conducted a retrospective study involving 278 pediatric patients
with MP pneumonia, divided into training (n =188) and validation (n =90)
sets. Demographic, clinical, laboratory, and chest CT imaging data were
collected. Univariate and multivariate logistic regression analyses were used
to identify independent predictors of MUMPP. A nomogram was constructed
and validated using receiver operating characteristic (ROC) curves, calibration
plots, and decision curve analysis (DCA).

Results: Six independent predictors were identified: tree-in-bud pattern,
neutrophil-value, lymphocyte-value, creatine kinase (CK), platelet-to-
lymphocyte ratio (PLR), and male gender. The nomogram demonstrated
strong discriminatory power, with area under the curve (AUC) values of 0.838
(95% Cl: 0.779-0.897) in the training set and 0.835 (95% Cl: 0.752-0.918) in
the validation set. Calibration and DCA confirmed good clinical utility.
Conclusion: We developed and validated a simple-to-use nomogram for
predicting MUMPP in early stage. The nomogram demonstrates strong
discriminatory power and calibration, and may be a practical tool for
clinical practice.
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Introduction

Mycoplasma pneumoniae pneumonia (MPP) accounts for
approximately 10%-40% of community-acquired pneumonia
(CAP) in school-aged children (1). According to reports from
the World Health Organization and multiple countries, the
burden of respiratory diseases in children has increased
significantly following the COVID-19 pandemic, with a notable
rise in the incidence of MPP (2). Macrolides are the primary
antibiotics used to treat MPP. However, compared to the pre-
pandemic period, macrolide-resistant Mycoplasma
pneumoniae (MRMP) has become increasingly prevalent
worldwide, particularly in Asian countries. Resistance rates
have reached approximately 69.67% in South Korea and as
high as 90% in Japan and China (3-5). This trend poses a
serious threat to children’s health, often leading to prolonged
fever, extended hospital stays, increased severity of cases, and
challenges in antibiotic selection (6). In response, the 2023

Chinese Guidelines for the Diagnosis and Treatment of MPP

in Children introduced the concept of “Macrolide-
Unresponsive Mpycoplasma pneumoniae Pneumonia
(MUMPP), defined as cases showing no clinical or

radiological improvement after 72 h of macrolide treatment”
(7). MUMPP can serve as an early indicator of MRMP.
identification of MUMPP and
adjustment of antibiotics are crucial for shortening the

Therefore, early timely
disease course and reducing the risk of severe complications
and sequelae (8).

Imaging plays an increasingly important role in the diagnosis
and evaluation of pneumonia. Although chest x-ray remains the
first-line imaging method for assessing CAP, its findings in MPP
are often non-specific and may be missed due to anatomical
overlap. In contrast, computed tomography (CT) provides
clearer visualization of parenchymal and interstitial lung
abnormalities—such as  bronchial wall thickening and
bronchiectasis—which correlate well with pathological changes
(9, 10). With higher spatial and density resolution, CT offers a
more reliable basis for accurately assessing the extent and
pattern of lung involvement in children, thereby guiding clinical
decision-making.

The nomogram is an intuitive and user-friendly tool for
multivariate prediction modeling. It integrates key predictive
factors into a visual risk assessment model, facilitating
individualized risk evaluation and clinical
decision-making (11). Existing prediction models for
refractory MPP (RMPP), severe MPP (SMPP), and necrotizing
MPP (NMPP) have identified several independent risk factors,

including

supporting

peak body temperature, pleural effusion,
extrapulmonary complications, neutrophil ratio, C-reactive
(CRP), (ESR),
procalcitonin (PCT), D-dimer, lactate dehydrogenase (LDH),
and albumin (ALB) (12-14).

focused on developing clinical prediction models specifically

protein erythrocyte sedimentation rate

However, few studies have
for MUMPP. Current diagnosis relies heavily on symptomatic

presentation and isolated laboratory findings, which vary
based on physicians’ experience and subjective judgment,
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leading to inconsistent and potentially biased outcomes.
Hence, there is an urgent need to develop an effective,
economical, and rapid diagnostic tool to support timely and
accurate treatment.

This study aimed to identify factors for the early prediction of
MUMPP and to develop a simple-to-use nomogram.

Materials and methods
Study subjects and design

This retrospective research was conducted in adherence to the
Declaration of Helsinki. Ethical approval, which included a waiver
for individual consent, was obtained from the Ethics Committee
of Ordos Central Hospital (No. 2025-406).

In this study, 278 children diagnosed with MPP and
hospitalized for treatment were enrolled. Among them, 188
cases from the main campus of Ordos Central Hospital between
July 2018 and June 2024 were assigned to the training set. An
additional 90 cases from the branch campus between April 2019
and June 2024 were collected as the test set, (Figure 1).

Inclusion criteria: (1) were under the age of 14 years; (2)
clinical signs and symptoms suggestive of CAP, including fever,
cough, adventitious breath sounds (rales or diminished breath
sounds), and new infiltrates on chest x-ray or CT; (3) positive
serological testing for MP-IgM (serum anti-MP IgM titer >1:160
or a>4-fold increase in antibody levels), or positive MP-RNA
or MP-DNA detection in throat swab or bronchoalveolar lavage
fluid (BALF); (4) noncontrast chest CT performed within 72 h
of admission.

The following tests were used to rule out other respiratory
infections and tuberculosis: purified protein derivative (PPD)
test, blood
aspirate/swab culture, viral antigen testing (for respiratory

culture, pleural fluid culture, nasopharyngeal
syncytial virus, influenza virus, adenovirus, and parainfluenza

virus), and serology for Chlamydia pneumoniae and
Legionella pneumophila.

Exclusion criteria included: (1) macrolide antibiotic use for
>72h prior to admission; (2) foreign body aspiration; (3)
chronic respiratory diseases;
transplantation or surgery,

immunosuppressive drugs; (5) congenital or inherited metabolic

(4) malignancy, solid organ

immunodeficiency, or use of

disorders and other underlying conditions; (6) incomplete
medical records; (7) poor patient cooperation leading to
significant imaging artifacts. Furthermore, patients with any
missing values in the studied variables were excluded from the
final analysis to ensure a complete dataset for model development.

Depending on whether patients had persistent fever,
unresolved clinical symptoms, and worsening or stagnant
pulmonary imaging following 72 h of macrolide therapy, they
were  classified  into  Macrolide-Sensitive =~ Mycoplasma
pneumoniae Pneumonia (MSMPP) group and unresponsive

(MUMPP) group.
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3685 Hospitalized children with MPP from
2018.7 to 2024.6
Exclusion criteria:
Infection of other pathogens (n=485)
Treatment with macrolides >72h before
admission(n=151)
CT examination >72h of admission or
without CT examination (n=2731)
Incomplete data(n=40)
[ Final inclusion of 278 patients ]
[ Training cohort(n=188) J [ Test cohort(n=90) ]
MSMPP MUMPP MSMPP MUMPP
(n=108) (n=80> (n=59) (n=31D
FIGURE 1
Patient screening workflow for this study. MUMPP, macrolide-unresponsive M. pneumonias pneumonia, MSMPP macrolide-sensitive M. pneumonias
pneumonia.

Data collection

We collected data from the electronic health medical record

system, including general demographics, clinical features,

laboratory results at admission.

(1) Demographic data included gender, age, and ethnicity.

(2) Clinical features encompassed presence of fever, cough,
wheezing, pre-admission cough duration (PCD), pre-

(PFD), the highest body

temperature (T), heart rate (HR) and respiratory rate (R)

admission fever duration
on admission and length of hospital stay.

(3) Laboratory results consisted of white blood cell count (WBC),
neutrophil count (NEUT_value), neutrophil percentage
(NEUT), lymphocyte count (LYMPH_value), lymphocyte
percentage (LYMPH), monocyte count (MONO), platelet

(PLT), (CRP),

aminotransferase (ALT), aspartate aminotransferase (AST),

count C-reactive  protein alanine

lactate dehydrogenase (LDH), creatine kinase (CK), creatine

kinase isoenzyme (CK-MB), and albumin (ALB).
Additionally, ratios of certain serum markers were
evaluated, including ratio of neutrophil-value to

lymphocyte-value (NLR), ratio of platelet to lymphocyte-
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value (PLR), ratio of lymphocyte-value to CRP (LCR), and
LDH-to-albumin ratio (LAR).

All patients underwent noncontrast chest CT within 72h
of admission.

CT examinations

CT scans were performed while the children were in a calm
state. For uncooperative patients, appropriate sedation was
administered to ensure successful completion of the
examination. Scans were conducted using GE Lightspeed VCT
64-slice, GE Discovery CT 750HD, GE Revolution CT 256-slice,
and SIEMENS SOMATOM Force dual-source CT scanners.
Scanning parameters were as follows: tube voltage 80-120 kV,
tube current 50-350 mA, slice thickness 5 mm, slice interval
5mm, and reconstructed image thickness 1.25mm. The CT
scan was performed from the lung apex to the lung base. For
mediastinal window settings, the window width was 350 HU
and window level 40 HU; for lung windows, the window width

was 1,500 HU and window level —600 HU.
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Imaging analyses

CT images were initially evaluated by a radiologist with 10
years of experience in thoracic imaging and reviewed by another
with more than 15 years of experience. In case of disagreement,
a consensus was reached through discussion or consultation
with a senior attending radiologist. Recorded CT features
included lesion location, number of involved lobes, unilateral or
bilateral involvement, bronchial wall thickening, tree-in-bud
sign, air bronchogram, interlobular septal thickening,
consolidation pattern (patchy, segmental, lobar), consolidation
with ground-glass opacity (GGO), mosaic pattern, with or

without pleural effusion.

Statistical analysis

All statistical analyses in this study were performed using
R software (version 4.5.1). Continuous variables following a
normal distribution were presented as mean + standard deviation
Student’s  ¢-test.
distributed continuous variables were summarized as median

and compared using the Non-normally
with interquartile range [M (P25, P75)] and compared using the
Mann-Whitney U test. Categorical variables were expressed as
frequency (percentage) and compared using the chi-square test.
For variable selection, potential predictors were first screened
by univariate logistic regression, retaining those with a significance
level of P <0.05. Multicollinearity among these selected variables
was then assessed using the variance inflation factor (VIF), and
variables with VIF >5 were iteratively removed. The remaining
variables with low collinearity were entered into a multivariate
logistic regression model. A stepwise backward elimination
method was applied, with inclusion and exclusion criteria set at
P<0.05 and P>0.10, identify the final
independent predictors and construct the prediction model. In

respectively, to

addition to VIF assessment, correlation analysis was conducted
to further verify the absence of severe multicollinearity among
the final predictors in the model. Furthermore, for continuous
variables included in the final model, four-knot restricted cubic
spline analysis was employed to assess the presence of nonlinear
relationships with the logit-transformed outcome variable.

The predictive performance of the model was evaluated using
the area under the receiver operating characteristic (ROC) curve,
accuracy, sensitivity, and specificity. Predictive consistency was
assessed using calibration curves, and clinical utility was
determined via decision curve analysis. All statistical tests were
two-sided, P < 0.05 was considered statistically significant.

Results
Clinical characteristics

Among the 278 pediatric cases, there were 111 cases of
MUMPP and 167 cases of MSMPP. Including 125 boys
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(44.96%) and 153 girls (55.04%). The median age was
7.23 £2.64 years, and the average length of hospital stay was
8.20+3.10 days. Mycoplasma pneumoniae pneumonia cases
were detected throughout the year, with a peak incidence
observed in the fourth quarter. Table 1 summarizes the
characteristics of children in the training and test sets at
admission. No significant differences were observed in gender
or ethnicity (P>0.05). Clinical manifestations, routine blood
tests, and biochemical markers within 24 h of admission
were compared between the two groups. In the training
set, compared with the MSMPP group, the MUMPP group
had a longer duration of fever before admission, higher
levels of NEUT, NLR, CRP, AST, CK, LDH, PLR, and LAR, as

well as lower respiratory rate, LYMPH_value, LYMPH,
MONO, ALB, and LCR. In the test set, the MUMPP
group exhibited a longer duration of cough before

admission, and significant differences were found in NEUT,
LYMPH, LYMPH_value, NLR, CK, and PLR (P<0.05).
Notably, in both the training and test sets, children in the
MUMPP group were older and had a higher incidence in the
fourth quarter. The other results showed no significant
differences (P > 0.05).

Chest CT imaging features

Figure 6A demonstrates the characteristic tree-in-bud sign on
a chest CT image from a child with MUMPP. Chest CT imaging
features are summarized in Table 2. Compared with the
MSMPP group, the MUMPP group showed a significantly
higher prevalence of tree-in-bud signs (P <0.01). In the training
set, mosaic pattern and lobar consolidation were also more
common in the MUMPP group (P<0.05), though these
differences were not statistically significant in the test set. Other
imaging features, including bronchial wall thickening, air
bronchogram, interlobular septal thickening, segmental
consolidation, patchy consolidation, bilateral lobar infiltration,
and pleural effusion, did not differ significantly between the

groups (P > 0.05).

Variable selection

Univariate logistic regression analysis was performed on
all features. Given that multiple indicators were associated
with
were first assessed for multicollinearity. Following the
removal of highly correlated variables (LAR, LYMPH, and
NLR), 16
multivariate logistic regression. The analysis identified six
independent predictors of MUMPP: sex, NEUT_value,
LYMPH_value, CK, PLR, and tree-in-bud sign (P <0.05)
(Table 3, which only lists variables with statistical significance

inflammatory response, 19 independent variables

low-collinearity features were retained for

in the multivariate analysis).
A comprehensive correlation analysis confirmed the absence
of substantial multicollinearity among the six final predictors
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TABLE 1 Baseline characteristics of patients in the training and test cohort.

Feature Training cohort Test cohort
MUMPP MUMPP

Age (years) 7.11+2.61 7794223 6.60 +2.76 0.003 7.50 + 2.69 8.45+1.80 7.00 £2.95 0.022
hospital_days 8.74+3.42 8.81 +3.37 8.69 +3.47 0.815 7.07 +1.87 7.00 +2.32 7.10 £1.59 0.482
PCD (days) 6.09+4.71 6.16+3.31 6.03+5.53 0.181 5914235 6.45+1.96 5,63 +2.50 0.045
PED (days) 534+3.33 579+2.48 5.00 + 3.82 0.006 5514225 5.65+2.26 5.44+2.27 0.664
T (°C) 37.18 +1.00 37.20+1.01 37.17 +1.00 0.968 37.47 +0.88 37.63 +1.04 37.39+0.78 0.462
HR 104.28 + 12.81 102.06 + 10.28 105.93 + 14.22 0.091 113.24 + 12.99 111.19 + 14.62 11432+ 12.04 0.280
R 2228+ 4.19 21.91 £4.19 22,55+ 4.19 0.011 2417323 23.71+2.97 24.41+3.36 0.222
WBC (x10°/L) 7.39+2.95 7354335 7.42+2.64 0.467 6.81+2.15 6.70 £2.27 6.87 £2.10 0.802
NEUT (%) 64.12 £12.55 68.81 +10.98 60.64 + 12.56 <0.001 65.77 +10.65 69.37 £9.52 63.87 +10.80 0.015
NEUT_value (x10°/L) 4.82+237 530 +£2.98 447171 0.117 4.58+1.85 4544191 4.60+1.83 0.905
LYMPH (%) 26.70 +10.69 22,67 £9.51 29.68 + 10.57 <0.001 25.29 +9.66 21.66 +7.72 27.19 +10.09 0.011
LYMPH_value (x10°/L) 1.93+1.22 1.51+0.69 2.25+1.42 <0.001 1.69 +0.85 1.35+0.53 1.87+0.94 0.006
MONO (x10°/L) 0.56 +0.79 0.47 £0.25 0.63 +1.02 0.022 0.47 £0.17 0.46 +0.20 0.47 £0.15 0.868
NLR 3.16 £2.21 4144277 243+1.28 <0.001 3.15+1.57 3.66 + 1.65 2.88 +1.47 0.034
PLT (x10°/L) 275.10 + 87.67 262.10 + 91.84 284.72 + 83.57 0.097 272.52 + 81.06 267.97 + 88.96 274.92 +77.29 0.658
CRP (mg/L) 23.63 +29.01 27.79 +30.83 20.54 +27.33 0.0119 2523 +28.43 21.15 +16.93 27.38 +32.84 0.405
ALT (U/L) 23.47 +£33.20 24.26 +26.60 22.89 +37.45 0.146 1599+ 11.41 15.74 +9.93 16.12+12.19 0.627
AST (U/L) 36.90 +18.19 40.19 +21.57 3447 +14.85 0.007 29.59+11.16 27.84+7.86 30.51 +12.52 0.334
CK (U/L) 130.29 + 174.70 183.55 + 251.53 90.83 + 54.19 <0.001 142,57 + 147.67 163.26 + 132.39 131.69 + 155.07 0.033
CK_MB (U/L) 25.61 +12.50 27.24 +14.07 24,41 +11.12 0.165 19.48 +6.57 17.38 +4.28 20.59 +7.29 0.076
LDH (U/L) 332.64+111.63 376.63 + 130.82 300.05 + 81.38 <0.001 308.79 + 82.55 300.55 + 63.20 313.12+91.29 0.935
ALB (g/L) 42.40 +3.20 4147 £3.42 43.09+2.85 <0.001 40.61+2.93 40.49 +3.15 40.67 +2.83 0.786
PLR 176.63 + 94.65 203.14 + 104.82 156.99 + 81.42 <0.001 188.55 + 86.85 219.35 + 96.20 172.36 + 77.55 0.012
LCR 2.85+30.72 0.22+0.83 4.81+40.49 <0.001 0.25+0.95 0.12+0.11 0.31+1.17 0.664
LAR 7.98+3.11 9.28+3.74 7.01+2.09 <0.001 7.71+2.45 7.53+2.03 7.81+2.66 0.969
Sex 0.066 0.645

Female 105 (55.85) 38 (47.50) 67 (62.04) 48 (53.33) 15 (48.39) 33 (55.93)

Male 83 (44.15) 42 (52.50) 41 (37.96) 42 (46.67) 16 (51.61) 26 (44.07)
Ethnicity 0.573 1.0

Han 175 (93.09) 73 (91.25) 102 (94.44) 79 (87.78) 27 (87.10) 52 (88.14)

Other 13 (6.91) 7 (8.75) 6 (5.56) 11 (12.22) 4 (12.90) 7 (11.86)
Cough 0.613 1.0

No 2 (1.06) null 2 (1.85) 1(1.11) null 1 (1.69)

Yes 186 (98.94) 80 (100.00) 106 (98.15) 89 (98.89) 31 (100.00) 58 (98.31)
Wheezing 0.613 1.0

No 186 (98.94) 80 (100.00) 106 (98.15) 89 (98.89) 31 (100.00) 58 (98.31)

Yes 2 (1.06) null 2 (1.85) 1(1.11) null 1 (1.69)
Fever 0.358 1.0

No 9 (4.79) 2 (2.50) 7 (6.48) 1(1.11) null 1 (1.69)

Yes 179 (95.21) 78 (97.50) 101 (93.52) 89 (98.89) 31 (100.00) 58 (98.31)
Time_of_onset 0.005 0.002

1 51 (27.13) 21 (26.25) 30 (27.78) 21 (23.33) 3 (9.68) 18 (30.51)

2 50 (26.60) 27 (33.75) 23 (21.30) 37 (41.11) 21 (67.74) 16 (27.12)

3 25 (13.30) 3 (3.75) 22 (20.37) 7 (7.78) 2 (6.45) 5 (8.47)

4 62 (32.98) 29 (36.25) 33 (30.56) 25 (27.78) 5 (16.13) 20 (33.90)

MUMPP, macrolide-unresponsive M. pneumoniae pneumonia; MSMPP, macrolide-sensitive M. pneumoniae pneumonia; PCD, pre-admission cough duration; PFD, pre-admission fever
duration; T, the highest body temperature; HR, heart rate; R, respiratory rate; WBC, white blood cell count; NEUT value, neutrophil count; NEUT, neutrophil percentage;
LYMPH_value, lymphocyte count; LYMPH, lymphocyte percentage; MONO, monocyte count; PLT, platelet count; CRP, C-reactive protein; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; LDH, lactate dehydrogenase; CK, creatine kinase; CK_MB, creatine kinase isoenzyme; ALB, albumin; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-
lymphocyte ratio; LCR, lymphocyte-to-CRP ratio; LAR, LDH-to-albumin ratio.

(Figure 2). Evaluation of the continuous predictors using a four- Development and evaluation of the
knot restricted cubic spline (RCS) analysis revealed no predictive nomogram

significant nonlinear relationships with the logit of the outcome

(P>0.05) (Supplementary Tables S1, $2). Consequently, these A nomogram was constructed for the early identification of
variables were retained in their original linear form in the  MUMPP in children containing six independent predictors
final model. (Figure 3). A higher total score on the nomogram indicates a
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TABLE 2 Radiological features of patients in the training and test cohort.

Feature Training cohort

10.3389/fped.2025.1695974

Test cohort

MUMPP MSMPP

MUMPP

bronchial_wall_thickening (n, %) 0.322 0.026

No 92 (48.94) 43 (53.75) 49 (45.37) 36 (40.00) 7 (22.58) 29 (49.15)

Yes 96 (51.06) 37 (46.25) 59 (54.63) 54 (60.00) 24 (77.42) 30 (50.85)
air_bronchogram (n, %) 0.149 1.0

No 168 (89.36) 75 (93.75) 93 (86.11) 83 (92.22) 29 (93.55) 54 (91.53)

Yes 20 (10.64) 5 (6.25) 15 (13.89) 7 (7.78) 2 (6.45) 5 (8.47)
interlobular_septal_thickening (n, %) 0.102 1.0

No 182 (96.81) 75 (93.75) 107 (99.07) 84 (93.33) 29 (93.55) 55 (93.22)

Yes 6 (3.19) 5 (6.25) 1 (0.93) 6 (6.67) 2 (6.45) 4 (6.78)
tree_in_bud_sign (n, %) 0.001 <0.001

No 151 (80.32) 55 (68.75) 96 (88.89) 57 (63.33) 7 (22.58) 50 (84.75)

Yes 37 (19.68) 25 (31.25) 12 (11.11) 33 (36.67) 24 (77.42) 9 (15.25)
Consolidation_mixed_GGO (n, %) 0.397 0.941

No 161 (85.64) 66 (82.50) 95 (87.96) 83 (92.22) 28 (90.32) 55 (93.22)

Yes 27 (14.36) 14 (17.50) 13 (12.04) 7 (7.78) 3 (9.68) 4 (6.78)
mosaic pattern (n, %) 0.019 0.570

No 175 (93.09) 79 (98.75) 96 (88.89) 71 (78.89) 26 (83.87) 45 (76.27)

Yes 13 (6.91) 1(1.25) 12 (11.11) 19 (21.11) 5 (16.13) 14 (23.73)
consolidation (n, %) 0.758 0.566

No 36 (19.15) 14 (17.50) 22 (20.37) 16 (17.78) 7 (22.58) 9 (15.25)

Yes 152 (80.85) 66 (82.50) 86 (79.63) 74 (82.22) 24 (77.42) 50 (84.75)
Patchy_consolidation (1, %) 1.0 1.0

No 178 (94.68) 76 (95.00) 102 (94.44) 79 (87.78) 27 (87.10) 52 (88.14)

Yes 10 (5.32) 4 (5.00) 6 (5.56) 11 (12.22) 4 (12.90) 7 (11.86)
segmental_consolidation (1, %) 0.055 1.0

No 87 (46.28) 44 (55.00) 43 (39.81) 43 (47.78) 15 (48.39) 28 (47.46)

Yes 101 (53.72) 36 (45.00) 65 (60.19) 47 (52.22) 16 (51.61) 31 (52.54)
lobar_consolidation (1, %) 0.002 1.0

No 150 (79.79) 55 (68.75) 95 (87.96) 77 (85.56) 27 (87.10) 50 (84.75)

Yes 38 (20.21) 25 (31.25) 13 (12.04) 13 (14.44) 4 (12.90) 9 (15.25)
Pleural_effusion (n, %) 0.111 1.0

No 110 (58.51) 41 (51.25) 69 (63.89) 71 (78.89) 24 (77.42) 47 (79.66)

Yes 78 (41.49) 39 (48.75) 39 (36.11) 19 (21.11) 7 (22.58) 12 (20.34)
Bilateral_lobar_infiltrates (1, %) 0.704 1.0

No 111 (59.04) 49 (61.25) 62 (57.41) 41 (45.56) 14 (45.16) 27 (45.76)

Yes 77 (40.96) 31 (38.75) 46 (42.59) 49 (54.44) 17 (54.84) 32 (54.24)

MUMPP, macrolide-unresponsive M. pneumoniae pneumonia; MSMPP, macrolide-sensitive M. pneumoniae pneumonia; GGO, ground-glass opacity.

TABLE 3 Results of multivariable logistic regression analysis.

Feature Coef OR 95% CI fo)

Sex —1.105 0.331 0.136-0.808 0.015
NEUT _value 0.412 1.510 1.044-2.185 0.029
LYMPH_value —1.444 0.236 0.079-0.697 0.009
CK 0.007 1.007 1.001-1.013 0.014
PLR —0.008 0.992 0.985-0.999 0.026
tree_in_bud_sign 1.810 6.111 1.876-19.914 0.003

Coef, coefficient; OR, odds ratio; CI, confidence interval; NEUT _value, neutrophil count;
LYMPH_value, lymphocyte count; CK, creatine kinase; PLR, platelet-to-lymphocyte ratio.

greater risk of MUMPP. In the training set, the nomogram showed
an area under the curve (AUC) of 0.838 (95% CI: 0.779-0.897)
(Figure 4A), while in the test set, the AUC was 0.835 (95% CIL:
0.752-0.918) (Figure 4B), demonstrating robust discriminatory
ability. Furthermore, the model exhibited robust specificity and

Frontiers in Pediatrics

PPV in the training cohort, a marked gain in sensitivity was
achieved in the test cohort while maintaining strong specificity
(Table 4). To rigorously evaluate the internal validity of the
1,000
performed, and the corresponding performance metrics are

model, bootstrap validation with resamples  was
detailed in Supplementary Table S3.

Calibration curves indicated good agreement between the
predicted and actual outcomes (Figures 4C,D). The DCA of
our nomogram shows that across a wide threshold probability
range of approximately 0.1-0.9, its net benefit is consistently
higher than the strategies of “intervening on all patients” and
“intervening on no patients.” This indicates that in clinical
practice, using this model to screen patients requiring early
identification of MUMPP can provide greater net clinical
benefit compared to simple binary strategies, effectively
balancing the risks of missed diagnosis and overdiagnosis

(Figure 5).
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count; CK, creatine kinase; PLR, platelet-to-lymphocyte ratio.

Heat map analysis of correlations between 6 variables. (A) Training cohort. (B) Test cohort. NEUT-value, neutrophil count; LYMPH-value, lymphocyte
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FIGURE 3
The nomogram to predict MUMPP. *Sex: 1 means female; O means male; tree_in_bud_sign: Ilmeans yes; 0 means no.

Figure 6 provides an example of how to use the nomogram.
Similar to a scoring system, points are assigned for each
predictor of MUMPP, which correspond to the risk of MUMPP.
A vertical line can be drawn upward from each predictor to

Frontiers in Pediatrics

determine the points associated with the presence of the tree-in-
bud sign on chest CT, gender, neutrophil count, lymphocyte
count, creatine kinase, and platelet-to-lymphocyte ratio (PLR).
Once points are assigned for all predictors, the total points are
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TABLE 4 Diagnostic performance of model for MUMPP in training and test cohort.

Cohort

AUC (95% Cl)

Accuracy

Sensitivity

Specificity F1-score

Training cohort 0.838 (0.779-0.897) 0.766 0.538 0.935 0.860 0.732 0.662
‘ Test cohort 0.835 (0.752-0.918) 0.756 0.742 0.763 0.622 0.849 0.676 ‘
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
calculated. The total points are then converted into the probability  Djscussion

of MUMPP by reading the corresponding value on the total
points scale.

Consequently, we created an online computing platform
This
enables both doctors and patients to carry out calculations
directly on the web.

(https://dynom.shinyapps.io/DynNomapp/). platform
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In recent years, the prevalence of MPP has increased
significantly, with high rates of complications and mortality
(15). Macrolides are the primary antibiotics used to treat MPP,
however, due to the increased use of macrolides and the
emergence of drug-resistant strains, the number of macrolide-
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Decision curve analysis (DCA) of the CT-based nomogram (red line). All (gray solid line, this assumes you intervene on every single patient) and None
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FIGURE 6

The risk of developing MUMPP was calculated for two pediatric patients using a nomogram. (A) A chest CT image from a boy with MPP shows the tree-
in-bud sign (red arrow). His laboratory findings were as follows: NEUT-value, 10.22 x 10%/L; LYMPH-value, 1.98 x 10°%/L; CK, 257 U/L; PLR, 267. The total
nomogram score was approximately 158 points, corresponding to a probability of developing MUMPP of greater than 90%. (B) A chest CT image from a
girl with MPP shows no tree-in-bud sign. Her laboratory findings were as follows: NEUT-value, 6.42 x 10%/L; LYMPH-value, 2.76 x 10°/L; CK, 197 U/L;
PLR, 136. The total nomogram score was approximately 111 points, corresponding to a probability of developing MUMPP of less than 20%. NEUT-value,
neutrophil count; LYMPH-value, lymphocyte count; CK, creatine kinase; PLR, platelet-to-lymphocyte ratio.

resistant cases has been rising. This situation has become
particularly complex following the COVID-19 pandemic, further
complicating the clinical management of MUMPP in children
(16, 17).

We found that a nomogram constructed using logistic
regression, incorporating tree-in-bud pattern, lymphocyte-value,
neutrophil-value, creatine kinase (CK), platelet-to-lymphocyte
ratio (PLR), and sex, can effectively and conveniently predict
MUMPP at an early stage. The nomogram demonstrated strong
accuracy and discriminative ability, which indicated it may be a
practical tool to help pediatricians recognize MUMPP earlier.

Frontiers in Pediatrics

In our study, the tree-in-bud sign was identified as a
significant independent predictor of MUMPP. The tree-in-bud
sign, a CT pattern characterized by centrilobular nodules and
branching linear opacities resembling a budding tree, reflects
pathological changes in the small airways, including bronchiolar
wall thickening, luminal impaction with mucus, pus, or
granulation tissue, and peribronchiolar inflammation (18, 19).
The pathogenesis of MUMPP involves not only direct microbial
damage but also a robust host immune-inflammatory response,
leading to a massive release of inflammatory cytokines and
subsequent tissue injury (20, 21). A more pronounced immune
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response is associated with greater organ damage and dictates
disease prognosis. In this context, a widespread tree-in-bud sign
signifies extensive lung involvement and severe small airway
obstruction (22, 23), which can impede pathogen clearance,
reduce local antibiotic concentration, and ultimately diminish
treatment responsiveness, as supported by previous findings
(24). By incorporating this key imaging feature, our model
facilitates the early recognition of MUMPP, thereby aiding in
timely treatment adjustment, mitigating the risk of
complications such as bronchiolitis obliterans, and improving
long-term outcomes in children.

Peripheral blood markers provide important insights into the
host’s  immune-inflammatory This  study
significantly elevated neutrophil-value in children with MUMPP,
identifying it as an independent risk factor. This aligns with
that

hyperinflammatory responses are closely associated with MPP

status. revealed

previous  studies  suggesting neutrophil-mediated
severity and poor outcomes (25-27). A possible explanation is that
neutrophils, as the first line of defense against infection, are
activated upon MP invasion via granulocyte colony-stimulating
factor (G-CSF) produced in large quantities by bronchial epithelial
cells, leading to a rapid increase in neutrophil counts and enhanced
phagocytic activity (28). Persistent inflammation may result in
lymphocyte-value depletion and impaired cellular immune function,
which is supported by the decreased lymphocyte-value observed in
the MUMPP group. Platelets are not only involved in coagulation
but also act as important inflammatory effector cells. MP infection,
along with associated cytokine storms and hypoxia, can cause
endothelial injury, leading to platelet activation and consumption
(29). Previous studies have shown that lower PLT levels are
associated with a higher risk of SMPP (30). Although PLT alone did
not differ significantly between groups in this study, a lower PLR
was identified as a risk factor for MUMPP. As a composite
indicator, PLR may more sensitively reflect concurrent platelet
consumption and lymphopenia, indicating stronger inflammatory
responses and potential immune imbalance, which correlate with
disease severity (31).

Additionally, a higher proportion of male patients was
observed in the MUMPP group. Although the relationship
and MUMPP
phenomenon could potentially be due to variations in immune

between sex remains underexplored, this
function or hormonal regulation between males and females
(32). Elevated serum CK was also more common in children
with MUMPP. CK is a key enzyme in energy metabolism within
muscle cells, predominantly found in skeletal and cardiac
muscle, with smaller amounts present in the brain, intestine,
liver, spleen, and lungs. Under normal conditions, CK rarely
leaks out of cells due to intact cell membranes. Higher CK levels
in MUMPP may reflect extrapulmonary involvement (e.g.,
muscle damage) or a stronger systemic stress response (33).
Furthermore, The COVID-19 pandemic and its subsequent
impacts have reshaped the epidemiological landscape and
clinical management of MPP. Global studies indicate that public
health shifts in

population immunity created favorable conditions for the

interventions during the pandemic and

resurgence and spread of MPP, often accompanied by increased
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macrolide resistance (34). In terms of technological responses,
breakthroughs in COVID-19 vaccine development—particularly
highly stable and immunogenic circular RNA platforms—offer
potential avenues for future strategies against drug-resistant
Mycoplasma strains (35). Meanwhile, national surveillance data
on fever of unknown origin (FUO) in China reveal that
infectious diseases remain the leading cause of FUO in the post-
pandemic era. However, the proportion of undiagnosed cases
has risen, reflecting growing diagnostic complexity. Significant
regional variations in etiology further underscore the need for
individualized ~diagnosis tailored to local epidemiological
patterns (36). Against this backdrop, our study addresses the
diagnostic challenges of the post-COVID era by developing an
objective prediction tool—the nomogram model presented here
—for early identification of MUMPP. This tool aims to support
more precise early clinical intervention in complex
diagnostic scenarios.

Although the nomogram model established in this study has
demonstrated favorable predictive performance, medical research
is advancing toward an era driven by artificial intelligence (AI)
(37). Future models may leverage deep learning to enable
automated analysis of CT images and integrate multimodal data
—including clinical features, laboratory indicators (such as the
predictors identified in this study), genomic information, and
radiomic features—to construct more powerful predictive
models (38, 39). Such integrated models would not only predict
MUMPP risk as achieved in the current study but also hold the
potential for dynamic and individualized assessment of
treatment response. By continuously monitoring changes in
imaging and clinical data throughout the treatment process,
these models could provide data-driven support for real-time
adjustments to therapeutic strategies, thereby paving the way for
personalized management of MPP.

There are also some limitations in this study. First, this study
is retrospective in design, and all data were derived from a single
medical center. Although an internal test set was used for
validation, its relatively small sample size may lead to an
overestimation of model performance. Consequently, the
generalizability of our model may be limited when applied to
other populations or healthcare institutions with different
diagnostic and treatment standards. Second, regarding predictor
selection, our model was developed primarily based on routine
clinical and imaging indicators. It was thus developed without
incorporating potentially influential microbiological factors, such
as specific macrolide resistance-associated gene mutations, and
does not account for the potential associations with a history of
prior COVID-19 infection or vaccination status. The latter is
particularly relevant as the post-pandemic immune landscape
may influence the presentation and severity of other respiratory
infections like MPP. Furthermore, the prediction model is
constructed using traditional logistic regression methodology
and has not yet incorporated more advanced AI modeling
techniques, which might better capture complex, non-linear
relationships. Finally, the clinical applicability and robustness of
this nomogram require further validation through prospective,

multi-center studies. The retrospective, single-center design may
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introduce selection bias, and the observed differences in baseline
characteristics between the training and test cohorts highlight
the need for validation in larger, more diverse populations to
ensure generalizability.

Conclusion

We developed and validated a simple-to-use nomogram for
predicting MUMPP in early stage. The nomogram demonstrates
strong discriminatory power and calibration, and may be a
practical tool for clinical practice.
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