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Background: Mycoplasma pneumoniae (MP) is a leading cause of community- 
acquired pneumonia in children, with a significant increase in incidence 
following the COVID-19 pandemic. The emergence of macrolide-resistant 
M. pneumoniae (MRMP) has complicated treatment, leading to the concept 
of macrolide-unresponsive M. pneumoniae pneumonia (MUMPP), defined as 
lack of improvement after 72 h of macrolide therapy. Early identification of 
MUMPP is critical for timely intervention and improved outcomes. This study 
aimed to develop and validate a nomogram for early prediction of MUMPP 
in children.
Methods: We conducted a retrospective study involving 278 pediatric patients 
with MP pneumonia, divided into training (n = 188) and validation (n = 90) 
sets. Demographic, clinical, laboratory, and chest CT imaging data were 
collected. Univariate and multivariate logistic regression analyses were used 
to identify independent predictors of MUMPP. A nomogram was constructed 
and validated using receiver operating characteristic (ROC) curves, calibration 
plots, and decision curve analysis (DCA).
Results: Six independent predictors were identified: tree-in-bud pattern, 
neutrophil-value, lymphocyte-value, creatine kinase (CK), platelet-to- 
lymphocyte ratio (PLR), and male gender. The nomogram demonstrated 
strong discriminatory power, with area under the curve (AUC) values of 0.838 
(95% CI: 0.779–0.897) in the training set and 0.835 (95% CI: 0.752–0.918) in 
the validation set. Calibration and DCA confirmed good clinical utility.
Conclusion: We developed and validated a simple-to-use nomogram for 
predicting MUMPP in early stage. The nomogram demonstrates strong 
discriminatory power and calibration, and may be a practical tool for 
clinical practice.
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Introduction

Mycoplasma pneumoniae pneumonia (MPP) accounts for 

approximately 10%–40% of community-acquired pneumonia 

(CAP) in school-aged children (1). According to reports from 

the World Health Organization and multiple countries, the 

burden of respiratory diseases in children has increased 

significantly following the COVID-19 pandemic, with a notable 

rise in the incidence of MPP (2). Macrolides are the primary 

antibiotics used to treat MPP. However, compared to the pre- 

pandemic period, macrolide-resistant Mycoplasma 

pneumoniae (MRMP) has become increasingly prevalent 

worldwide, particularly in Asian countries. Resistance rates 

have reached approximately 69.67% in South Korea and as 

high as 90% in Japan and China (3–5). This trend poses a 

serious threat to children’s health, often leading to prolonged 

fever, extended hospital stays, increased severity of cases, and 

challenges in antibiotic selection (6). In response, the 2023 

Chinese Guidelines for the Diagnosis and Treatment of MPP 

in Children introduced the concept of “Macrolide- 

Unresponsive Mycoplasma pneumoniae Pneumonia 

(MUMPP), defined as cases showing no clinical or 

radiological improvement after 72 h of macrolide treatment” 

(7). MUMPP can serve as an early indicator of MRMP. 

Therefore, early identification of MUMPP and timely 

adjustment of antibiotics are crucial for shortening the 

disease course and reducing the risk of severe complications 

and sequelae (8).

Imaging plays an increasingly important role in the diagnosis 

and evaluation of pneumonia. Although chest x-ray remains the 

first-line imaging method for assessing CAP, its findings in MPP 

are often non-specific and may be missed due to anatomical 

overlap. In contrast, computed tomography (CT) provides 

clearer visualization of parenchymal and interstitial lung 

abnormalities—such as bronchial wall thickening and 

bronchiectasis—which correlate well with pathological changes 

(9, 10). With higher spatial and density resolution, CT offers a 

more reliable basis for accurately assessing the extent and 

pattern of lung involvement in children, thereby guiding clinical 

decision-making.

The nomogram is an intuitive and user-friendly tool for 

multivariate prediction modeling. It integrates key predictive 

factors into a visual risk assessment model, facilitating 

individualized risk evaluation and supporting clinical 

decision-making (11). Existing prediction models for 

refractory MPP (RMPP), severe MPP (SMPP), and necrotizing 

MPP (NMPP) have identified several independent risk factors, 

including peak body temperature, pleural effusion, 

extrapulmonary complications, neutrophil ratio, C-reactive 

protein (CRP), erythrocyte sedimentation rate (ESR), 

procalcitonin (PCT), D-dimer, lactate dehydrogenase (LDH), 

and albumin (ALB) (12–14). However, few studies have 

focused on developing clinical prediction models specifically 

for MUMPP. Current diagnosis relies heavily on symptomatic 

presentation and isolated laboratory findings, which vary 

based on physicians’ experience and subjective judgment, 

leading to inconsistent and potentially biased outcomes. 

Hence, there is an urgent need to develop an effective, 

economical, and rapid diagnostic tool to support timely and 

accurate treatment.

This study aimed to identify factors for the early prediction of 

MUMPP and to develop a simple-to-use nomogram.

Materials and methods

Study subjects and design

This retrospective research was conducted in adherence to the 

Declaration of Helsinki. Ethical approval, which included a waiver 

for individual consent, was obtained from the Ethics Committee 

of Ordos Central Hospital (No. 2025-406).

In this study, 278 children diagnosed with MPP and 

hospitalized for treatment were enrolled. Among them, 188 

cases from the main campus of Ordos Central Hospital between 

July 2018 and June 2024 were assigned to the training set. An 

additional 90 cases from the branch campus between April 2019 

and June 2024 were collected as the test set, (Figure 1).

Inclusion criteria: (1) were under the age of 14 years; (2) 

clinical signs and symptoms suggestive of CAP, including fever, 

cough, adventitious breath sounds (rales or diminished breath 

sounds), and new infiltrates on chest x-ray or CT; (3) positive 

serological testing for MP-IgM (serum anti-MP IgM titer ≥1:160 

or a ≥ 4-fold increase in antibody levels), or positive MP-RNA 

or MP-DNA detection in throat swab or bronchoalveolar lavage 

Juid (BALF); (4) noncontrast chest CT performed within 72 h 

of admission.

The following tests were used to rule out other respiratory 

infections and tuberculosis: purified protein derivative (PPD) 

test, blood culture, pleural Juid culture, nasopharyngeal 

aspirate/swab culture, viral antigen testing (for respiratory 

syncytial virus, inJuenza virus, adenovirus, and parainJuenza 

virus), and serology for Chlamydia pneumoniae and 

Legionella pneumophila.

Exclusion criteria included: (1) macrolide antibiotic use for 

≥72 h prior to admission; (2) foreign body aspiration; (3) 

chronic respiratory diseases; (4) malignancy, solid organ 

transplantation or surgery, immunodeficiency, or use of 

immunosuppressive drugs; (5) congenital or inherited metabolic 

disorders and other underlying conditions; (6) incomplete 

medical records; (7) poor patient cooperation leading to 

significant imaging artifacts. Furthermore, patients with any 

missing values in the studied variables were excluded from the 

final analysis to ensure a complete dataset for model development.

Depending on whether patients had persistent fever, 

unresolved clinical symptoms, and worsening or stagnant 

pulmonary imaging following 72 h of macrolide therapy, they 

were classified into Macrolide-Sensitive Mycoplasma 

pneumoniae Pneumonia (MSMPP) group and unresponsive 

(MUMPP) group.
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Data collection

We collected data from the electronic health medical record 

system, including general demographics, clinical features, 

laboratory results at admission. 

(1) Demographic data included gender, age, and ethnicity.

(2) Clinical features encompassed presence of fever, cough, 

wheezing, pre-admission cough duration (PCD), pre- 

admission fever duration (PFD), the highest body 

temperature (T), heart rate (HR) and respiratory rate (R) 

on admission and length of hospital stay.

(3) Laboratory results consisted of white blood cell count (WBC), 

neutrophil count (NEUT_value), neutrophil percentage 

(NEUT), lymphocyte count (LYMPH_value), lymphocyte 

percentage (LYMPH), monocyte count (MONO), platelet 

count (PLT), C-reactive protein (CRP), alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), 

lactate dehydrogenase (LDH), creatine kinase (CK), creatine 

kinase isoenzyme (CK-MB), and albumin (ALB). 

Additionally, ratios of certain serum markers were 

evaluated, including ratio of neutrophil-value to 

lymphocyte-value (NLR), ratio of platelet to lymphocyte- 

value (PLR), ratio of lymphocyte-value to CRP (LCR), and 

LDH-to-albumin ratio (LAR).

All patients underwent noncontrast chest CT within 72 h 

of admission.

CT examinations

CT scans were performed while the children were in a calm 

state. For uncooperative patients, appropriate sedation was 

administered to ensure successful completion of the 

examination. Scans were conducted using GE Lightspeed VCT 

64-slice, GE Discovery CT 750HD, GE Revolution CT 256-slice, 

and SIEMENS SOMATOM Force dual-source CT scanners. 

Scanning parameters were as follows: tube voltage 80–120 kV, 

tube current 50–350 mA, slice thickness 5 mm, slice interval 

5 mm, and reconstructed image thickness 1.25 mm. The CT 

scan was performed from the lung apex to the lung base. For 

mediastinal window settings, the window width was 350 HU 

and window level 40 HU; for lung windows, the window width 

was 1,500 HU and window level −600 HU.

FIGURE 1 

Patient screening workflow for this study. MUMPP, macrolide-unresponsive M. pneumonias pneumonia, MSMPP macrolide-sensitive M. pneumonias 
pneumonia.
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Imaging analyses

CT images were initially evaluated by a radiologist with 10 

years of experience in thoracic imaging and reviewed by another 

with more than 15 years of experience. In case of disagreement, 

a consensus was reached through discussion or consultation 

with a senior attending radiologist. Recorded CT features 

included lesion location, number of involved lobes, unilateral or 

bilateral involvement, bronchial wall thickening, tree-in-bud 

sign, air bronchogram, interlobular septal thickening, 

consolidation pattern (patchy, segmental, lobar), consolidation 

with ground-glass opacity (GGO), mosaic pattern, with or 

without pleural effusion.

Statistical analysis

All statistical analyses in this study were performed using 

R software (version 4.5.1). Continuous variables following a 

normal distribution were presented as mean ± standard deviation 

and compared using the Student’s t-test. Non-normally 

distributed continuous variables were summarized as median 

with interquartile range [M (P25, P75)] and compared using the 

Mann–Whitney U test. Categorical variables were expressed as 

frequency (percentage) and compared using the chi-square test.

For variable selection, potential predictors were first screened 

by univariate logistic regression, retaining those with a significance 

level of P < 0.05. Multicollinearity among these selected variables 

was then assessed using the variance inJation factor (VIF), and 

variables with VIF > 5 were iteratively removed. The remaining 

variables with low collinearity were entered into a multivariate 

logistic regression model. A stepwise backward elimination 

method was applied, with inclusion and exclusion criteria set at 

P < 0.05 and P > 0.10, respectively, to identify the final 

independent predictors and construct the prediction model. In 

addition to VIF assessment, correlation analysis was conducted 

to further verify the absence of severe multicollinearity among 

the final predictors in the model. Furthermore, for continuous 

variables included in the final model, four-knot restricted cubic 

spline analysis was employed to assess the presence of nonlinear 

relationships with the logit-transformed outcome variable.

The predictive performance of the model was evaluated using 

the area under the receiver operating characteristic (ROC) curve, 

accuracy, sensitivity, and specificity. Predictive consistency was 

assessed using calibration curves, and clinical utility was 

determined via decision curve analysis. All statistical tests were 

two-sided, P < 0.05 was considered statistically significant.

Results

Clinical characteristics

Among the 278 pediatric cases, there were 111 cases of 

MUMPP and 167 cases of MSMPP. Including 125 boys 

(44.96%) and 153 girls (55.04%). The median age was 

7.23 ± 2.64 years, and the average length of hospital stay was 

8.20 ± 3.10 days. Mycoplasma pneumoniae pneumonia cases 

were detected throughout the year, with a peak incidence 

observed in the fourth quarter. Table 1 summarizes the 

characteristics of children in the training and test sets at 

admission. No significant differences were observed in gender 

or ethnicity (P > 0.05). Clinical manifestations, routine blood 

tests, and biochemical markers within 24 h of admission 

were compared between the two groups. In the training 

set, compared with the MSMPP group, the MUMPP group 

had a longer duration of fever before admission, higher 

levels of NEUT, NLR, CRP, AST, CK, LDH, PLR, and LAR, as 

well as lower respiratory rate, LYMPH_value, LYMPH, 

MONO, ALB, and LCR. In the test set, the MUMPP 

group exhibited a longer duration of cough before 

admission, and significant differences were found in NEUT, 

LYMPH, LYMPH_value, NLR, CK, and PLR (P < 0.05). 

Notably, in both the training and test sets, children in the 

MUMPP group were older and had a higher incidence in the 

fourth quarter. The other results showed no significant 

differences (P > 0.05).

Chest CT imaging features

Figure 6A demonstrates the characteristic tree-in-bud sign on 

a chest CT image from a child with MUMPP. Chest CT imaging 

features are summarized in Table 2. Compared with the 

MSMPP group, the MUMPP group showed a significantly 

higher prevalence of tree-in-bud signs (P < 0.01). In the training 

set, mosaic pattern and lobar consolidation were also more 

common in the MUMPP group (P < 0.05), though these 

differences were not statistically significant in the test set. Other 

imaging features, including bronchial wall thickening, air 

bronchogram, interlobular septal thickening, segmental 

consolidation, patchy consolidation, bilateral lobar infiltration, 

and pleural effusion, did not differ significantly between the 

groups (P > 0.05).

Variable selection

Univariate logistic regression analysis was performed on 

all features. Given that multiple indicators were associated 

with inJammatory response, 19 independent variables 

were first assessed for multicollinearity. Following the 

removal of highly correlated variables (LAR, LYMPH, and 

NLR), 16 low-collinearity features were retained for 

multivariate logistic regression. The analysis identified six 

independent predictors of MUMPP: sex, NEUT_value, 

LYMPH_value, CK, PLR, and tree-in-bud sign (P < 0.05) 

(Table 3, which only lists variables with statistical significance 

in the multivariate analysis).

A comprehensive correlation analysis confirmed the absence 

of substantial multicollinearity among the six final predictors 
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(Figure 2). Evaluation of the continuous predictors using a four- 

knot restricted cubic spline (RCS) analysis revealed no 

significant nonlinear relationships with the logit of the outcome 

(P > 0.05) (Supplementary Tables S1, S2). Consequently, these 

variables were retained in their original linear form in the 

final model.

Development and evaluation of the 
predictive nomogram

A nomogram was constructed for the early identification of 

MUMPP in children containing six independent predictors 

(Figure 3). A higher total score on the nomogram indicates a 

TABLE 1 Baseline characteristics of patients in the training and test cohort.

Feature Training cohort p Test cohort p

ALL MUMPP MSMPP ALL MUMPP MSMPP

Age (years) 7.11 ± 2.61 7.79 ± 2.23 6.60 ± 2.76 0.003 7.50 ± 2.69 8.45 ± 1.80 7.00 ± 2.95 0.022

hospital_days 8.74 ± 3.42 8.81 ± 3.37 8.69 ± 3.47 0.815 7.07 ± 1.87 7.00 ± 2.32 7.10 ± 1.59 0.482

PCD (days) 6.09 ± 4.71 6.16 ± 3.31 6.03 ± 5.53 0.181 5.91 ± 2.35 6.45 ± 1.96 5.63 ± 2.50 0.045

PFD (days) 5.34 ± 3.33 5.79 ± 2.48 5.00 ± 3.82 0.006 5.51 ± 2.25 5.65 ± 2.26 5.44 ± 2.27 0.664

T (°C) 37.18 ± 1.00 37.20 ± 1.01 37.17 ± 1.00 0.968 37.47 ± 0.88 37.63 ± 1.04 37.39 ± 0.78 0.462

HR 104.28 ± 12.81 102.06 ± 10.28 105.93 ± 14.22 0.091 113.24 ± 12.99 111.19 ± 14.62 114.32 ± 12.04 0.280

R 22.28 ± 4.19 21.91 ± 4.19 22.55 ± 4.19 0.011 24.17 ± 3.23 23.71 ± 2.97 24.41 ± 3.36 0.222

WBC (×109/L) 7.39 ± 2.95 7.35 ± 3.35 7.42 ± 2.64 0.467 6.81 ± 2.15 6.70 ± 2.27 6.87 ± 2.10 0.802

NEUT (%) 64.12 ± 12.55 68.81 ± 10.98 60.64 ± 12.56 <0.001 65.77 ± 10.65 69.37 ± 9.52 63.87 ± 10.80 0.015

NEUT_value (×109/L) 4.82 ± 2.37 5.30 ± 2.98 4.47 ± 1.71 0.117 4.58 ± 1.85 4.54 ± 1.91 4.60 ± 1.83 0.905

LYMPH (%) 26.70 ± 10.69 22.67 ± 9.51 29.68 ± 10.57 <0.001 25.29 ± 9.66 21.66 ± 7.72 27.19 ± 10.09 0.011

LYMPH_value (×109/L) 1.93 ± 1.22 1.51 ± 0.69 2.25 ± 1.42 <0.001 1.69 ± 0.85 1.35 ± 0.53 1.87 ± 0.94 0.006

MONO (×109/L) 0.56 ± 0.79 0.47 ± 0.25 0.63 ± 1.02 0.022 0.47 ± 0.17 0.46 ± 0.20 0.47 ± 0.15 0.868

NLR 3.16 ± 2.21 4.14 ± 2.77 2.43 ± 1.28 <0.001 3.15 ± 1.57 3.66 ± 1.65 2.88 ± 1.47 0.034

PLT (×109/L) 275.10 ± 87.67 262.10 ± 91.84 284.72 ± 83.57 0.097 272.52 ± 81.06 267.97 ± 88.96 274.92 ± 77.29 0.658

CRP (mg/L) 23.63 ± 29.01 27.79 ± 30.83 20.54 ± 27.33 0.0119 25.23 ± 28.43 21.15 ± 16.93 27.38 ± 32.84 0.405

ALT (U/L) 23.47 ± 33.20 24.26 ± 26.60 22.89 ± 37.45 0.146 15.99 ± 11.41 15.74 ± 9.93 16.12 ± 12.19 0.627

AST (U/L) 36.90 ± 18.19 40.19 ± 21.57 34.47 ± 14.85 0.007 29.59 ± 11.16 27.84 ± 7.86 30.51 ± 12.52 0.334

CK (U/L) 130.29 ± 174.70 183.55 ± 251.53 90.83 ± 54.19 <0.001 142.57 ± 147.67 163.26 ± 132.39 131.69 ± 155.07 0.033

CK_MB (U/L) 25.61 ± 12.50 27.24 ± 14.07 24.41 ± 11.12 0.165 19.48 ± 6.57 17.38 ± 4.28 20.59 ± 7.29 0.076

LDH (U/L) 332.64 ± 111.63 376.63 ± 130.82 300.05 ± 81.38 <0.001 308.79 ± 82.55 300.55 ± 63.20 313.12 ± 91.29 0.935

ALB (g/L) 42.40 ± 3.20 41.47 ± 3.42 43.09 ± 2.85 <0.001 40.61 ± 2.93 40.49 ± 3.15 40.67 ± 2.83 0.786

PLR 176.63 ± 94.65 203.14 ± 104.82 156.99 ± 81.42 <0.001 188.55 ± 86.85 219.35 ± 96.20 172.36 ± 77.55 0.012

LCR 2.85 ± 30.72 0.22 ± 0.83 4.81 ± 40.49 <0.001 0.25 ± 0.95 0.12 ± 0.11 0.31 ± 1.17 0.664

LAR 7.98 ± 3.11 9.28 ± 3.74 7.01 ± 2.09 <0.001 7.71 ± 2.45 7.53 ± 2.03 7.81 ± 2.66 0.969

Sex 0.066 0.645

Female 105 (55.85) 38 (47.50) 67 (62.04) 48 (53.33) 15 (48.39) 33 (55.93)

Male 83 (44.15) 42 (52.50) 41 (37.96) 42 (46.67) 16 (51.61) 26 (44.07)

Ethnicity 0.573 1.0

Han 175 (93.09) 73 (91.25) 102 (94.44) 79 (87.78) 27 (87.10) 52 (88.14)

Other 13 (6.91) 7 (8.75) 6 (5.56) 11 (12.22) 4 (12.90) 7 (11.86)

Cough 0.613 1.0

No 2 (1.06) null 2 (1.85) 1 (1.11) null 1 (1.69)

Yes 186 (98.94) 80 (100.00) 106 (98.15) 89 (98.89) 31 (100.00) 58 (98.31)

Wheezing 0.613 1.0

No 186 (98.94) 80 (100.00) 106 (98.15) 89 (98.89) 31 (100.00) 58 (98.31)

Yes 2 (1.06) null 2 (1.85) 1 (1.11) null 1 (1.69)

Fever 0.358 1.0

No 9 (4.79) 2 (2.50) 7 (6.48) 1 (1.11) null 1 (1.69)

Yes 179 (95.21) 78 (97.50) 101 (93.52) 89 (98.89) 31 (100.00) 58 (98.31)

Time_of_onset 0.005 0.002

1 51 (27.13) 21 (26.25) 30 (27.78) 21 (23.33) 3 (9.68) 18 (30.51)

2 50 (26.60) 27 (33.75) 23 (21.30) 37 (41.11) 21 (67.74) 16 (27.12)

3 25 (13.30) 3 (3.75) 22 (20.37) 7 (7.78) 2 (6.45) 5 (8.47)

4 62 (32.98) 29 (36.25) 33 (30.56) 25 (27.78) 5 (16.13) 20 (33.90)

MUMPP, macrolide-unresponsive M. pneumoniae pneumonia; MSMPP, macrolide-sensitive M. pneumoniae pneumonia; PCD, pre-admission cough duration; PFD, pre-admission fever 

duration; T, the highest body temperature; HR, heart rate; R, respiratory rate; WBC, white blood cell count; NEUT_value, neutrophil count; NEUT, neutrophil percentage; 

LYMPH_value, lymphocyte count; LYMPH, lymphocyte percentage; MONO, monocyte count; PLT, platelet count; CRP, C-reactive protein; ALT, alanine aminotransferase; AST, 

aspartate aminotransferase; LDH, lactate dehydrogenase; CK, creatine kinase; CK_MB, creatine kinase isoenzyme; ALB, albumin; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to- 

lymphocyte ratio; LCR, lymphocyte-to-CRP ratio; LAR, LDH-to-albumin ratio.
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greater risk of MUMPP. In the training set, the nomogram showed 

an area under the curve (AUC) of 0.838 (95% CI: 0.779–0.897) 

(Figure 4A), while in the test set, the AUC was 0.835 (95% CI: 

0.752–0.918) (Figure 4B), demonstrating robust discriminatory 

ability. Furthermore, the model exhibited robust specificity and 

PPV in the training cohort, a marked gain in sensitivity was 

achieved in the test cohort while maintaining strong specificity 

(Table 4). To rigorously evaluate the internal validity of the 

model, bootstrap validation with 1,000 resamples was 

performed, and the corresponding performance metrics are 

detailed in Supplementary Table S3.

Calibration curves indicated good agreement between the 

predicted and actual outcomes (Figures 4C,D). The DCA of 

our nomogram shows that across a wide threshold probability 

range of approximately 0.1–0.9, its net benefit is consistently 

higher than the strategies of “intervening on all patients” and 

“intervening on no patients.” This indicates that in clinical 

practice, using this model to screen patients requiring early 

identification of MUMPP can provide greater net clinical 

benefit compared to simple binary strategies, effectively 

balancing the risks of missed diagnosis and overdiagnosis 

(Figure 5).

TABLE 2 Radiological features of patients in the training and test cohort.

Feature Training cohort p Test cohort p

ALL MUMPP MSMPP ALL MUMPP MSMPP

bronchial_wall_thickening (n, %) 0.322 0.026

No 92 (48.94) 43 (53.75) 49 (45.37) 36 (40.00) 7 (22.58) 29 (49.15)

Yes 96 (51.06) 37 (46.25) 59 (54.63) 54 (60.00) 24 (77.42) 30 (50.85)

air_bronchogram (n, %) 0.149 1.0

No 168 (89.36) 75 (93.75) 93 (86.11) 83 (92.22) 29 (93.55) 54 (91.53)

Yes 20 (10.64) 5 (6.25) 15 (13.89) 7 (7.78) 2 (6.45) 5 (8.47)

interlobular_septal_thickening (n, %) 0.102 1.0

No 182 (96.81) 75 (93.75) 107 (99.07) 84 (93.33) 29 (93.55) 55 (93.22)

Yes 6 (3.19) 5 (6.25) 1 (0.93) 6 (6.67) 2 (6.45) 4 (6.78)

tree_in_bud_sign (n, %) 0.001 <0.001

No 151 (80.32) 55 (68.75) 96 (88.89) 57 (63.33) 7 (22.58) 50 (84.75)

Yes 37 (19.68) 25 (31.25) 12 (11.11) 33 (36.67) 24 (77.42) 9 (15.25)

Consolidation_mixed_GGO (n, %) 0.397 0.941

No 161 (85.64) 66 (82.50) 95 (87.96) 83 (92.22) 28 (90.32) 55 (93.22)

Yes 27 (14.36) 14 (17.50) 13 (12.04) 7 (7.78) 3 (9.68) 4 (6.78)

mosaic pattern (n, %) 0.019 0.570

No 175 (93.09) 79 (98.75) 96 (88.89) 71 (78.89) 26 (83.87) 45 (76.27)

Yes 13 (6.91) 1 (1.25) 12 (11.11) 19 (21.11) 5 (16.13) 14 (23.73)

consolidation (n, %) 0.758 0.566

No 36 (19.15) 14 (17.50) 22 (20.37) 16 (17.78) 7 (22.58) 9 (15.25)

Yes 152 (80.85) 66 (82.50) 86 (79.63) 74 (82.22) 24 (77.42) 50 (84.75)

Patchy_consolidation (n, %) 1.0 1.0

No 178 (94.68) 76 (95.00) 102 (94.44) 79 (87.78) 27 (87.10) 52 (88.14)

Yes 10 (5.32) 4 (5.00) 6 (5.56) 11 (12.22) 4 (12.90) 7 (11.86)

segmental_consolidation (n, %) 0.055 1.0

No 87 (46.28) 44 (55.00) 43 (39.81) 43 (47.78) 15 (48.39) 28 (47.46)

Yes 101 (53.72) 36 (45.00) 65 (60.19) 47 (52.22) 16 (51.61) 31 (52.54)

lobar_consolidation (n, %) 0.002 1.0

No 150 (79.79) 55 (68.75) 95 (87.96) 77 (85.56) 27 (87.10) 50 (84.75)

Yes 38 (20.21) 25 (31.25) 13 (12.04) 13 (14.44) 4 (12.90) 9 (15.25)

Pleural_effusion (n, %) 0.111 1.0

No 110 (58.51) 41 (51.25) 69 (63.89) 71 (78.89) 24 (77.42) 47 (79.66)

Yes 78 (41.49) 39 (48.75) 39 (36.11) 19 (21.11) 7 (22.58) 12 (20.34)

Bilateral_lobar_infiltrates (n, %) 0.704 1.0

No 111 (59.04) 49 (61.25) 62 (57.41) 41 (45.56) 14 (45.16) 27 (45.76)

Yes 77 (40.96) 31 (38.75) 46 (42.59) 49 (54.44) 17 (54.84) 32 (54.24)

MUMPP, macrolide-unresponsive M. pneumoniae pneumonia; MSMPP, macrolide-sensitive M. pneumoniae pneumonia; GGO, ground-glass opacity.

TABLE 3 Results of multivariable logistic regression analysis.

Feature Coef OR 95% CI p

Sex −1.105 0.331 0.136–0.808 0.015

NEUT_value 0.412 1.510 1.044–2.185 0.029

LYMPH_value −1.444 0.236 0.079–0.697 0.009

CK 0.007 1.007 1.001–1.013 0.014

PLR −0.008 0.992 0.985–0.999 0.026

tree_in_bud_sign 1.810 6.111 1.876–19.914 0.003

Coef, coefficient; OR, odds ratio; CI, confidence interval; NEUT_value, neutrophil count; 

LYMPH_value, lymphocyte count; CK, creatine kinase; PLR, platelet-to-lymphocyte ratio.
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Figure 6 provides an example of how to use the nomogram. 

Similar to a scoring system, points are assigned for each 

predictor of MUMPP, which correspond to the risk of MUMPP. 

A vertical line can be drawn upward from each predictor to 

determine the points associated with the presence of the tree-in- 

bud sign on chest CT, gender, neutrophil count, lymphocyte 

count, creatine kinase, and platelet-to-lymphocyte ratio (PLR). 

Once points are assigned for all predictors, the total points are 

FIGURE 2 

Heat map analysis of correlations between 6 variables. (A) Training cohort. (B) Test cohort. NEUT-value, neutrophil count; LYMPH-value, lymphocyte 
count; CK, creatine kinase; PLR, platelet-to-lymphocyte ratio.

FIGURE 3 

The nomogram to predict MUMPP. *Sex: 1 means female; 0 means male; tree_in_bud_sign: lmeans yes; 0 means no.
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calculated. The total points are then converted into the probability 

of MUMPP by reading the corresponding value on the total 

points scale.

Consequently, we created an online computing platform 

(https://dynom.shinyapps.io/DynNomapp/). This platform 

enables both doctors and patients to carry out calculations 

directly on the web.

Discussion

In recent years, the prevalence of MPP has increased 

significantly, with high rates of complications and mortality 

(15). Macrolides are the primary antibiotics used to treat MPP, 

however, due to the increased use of macrolides and the 

emergence of drug-resistant strains, the number of macrolide- 

FIGURE 4 

Receiver operating characteristic curves (ROC) of the model in the training set (A) and test set (B); AUC, area under the curve. Calibration curves of 
the model in the training set (C) and test set (D).

TABLE 4 Diagnostic performance of model for MUMPP in training and test cohort.

Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1-score

Training cohort 0.838 (0.779–0.897) 0.766 0.538 0.935 0.860 0.732 0.662

Test cohort 0.835 (0.752–0.918) 0.756 0.742 0.763 0.622 0.849 0.676

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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resistant cases has been rising. This situation has become 

particularly complex following the COVID-19 pandemic, further 

complicating the clinical management of MUMPP in children 

(16, 17).

We found that a nomogram constructed using logistic 

regression, incorporating tree-in-bud pattern, lymphocyte-value, 

neutrophil-value, creatine kinase (CK), platelet-to-lymphocyte 

ratio (PLR), and sex, can effectively and conveniently predict 

MUMPP at an early stage. The nomogram demonstrated strong 

accuracy and discriminative ability, which indicated it may be a 

practical tool to help pediatricians recognize MUMPP earlier.

In our study, the tree-in-bud sign was identified as a 

significant independent predictor of MUMPP. The tree-in-bud 

sign, a CT pattern characterized by centrilobular nodules and 

branching linear opacities resembling a budding tree, reJects 

pathological changes in the small airways, including bronchiolar 

wall thickening, luminal impaction with mucus, pus, or 

granulation tissue, and peribronchiolar inJammation (18, 19). 

The pathogenesis of MUMPP involves not only direct microbial 

damage but also a robust host immune-inJammatory response, 

leading to a massive release of inJammatory cytokines and 

subsequent tissue injury (20, 21). A more pronounced immune 

FIGURE 5 

Decision curve analysis (DCA) of the CT-based nomogram (red line). All (gray solid line, this assumes you intervene on every single patient) and None 
(thick black line at y = 0, this assumes you do not intervene on any patient). The x-axis indicates the threshold probability. The y-axis indicates the net 
benefit. DCA comparing the net benefit of the nomogram in the training set (A) and test set (B).

FIGURE 6 

The risk of developing MUMPP was calculated for two pediatric patients using a nomogram. (A) A chest CT image from a boy with MPP shows the tree- 
in-bud sign (red arrow). His laboratory findings were as follows: NEUT-value, 10.22 × 10⁹/L; LYMPH-value, 1.98 × 10⁹/L; CK, 257 U/L; PLR, 267. The total 
nomogram score was  approximately 158 points, corresponding to a probability of developing MUMPP of greater than 90%. (B) A chest CT image from a 
girl with MPP shows no tree-in-bud sign. Her laboratory findings were as follows: NEUT-value, 6.42 × 10⁹/L; LYMPH-value, 2.76 × 10⁹/L; CK, 197 U/L; 
PLR, 136. The total nomogram score was approximately 111 points, corresponding to a probability of developing MUMPP of less than 20%. NEUT-value, 
neutrophil count; LYMPH-value, lymphocyte count; CK, creatine kinase; PLR, platelet-to-lymphocyte ratio.
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response is associated with greater organ damage and dictates 

disease prognosis. In this context, a widespread tree-in-bud sign 

signifies extensive lung involvement and severe small airway 

obstruction (22, 23), which can impede pathogen clearance, 

reduce local antibiotic concentration, and ultimately diminish 

treatment responsiveness, as supported by previous findings 

(24). By incorporating this key imaging feature, our model 

facilitates the early recognition of MUMPP, thereby aiding in 

timely treatment adjustment, mitigating the risk of 

complications such as bronchiolitis obliterans, and improving 

long-term outcomes in children.

Peripheral blood markers provide important insights into the 

host’s immune-inJammatory status. This study revealed 

significantly elevated neutrophil-value in children with MUMPP, 

identifying it as an independent risk factor. This aligns with 

previous studies suggesting that neutrophil-mediated 

hyperinJammatory responses are closely associated with MPP 

severity and poor outcomes (25–27). A possible explanation is that 

neutrophils, as the first line of defense against infection, are 

activated upon MP invasion via granulocyte colony-stimulating 

factor (G-CSF) produced in large quantities by bronchial epithelial 

cells, leading to a rapid increase in neutrophil counts and enhanced 

phagocytic activity (28). Persistent inJammation may result in 

lymphocyte-value depletion and impaired cellular immune function, 

which is supported by the decreased lymphocyte-value observed in 

the MUMPP group. Platelets are not only involved in coagulation 

but also act as important inJammatory effector cells. MP infection, 

along with associated cytokine storms and hypoxia, can cause 

endothelial injury, leading to platelet activation and consumption 

(29). Previous studies have shown that lower PLT levels are 

associated with a higher risk of SMPP (30). Although PLT alone did 

not differ significantly between groups in this study, a lower PLR 

was identified as a risk factor for MUMPP. As a composite 

indicator, PLR may more sensitively reJect concurrent platelet 

consumption and lymphopenia, indicating stronger inJammatory 

responses and potential immune imbalance, which correlate with 

disease severity (31).

Additionally, a higher proportion of male patients was 

observed in the MUMPP group. Although the relationship 

between sex and MUMPP remains underexplored, this 

phenomenon could potentially be due to variations in immune 

function or hormonal regulation between males and females 

(32). Elevated serum CK was also more common in children 

with MUMPP. CK is a key enzyme in energy metabolism within 

muscle cells, predominantly found in skeletal and cardiac 

muscle, with smaller amounts present in the brain, intestine, 

liver, spleen, and lungs. Under normal conditions, CK rarely 

leaks out of cells due to intact cell membranes. Higher CK levels 

in MUMPP may reJect extrapulmonary involvement (e.g., 

muscle damage) or a stronger systemic stress response (33).

Furthermore, The COVID-19 pandemic and its subsequent 

impacts have reshaped the epidemiological landscape and 

clinical management of MPP. Global studies indicate that public 

health interventions during the pandemic and shifts in 

population immunity created favorable conditions for the 

resurgence and spread of MPP, often accompanied by increased 

macrolide resistance (34). In terms of technological responses, 

breakthroughs in COVID-19 vaccine development—particularly 

highly stable and immunogenic circular RNA platforms—offer 

potential avenues for future strategies against drug-resistant 

Mycoplasma strains (35). Meanwhile, national surveillance data 

on fever of unknown origin (FUO) in China reveal that 

infectious diseases remain the leading cause of FUO in the post- 

pandemic era. However, the proportion of undiagnosed cases 

has risen, reJecting growing diagnostic complexity. Significant 

regional variations in etiology further underscore the need for 

individualized diagnosis tailored to local epidemiological 

patterns (36). Against this backdrop, our study addresses the 

diagnostic challenges of the post-COVID era by developing an 

objective prediction tool—the nomogram model presented here 

—for early identification of MUMPP. This tool aims to support 

more precise early clinical intervention in complex 

diagnostic scenarios.

Although the nomogram model established in this study has 

demonstrated favorable predictive performance, medical research 

is advancing toward an era driven by artificial intelligence (AI) 

(37). Future models may leverage deep learning to enable 

automated analysis of CT images and integrate multimodal data 

—including clinical features, laboratory indicators (such as the 

predictors identified in this study), genomic information, and 

radiomic features—to construct more powerful predictive 

models (38, 39). Such integrated models would not only predict 

MUMPP risk as achieved in the current study but also hold the 

potential for dynamic and individualized assessment of 

treatment response. By continuously monitoring changes in 

imaging and clinical data throughout the treatment process, 

these models could provide data-driven support for real-time 

adjustments to therapeutic strategies, thereby paving the way for 

personalized management of MPP.

There are also some limitations in this study. First, this study 

is retrospective in design, and all data were derived from a single 

medical center. Although an internal test set was used for 

validation, its relatively small sample size may lead to an 

overestimation of model performance. Consequently, the 

generalizability of our model may be limited when applied to 

other populations or healthcare institutions with different 

diagnostic and treatment standards. Second, regarding predictor 

selection, our model was developed primarily based on routine 

clinical and imaging indicators. It was thus developed without 

incorporating potentially inJuential microbiological factors, such 

as specific macrolide resistance-associated gene mutations, and 

does not account for the potential associations with a history of 

prior COVID-19 infection or vaccination status. The latter is 

particularly relevant as the post-pandemic immune landscape 

may inJuence the presentation and severity of other respiratory 

infections like MPP. Furthermore, the prediction model is 

constructed using traditional logistic regression methodology 

and has not yet incorporated more advanced AI modeling 

techniques, which might better capture complex, non-linear 

relationships. Finally, the clinical applicability and robustness of 

this nomogram require further validation through prospective, 

multi-center studies. The retrospective, single-center design may 
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introduce selection bias, and the observed differences in baseline 

characteristics between the training and test cohorts highlight 

the need for validation in larger, more diverse populations to 

ensure generalizability.

Conclusion

We developed and validated a simple-to-use nomogram for 

predicting MUMPP in early stage. The nomogram demonstrates 

strong discriminatory power and calibration, and may be a 

practical tool for clinical practice.
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