

OPEN ACCESS

EDITED BY Baddr Shakhsheer,

The University of Chicago, United States

REVIEWED BY

Paul McGaha,

University of Oklahoma, United States Andrew Yeh,

Washington University in St. Louis, United States

*CORRESPONDENCE

Jeffrey P. Louie

☑ Louie003@umn.edu

RECEIVED 30 July 2025
ACCEPTED 02 September 2025
PUBLISHED 28 October 2025

CITATION

Perepelitsa V, Ames J, Kaila R, Sausen N, Schneider K, Lunas S, Segura B, Avendano P and Louie JP (2025) Repeat ultrasound in pediatric EDs improves appendicitis diagnosis after referral imaging.

Front. Pediatr. 13:1676690. doi: 10.3389/fped.2025.1676690

COPYRIGHT

© 2025 Perepelitsa, Ames, Kaila, Sausen, Schneider, Lunas, Segura, Avendano and Louie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other

orums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Repeat ultrasound in pediatric EDs improves appendicitis diagnosis after referral imaging

Vitaliy Perepelitsa¹, Jeffrey Ames², Rahul Kaila¹, Nicholas Sausen¹, Kari Schneider¹, Scott Lunas³, Bradley Segura⁴, Pablo Avendano¹ and Jeffrey P. Louie^{1*}

¹Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States, ²Department of Radiology, University of Minnesota, Minneapolis, MN, United States, ³Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, United States, ⁴Department of Surgery, University of Minnesota, Minneapolis, MN, United States

Background: Acute appendicitis is a leading cause of surgical emergencies in children, with ultrasound (US) emerging as a preferred diagnostic tool due to its lack of radiation and cost-effectiveness. However, the accuracy of US is highly operator-dependent and may vary between general referring emergency departments (EDs) and specialized pediatric EDs.

Objective: To compare the diagnostic sensitivity and specificity of US performed at referring EDs vs. a pediatric ED in identifying acute appendicitis. **Methods:** A retrospective study analyzed pediatric patients aged <18 years who underwent US at referring EDs and were transferred to a pediatric ED for repeat imaging between July 2018 and July 2023. Data collected included US findings, surgical pathology, white blood cell count, and patient disposition. Sensitivities of the US were calculated and compared between settings.

Results: Among 64 children included, the US at the pediatric ED demonstrated higher sensitivity (85.2%) compared to referring EDs (51.9%) (p = 0.018). Pediatric ED US resulted in fewer non-visualized appendices (a 34.4% reduction) and equivocal findings (a 30.5% reduction). Patients with positive surgical pathology exhibited higher white blood cell counts (mean 17.1) and neutrophil percentages (mean 81.0%). False positive rates were low (6.9%), aligning with published benchmarks.

Conclusion: US performed at pediatric EDs exhibited superior diagnostic accuracy for appendicitis compared to referring EDs, likely due to operator expertise and enhanced imaging protocols. Efforts to standardize training and improve resources at referring EDs may reduce diagnostic disparities and unnecessary interventions.

KEYWORDS

ultrasound, pediatric emergency, appendicitis, diagnostic accuracy, referring emergency department

Introduction

Acute appendicitis is the most common cause of acute abdominal pain requiring surgery in children and remains a frequent reason for imaging evaluation. Physical findings alone are often sufficient for diagnosis in some cases, but imaging is often obtained to increase diagnostic certainty and guide management (1, 2).

In children, ultrasound is the preferred first-line imaging modality, recommended by the American College of Radiology and other professional guidelines (3–6). Unlike computed tomography (CT), which has high sensitivity but exposes children to ionizing radiation with associated cancer risk (7–9) ultrasound avoids radiation, is cost-effective, and can achieve excellent diagnostic accuracy in experienced pediatric centers (10–12).

Pediatric hospitals report higher rates of appendix visualization and fewer nondiagnostic studies, primarily due to the use of specialized pediatric sonographers, expertise from pediatric radiologists, and the application of standardized techniques such as graded compression and the recognition of secondary signs of appendicitis (13–15).

In contrast, community or referring emergency departments often lack this specialized expertise, and ultrasounds performed in these settings are more likely to be equivocal or inaccurate (16). This can lead to unnecessary CT scans, delays in diagnosis, or inappropriate management (17).

The purpose of this study was to evaluate the accuracy of ultrasounds performed at referring EDs compared with repeat ultrasounds obtained at a dedicated pediatric ED. This was a retrospective case series explicitly designed to highlight the potential inaccuracy of outside ED ultrasounds, and to demonstrate that repeating ultrasound at the pediatric center improves diagnostic accuracy.

Methods

We conducted a retrospective analysis across a single integrated health system over a five-year period (July 2018–July 2023). Children under 18 years who underwent an ultrasound at a referring ED and then had a repeat ultrasound at the pediatric ED within 12 hours were eligible. Children who underwent an ultrasound only at the outside emergency department (without transfer or repeat ultrasound) were excluded. Paired studies were required to allow for within-patient comparison across settings.

A pediatric radiologist re-evaluated each appendix ultrasound from the referring ED and compared these with the repeat ultrasound performed at the pediatric ED. Each ultrasound was assigned a standardized 4-point score to categorize diagnostic likelihood: (1) appendix visualized and normal; (2) appendix not visualized with no secondary findings; (3) appendix visualized with indeterminate findings or not visualized but secondary findings present; (4) appendix visualized with findings consistent with acute appendicitis. This scoring system was applied uniformly to ultrasounds performed at both referring EDs and the pediatric ED, allowing for direct comparison of diagnostic performance.

Descriptive statistics (means, standard deviations, ranges for continuous variables; counts and percentages for categorical variables) were used to summarize the data collected. Referral and pediatric US results were compared and sensitivity was calculated. SAS V9.4 (SAS Institute Inc., Cary, NC) was used for the analysis. McNemar's test was used to evaluate the statistical

significance of differences in diagnostic performance (sensitivity) between US facilities. The study was found exempt by the institutional review board.

Results

A total of 64 pediatric patients met the inclusion criteria. The median age was 8 years [interquartile range (IQR), 6–10 years], and 58% (n = 37) of the participants were male.

Ultrasound findings

Ultrasound findings were very different between the pediatric ED and the referring EDs (Table 1). When classified using the 4-point ultrasound scoring system:

- Score 1 (normal appendix visualized): 31.3% (20/64) at the pediatric ED vs. 9.4% (6/64) at referring EDs.
- Score 2 (appendix not visualized, no secondary findings): 10.9%
 (7/64) vs. 45.3% (29/64).
- Score 3 (indeterminate or secondary findings): 20.3% (13/64) vs. 21.9% (14/64).
- Score 4 (findings consistent with appendicitis): 37.5% (24/64)
 vs. 23.4% (15/64).

TABLE 1 Demographics, ultrasound findings, and clinical outcomes in pediatric appendicitis referrals.

Demographics			
Number of patients	64		
Gender			
Male	37 (57.8%)		
Female	27 (42.2%)		
Median age	8 years old		
Sensitivity results			
Pediatric emergency Department	85.2% (23/27)		
Referral emergency Department	51.9% (14/27)		
Ultrasound results	Pediatric ED	Referring ED	
The appendix is visualized and normal.	$31.3\% \ (n = 20/64)$	9.4% (n = 6/64)	
The appendix is not visualized. There are no findings to support a diagnosis of appendicitis.	10.9% (n = 7/64)	45.3% (n = 29/64)	
The appendix is visualized with an intermediate likelihood of appendicitis, OR The appendix is not visualized, but there are secondary findings present that could be associated with acute appendicitis.	20.3% (n = 13/64)	21.9% (n = 14/64)	
The appendix is visualized with findings consistent with acute appendicitis.	37.5% (n = 24/64)	23.4% (n = 15/64)	
Disposition from ED			
To OR (from ED or after admit)	43.8% (n = 28/64)		
Admit then home (no OR)	28.1% (n = 18/64)		
Home from ED	28.1% (n = 18/64)		
Surgical Pathology results			
Consistent with Appy	93.1% (n = 27/29)		
	6.9% (n = 2/29)		

Diagnostic sensitivity

Using surgical pathology as the reference standard, the sensitivity of ultrasound for appendicitis was significantly higher at the pediatric ED (85.2%, 23/27; 95% CI 66.3%–95.8%) than at the referring EDs (51.9%, 14/27; 95% CI 32.0%–71.3%). This difference was statistically significant (McNemar's test, p = 0.0027).

Disposition and surgical pathology

Of the 64 patients, 28 (43.8%) were taken directly to the operating room. An additional 18 patients (28.1%) were admitted and later discharged without surgery, while the remaining 18 (28.1%) were discharged directly from the ED. Among the 29 patients who underwent surgery, 27 (93.1%) had confirmed appendicitis on pathology. Two patients (6.9%) had normal appendices and were both classified as "intermediate" on ultrasound.

Laboratory findings

Patients with pathology-confirmed appendicitis had significantly higher mean white blood cell counts (17.1, SD 6.3) and neutrophil percentages (81.0%, SD 9.0) compared to those without appendicitis, who had a mean WBC of 11.1 (SD 5.4) and neutrophils of 69.2% (SD 18.2), as shown in Table 2.

Independent Review: A pediatric radiologist independently reevaluated all ultrasounds. The second review did not differ meaningfully from the original reports. Pediatric ED ultrasounds tended to be more comprehensive, lasting longer on average (14.8 vs. 6.2 minutes, p = 0.0001) and including more cine clips

TABLE 2 Detailed clinical and pathology findings in negative appendicitis cases.

	Patient 1	Patient 2
Age	5-year-old	6-year-old
Sex	Male	Male
Point of maximal tenderness	Right lower quadrant	Right lower quadrant
WBC	8.8 10 ³ /ul	14.0 10 ³ /ul
% Neutrophil count	81.0%	73.3%
Referral ultrasound result	Suspicious for acute appendicitis with a 0.6 cm noncompressible tubular structure in the right lower quadrant	The appendix was not visualized
Repeat ultrasound results	Possible early acute appendicitis given the appendix measures at the upper limits of normal (7 mm) with a small amount of surrounding inflammation and a trace amount of free fluid	Visualization of the appendix with borderline abnormal diameter (6-7 mm) towards the tip.
Surgical pathology results	Negative	Negative

and still images, consistent with a more detailed pediatric imaging approach.

Discussion

This study demonstrates that ultrasound performed at a pediatric ED is more accurate than ultrasound performed at outside EDs. The differences likely reflect operator and interpreter expertise, as well as the availability of pediatric-specific imaging protocols (13, 14).

Importantly, the study highlights a practical pathway: when an outside ED ultrasound is nondiagnostic or equivocal, the preferred next step is transfer to a pediatric center before obtaining a CT. At the receiving center, repeating ultrasound should be planned and expected, as repeat US increases visualization and diagnostic confidence while avoiding unnecessary radiation (18–20).

Our findings are consistent with prior literature, which demonstrates that specialized pediatric radiology teams achieve higher visualization rates and lower nondiagnostic scan rates compared to community practice (13–15). This reinforces the importance of pediatric expertise rather than broader expansion of resources at small hospitals, which may not be feasible.

Furthermore, the blinded re-review of referral ultrasounds by a pediatric radiologist demonstrated that discrepancies were not due to interpretation alone but likely related to sonographer technique and study quality at the outside ED. This underscores the operator-dependent nature of pediatric appendiceal ultrasound (21, 22).

Limitations

This study has several limitations. The retrospective design inherently carries risk of selection bias and incomplete data (23). The sample size was modest, limiting generalizability.

We only included children who had both an outside and pediatric ED ultrasound; children who had an ultrasound only at the outside ED were not captured. Studying this group in future work would provide important information.

A detailed subset analysis of patients with divergent interpretations was beyond the scope of this study. Although we reviewed basic demographics and found no obvious differences, outcomes and other subgroup findings could not be reliably determined within this retrospective design. Additionally, the time elapsed between the initial and repeat ultrasound may have influenced accuracy, as appendicitis is a progressive disease (24).

Conclusion

Ultrasound performed at a pediatric ED demonstrated substantially higher sensitivity and specificity for appendicitis than ultrasounds performed at referring EDs. When referral ED ultrasounds are nondiagnostic or equivocal, transfer before CT

and repeat ultrasound at the pediatric ED improves diagnostic accuracy and helps minimize unnecessary radiation exposure.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by The University of Minnesota Institutional Review Board found the study was exempt of human research. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants' legal guardians/next of kin.

Author contributions

VP: Data curation, Methodology, Writing – original draft, Writing – review & editing. JA: Data curation, Methodology, Writing – review & editing, Resources. RK: Writing – review & editing, Visualization. NS: Writing – review & editing, Resources. KS: Investigation, Writing – review & editing, Resources. SL: Writing – review & editing, Methodology, Data curation, Formal analysis. BS: Writing – review & editing, Validation, Investigation. PA: Methodology, Conceptualization, Writing – review & editing, Supervision, Writing – original draft, Data curation, Visualization, Methodology, Funding acquisition, Conceptualization.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This publication was supported by Grant Number 1UL1RR033183 from the National Center for Research Resources (NCRR) and by Grant Number 8UL1TR000114-02 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) to the University of Minnesota Clinical and Translational Science Institute (CTSI). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CTSI or the NIH. The University of Minnesota CTSI is part of a national Clinical and Translational Science Award (CTSA) consortium created to accelerate laboratory discoveries into treatments for patients.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issue please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Prystowsky JB, Pugh CM, Nagle AP. Current problems in surgery. Appendicitis. Curr Probl Surg. (2005) 42(10):688–742. doi: 10.1067/j.cpsurg.2005.07.005
- 2. Rentea RM, Peter SDS, Snyder CL. Pediatric appendicitis: state of the art review. Pediatr Surg Int. (2017) 33(3):269–83. doi: 10.1007/s00383-016-3990-2
- 3. D'Cruz RJ, Linden AF, Devin CL, Savage J, Zomorrodi A, Reichard KW, et al. A standardized diagnostic pathway for suspected appendicitis in children reduces unnecessary imaging. *Pediatr Qual Saf.* (2022) 7(2):e541. doi: 10.1097/pq9.000000000000541
- 4. Binkovitz LA, Unsdorfer KM, Thapa P, Kolbe AB, Hull NC, Zingula SN, et al. Pediatric appendiceal ultrasound: accuracy, determinacy and clinical outcomes. *Pediatr Radiol.* (2015) 45(13):1934–44. doi: 10.1007/s00247-015-3432-7
- 5. Castro-Luna DI, Porras-Hernandez JD, Flores-Garcia JA, Dies-Suarez P, Servin-Martinez MF, Pierdant-Perez M. Contemporary ultrasound, computed tomography, or magnetic resonance imaging for acute appendicitis diagnosis in children and

- adolescents: systematic review and meta-analysis. *Pediatr Radiol.* (2025) 55 (7):1448–64. doi: 10.1007/s00247-025-06261-y
- Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. *Lancet.* (2012) 380((9840):499–505. doi: 10. 1016/S0140-6736(12)60815-0
- 7. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. (2007) 357(22):2277–84. doi: 10.1056/NEJMra072149
- 8. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. *JAMA Pediatr.* (2013) 167(8):700–7. doi: 10.1001/jamapediatrics.2013.311
- 9. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, et al. Use of diagnostic imaging studies and associated radiation exposure for

patients enrolled in large integrated health care systems, 1996–2010. $\it JAMA$. (2012) 307(22):2400–9. doi: 10.1001/jama.2012.5960

- 10. Rice-Townsend S, Barnes JN, Hall M, Baxter JL, Rangel SJ. Variation in practice and resource utilization associated with the diagnosis and management of appendicitis at freestanding children's hospitals: implications for value-based comparative analysis. *Ann Surg.* (2014) 259(6):1228–34. doi: 10.1097/SLA. 00000000000000246
- 11. Karakas SP, Guelfguat M, Leonidas JC, Springer S, Singh SP. Acute appendicitis in children: comparison of clinical diagnosis with ultrasound and CT imaging. *Pediatr Radiol.* (2000) 30(2):94–8. doi: 10.1007/s002470050023
- 12. Swenson DW, Ayyala RS, Sams C, Lee EY. Practical imaging strategies for acute appendicitis in children. *AJR Am J Roentgenol*. (2018) 211(4):901–9. doi: 10.2214/
- 13. Ahyad RA, Mansory EM. Finding Waldo: sonographic systematic approach to localize the appendix in children. *J Clin Ultrasound*. (2024) 52(7):905–12. doi: 10. 1002/jcu.23736
- 14. Austin-Page LR, Pham PK, Elkhunovich M. Evaluating changes in diagnostic accuracy of ultrasound for appendicitis: does practice make perfect? *J Emerg Med.* (2020) 59(4):563–72. doi: 10.1016/j.jemermed.2020.06.001
- 15. Doria AS, Moineddin R, Kellenberger CJ, Epelman M, Beyene J, Schuh S, et al. US or CT for diagnosis of appendicitis in children and adults? A meta-analysis. *Radiology.* (2006) 241(1):83–94. doi: 10.1148/radiol.2411050913
- 16. Tunc E, Fraundorf E, Worley S, Aquino M, Magnuson D, Lampl BS, et al. The use of a pediatric appendicitis pathway in a large integrated health system reduced computed tomography imaging in the ED. *Am J Emerg Med.* (2021) 50:211–7. doi: 10.1016/j.ajem.2021.07.064

- 17. França UL, McManus ML. Outcomes of hospital transfers for pediatric abdominal pain and appendicitis. *JAMA Netw Open.* (2018) 1(6):e183249. doi: 10. 1001/jamanetworkopen.2018.3249
- 18. Krishnamoorthi R, Ramarajan N, Wang NE, Newman B, Rubesova E, Mueller CM, et al. Effectiveness of a staged US and CT protocol for the diagnosis of pediatric appendicitis: reducing radiation exposure in the age of ALARA. *Radiology.* (2011) 259 (1):231–9. doi: 10.1148/radiol.10100984
- 19. Thompson GC, Schuh S, Gravel J, Reid S, Fitzpatrick E, Turner T, et al. Variation in the diagnosis and management of appendicitis at Canadian pediatric hospitals. *Acad Emerg Med.* (2015) 22(7):811–22. doi: 10.1111/acem.12709
- 20. Benabbas R, Hanna M, Shah J, Sinert R. Diagnostic accuracy of history, physical examination, laboratory tests, and point-of-care ultrasound for pediatric acute appendicitis in the emergency department: a systematic review and meta-analysis. *Acad Emerg Med.* (2017) 24(5):523–51. doi: 10.1111/acem.13181
- 21. Reddy SB, Kelleher M, Bokhari SAJ, Davis KA, Schuster KM. A highly sensitive and specific combined clinical and sonographic score to diagnose appendicitis. *J Trauma Acute Care Surg.* (2017) 83(4):643–9. doi: 10.1097/TA.00000000000001551
- 22. Mangona KLM, Guillerman RP, Mangona VS, Carpenter J, Zhang W, Lopez M, et al. Diagnostic performance of ultrasonography for pediatric appendicitis: a night and day difference? *Acad Radiol.* (2017) 24(12):1616–20. doi: 10.1016/j.acra.2017. 06.007
- 23. Audigé L, Hanson B, Kopjar B. Issues in the planning and conduct of non-randomised studies. *Injury*. (2006) 37(4):340–8. doi: 10.1016/j.injury.2006.01.026
- 24. Chen SC, Wang HP, Hsu HY, Huang PM, Lin FY. Accuracy of ED sonography in the diagnosis of acute appendicitis. *Am J Emerg Med.* (2000) 18(4):449–52. doi: 10. 1053/ajem.2000.7343