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Epilepsy is characterized by the predisposition to epileptic seizures resulting
from neuronal hyperexcitability and hypersynchrony. Seizure management
consists primarily of the long-term use of antiseizure drugs, such as
phenobarbital (PB). However, many patients, especially neonates, exhibit
resistance to PB and can suffer adverse effects, including abnormal neuronal
apoptosis. Cannabidiol (CBD), a non-psychotomimetic phytocannabinoid
CBD has demonstrated efficacy in attenuating epileptic seizures. However, its
interaction with PB remains largely unexplored. This study investigated the
potentiation effect of CBD on PB in a neonatal pentylenetetrazole (PTZ)-
induced seizure model. Ten-day-old (P10) Wistar rats were intraperitoneally
pretreated with PB (3, 10, 30, 50, or 75 mg/kg) and/or CBD (3, 30, 100, or
200 mg/kg). After 60 min, seizures were induced by subcutaneous
administration of PTZ (100 mg/kg), and seizure latency, duration, and severity
were subsequently assessed. Low doses of CBD (3 and 30 mg/kg) exhibited
limited efficacy when administered alone, while higher doses (100 and
200 mg/kg) modestly attenuated PTZ-induced seizures. However, CBD (30,
100, or 200 mg/kg) significantly enhanced the efficacy of a subeffective dose
of PB (10 mg/kg). These results indicate a dose-dependent potentiation by
CBD of PB effects, supporting the potential of CBD as an adjunct therapy for
neonatal seizures.
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1 Introduction

Epilepsy is a chronic neurological disorder characterized by a predisposition to
recurrent seizures and their associated long-term consequences (1). Globally, it affects
over 60 million individuals, posing a significant public health burden, with more than
11 million cases occurring in children under 15 years of age (2). Seizures result from
excessive or abnormal synchronous neuronal activity. They are particularly prevalent
in neonates, where they are often linked to insults to the central nervous system
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(CNS), cortical malformations, inborn errors of metabolism, or
genetic epileptic syndromes (3). The International League
Against Epilepsy (ILAE) classifies seizures by onset (focal,
generalized, or unknown) and further categorizes them by
motor involvement and awareness (4).

Antiseizure medications (ASMs) modulate neuronal excitability
by targeting ion channels and neurotransmitter systems, primarily
and GABAergic
substantial challenge in epilepsy treatment is pharmacoresistance,

glutamatergic pathways (5). However, a
observed in approximately one-third of patients (6-8). Neonates
are particularly vulnerable to pharmacoresistance due to their
immature brain development (9, 10). Phenobarbital (PB), a first-
generation ASM, remains the standard treatment for neonatal
seizures (3). As the main mechanism of action, the PB primarily
increases the activation of the GABA-A receptor, promoting the
influx of chloride ions and greater inhibition in neural circuitry
(11).

neurotoxicity,

Despite its widespread use, PB is associated with

cognitive  impairments, and  widespread
transcriptomic changes. The neurotoxicity of PB is evidenced
mainly in animal models, where therapeutic doses, such as
75 mg/kg, usually cause neuronal apoptosis in the developing
brain of rodents (11-15). Clinical data underscore these concerns,
reporting cognitive deficits in pediatric patients treated with PB,
thereby highlighting the urgent need for safer therapeutic
alternatives (16-19). Furthermore, drugs such as valproate, PB,
phenytoin, diazepam, clonazepam, lamotrigine, vigabatrin, as well
as ethanol and anesthetic agents, are known to induce acute
neurotoxicity, including neuronal apoptosis, after a single
exposure during a critical postnatal brain development window in
rodents, peaking around postnatal day 7 (P7) (12, 20). This P7
timepoint in rodents models a period spanning from the third
trimester through early infancy in humans, corresponding to the
peak of the brain growth spurt (21).

Cannabidiol (CBD), a non-psychotomimetic cannabinoid
derived from Cannabis sativa, modulates neuronal excitability
through various targets, including CB1/CB2 receptors, TRPV1,
GPR55, and PPARy (22-29). Its mechanisms involve inhibiting
glutamate release, modulating adenosine reuptake, and blocking
sodium channels (24, 26, 30). Beyond its direct antiseizure
CBD also exhibits
effects by

inflammatory cytokines while promoting anti-inflammatory

properties, neuroprotective and anti-

inflammatory reducing oxidative stress and
mediators. CBD is currently FDA-approved for refractory
such as Dravet and Lennox-Gastaut
data further that CBD’s

mechanisms of action may also be effective in controlling

epilepsy syndromes
syndromes. Preclinical suggest
neonatal seizures (31-36).

Given the known properties of PB and the emerging evidence
for CBD, combining CBD with PB may offer a strategy to enhance
seizure control while potentially minimizing the adverse effects
associated with PB monotherapy. This study investigates the
potentiation exercised by CBD of PB effects in a neonatal rat
(PTZ)-induced

evaluating the combined properties of these two compounds, we

model of Pentylenetetrazole seizures. By

aim to provide insights into developing safer and more effective
treatment strategies for neonatal epilepsy (37-41).
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2 Methods
2.1 Animals

Adult male and female Wistar rats were obtained from the
local animal facility (CEBIO) and housed in the Department of
Morphology at the Institute of Biological Sciences (ICB), Federal
University of Minas Gerais (UFMG). Animals were maintained
under controlled conditions, including a temperature of
approximately 21°C and a 12 h light/dark cycle (07:00-19:00),
with food and water available ad libitum.

Following breeding, male and female Wistar pups were
obtained and used for experimental procedures approved by
UFMG’s Ethics Committee for Animal Research (CEUA—226/
2022). A total of 157 neonate rats were used for this study,
n =157, as approved by CEUA. Pups were treated on postnatal
day 10 (P10), with PO defined as the day of birth. During the
experiments, P10 Wistar pups were pre-treated with drugs and
subsequently exposed to a Pentylenetetrazole (PTZ)-induced
seizure model 60 min after drug administration. Treatments
were balanced within groups and across litters, ensuring an
approximately equal distribution of males and females. All
experimental procedures were conducted during the light phase.

2.2 Drug administration

Phenobarbital (PB, “Fenocris®”) was dissolved in dimethyl
sulfoxide (DMSO) and administered intraperitoneally (i.p.) at a
volume of 10 mL/kg, at the doses of 3, 10, 30, 50 and 75 mg/kg
(13, 42). Cannabidiol (CBD, THC Pharma, >99% purity as
certified by the manufacturer) was diluted in a vehicle solution
containing 2% Tween 20 and 0.9% saline and was administered
i.p. at a volume of 10 mL/kg, delivering doses of 3, 30, 100, and
200 mg/kg (43, 44). The CBD that was used in this study is
natural and was extracted from the plant whose species is
Cannabis sativa. All drug solutions were prepared immediately
before administration to ensure optimal pharmacokinetic
properties. The higher CBD doses (100 and 200 mg/kg) were
chosen based on previous studies demonstrating that antiseizure
effects in neonatal rodents often occur only at high systemic
concentrations (41, 45). These doses are near but below the
known toxicity threshold for CBD in rodents (15) and allow
While
concentrations may not directly translate to human clinical use,

evaluation of dose-response relationships. such
they provide mechanistic insights into CBD’s potential as an

adjunct in settings of pharmacoresistance.

2.3 Pentylenetetrazole-induced seizure
model

2

Pentylenetetrazole (PTZ, “Sigma®”) was dissolved in 0.9%
saline and administered subcutaneously (s.c.) at a dose of

100 mg/kg. Neonatal Wistar rats were removed from their cages,
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weighed, numbered, and sexed before drug administration.
Animals were pre-treated with CBD and PB, separately or
combined at various doses, although the PB at the dose of
3 mg/kg was administered exclusively in combination with CBD.
The antiseizure drugs were administered 60 min before PTZ.
This time point was selected based on previously established
pharmacokinetic data on CBD and the PB action in neonatal
animals (41, 43, 46). When CBD and PB were administered in
combination, there was an interval of minutes between their
administration (45, 47-51). After PTZ injection, pups were
placed in transparent acrylic cages without lids and filmed for
15 min to assess seizure latency, duration, and intensity.

The PTZ model was employed to induce seizures in P10 rats
due to its well-established and reproducible characteristics, as
well as its widely recognized mechanism of action (52, 53).
When administered during the neonatal period, PTZ is
associated with low systemic toxicity and reduced mortality rates
(46, 54, 55). This model enables the assessment of seizure
parameters—including latency, duration, and intensity—within a
relatively short timeframe. Moreover, similar to the maximal
electroshock seizure (MES) model, PTZ is considered a reliable
approach for evaluating the efficacy of candidate anticonvulsant
compounds (41, 54).

2.4 Behavioral assessment of seizures

P10 rats were chosen as this age corresponds to a period
spanning the late third trimester through early infancy in
humans (56). This developmental phase is characterized by
increased synaptogenesis (21, 57), analogous to 9-12 months of
human brain development (56). CBD was administered 60 min
prior to PTZ injection, following a time course previously
demonstrated to be effective in mitigating PTZ-induced seizures
in adult rats at a comparable dose range (41, 43, 44, 51, 54, 58-61).

To maintain body temperature, animals were returned to their
dam until immediately before PTZ testing. Following PTZ
injection, they were placed in transparent plexiglass observation
chambers, where seizure activity was monitored. Latency to
seizure onset and seizure incidence were recorded by treatment-
blind observers (L.S.P.; M.S.O. and/or G.B.B). Observations
continued for 30 min post-PTZ administration.

2.4.1 Seizure scoring

Seizure severity and latency to onset were documented.
Seizure duration sum was recorded, as seizures induced by this
PTZ dose in rat pups of this age typically persisted throughout
the observation period. Seizure severity was assessed using the
rating scale established by Kubovd; Mares (48), ensuring
consistency with previous studies conducted by our lab (49) and
others (42, 48, 62, 63). The scoring criteria were as follows:

+ 0: No observable behavioral changes

« 1: Myoclonic jerks

o 2: Unilateral clonus, chewing/shuffling, Straub tail
« 3: Facial and forelimb clonus
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 4: Running/bouncing clonus with loss of righting reflex

« 5: Running/bouncing clonus with loss of righting reflex and
tonic extension (equivalent to the “complete major seizure”
described by (48).

Mean latencies were reported only for groups in which at least
50% of animals exhibited seizures.

2.5 Perfusion

On postnatal day (P) 10, pups were treated with drugs and
euthanized 2 h later through a combination of Ketamine with
Xylazine (Abbott) and 0.9% saline solution, whose ratio was
2:1:1 injected intraperitoneally (i.p.) at a dose of 100 mL/kg.
After that, the animals were transcardially perfused with the
aid of an injection applied to the left ventricle containing
15mL of 1% phosphate-buffered saline solution (PBS) with
the purpose of cleaning the blood. Then, an injection was
applied to the same site containing 20mL of
paraformaldehyde (4% PFA in PBS, pH=7.4) to fix the brain
tissue (64).

After perfusion, the brains were extracted and placed in
fixative (PFA 4%) overnight, and transferred to sucrose solutions
with PBS in the percentages 10%, then 20% and then 30%, with
a 24 h stay in each solution to ensure cryoprotection. After at
least 48 h, the brains were frozen in 99% isopentane (Vetec) and
dry ice (=65 °C), then stored at —80°C until they were cut in
cryostat (Leica CM1860 UV). Perfusion and storage techniques
were necessary so that it was later possible to perform
histochemical and immunohistochemical techniques with the
brains collected from P10 rats.

2.6 Statistical analysis

Statistical analyses were performed using GraphPad Prism 8
(GraphPad Software, La Jolla, CA). Seizure latency and duration
data were assessed for normality (D’Agostino and Pearson test)
and, where nonparametric, were analyzed using the Kruskal-
Wallis test followed by Dunn’s multiple comparisons post hoc
test. Proportions of seizure severity were compared using
contingency table analysis. All tests were one-tailed, considering
the directional hypothesis of CBD efficacy, and p<0.05 was
considered statistically significant.

3 Results

3.1 Antiseizure efficacy of phenobarbital
(PB) in PTZ-induced seizures in
neonatal rats

To evaluate the antiseizure efficacy of PB in a neonatal model

of pentylenetetrazole (PTZ)-induced seizures, postnatal day 10
(P10) rats were pretreated with varying doses of PB. In the
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FIGURE 1

Antiseizure effects of low-dose cannabidiol (CBD, 3 mg/kg),

alone or in combination with phenobarbital (PB; 3, 10, 30, or 75 mg/kq), in a PTZ-

induced seizure model in P10 rats. (A,B) Mean latency to seizure onset and to the most severe seizure event; n=8, 6, 7, 6 (A,B). (C-E) Mean
duration of spasms, loss of righting reflex (postural seizures), and tonic-clonic seizures; n=8, 6, 7, 6, 6, 6 (C—E). (F) Mean seizure severity score;
n=8,6,7 6,6, 6.(G) Total seizure duration: n=8, 6, 7, 6, 6, 6. CBD at 3 mg/kg alone modestly reduced the duration of postural seizures (D)
and total seizure time (G) but did not significantly affect seizure severity (F) Combinations of low-dose CBD with subeffective PB (3 or 10 mg/kg)
did not substantially improve seizure parameters. Data were analyzed using the Kruskal-Wallis test; p<0.05 was considered statistically

significant (*p = 0.0306 in panel D).

control group (PTZ alone), seizures occurred rapidly following
administration, characterized by spasms, loss of righting reflex
or posture, and tonic-clonic seizures. All animals in this group
reached the maximum seizure severity score of 5 (Figures 1-6,
in Vehicle). These seizures were prolonged and severe, with a
cumulative seizure duration of 4,428 s (s), 93% of which
consisted of the “loss of righting reflex” phase. The duration of
this phase ranged from 156-4,099s, with a mean of
1,476 +2,272 s (Figure 6A).

To establish a dose-response profile, PB was administered at
10, 30, 50, or 75 mg/kg (Figure 2). Doses of 30 mg/kg and above

fully suppressed PTZ-induced seizures, demonstrating robust

antiseizure effects (Figures 2C-G). In contrast, animals
treated with 10 mg/kg PB displayed seizure profiles
comparable to the control group, with no significant

differences in seizure latency, duration, or severity (Kruskal-
Wallis, p>0.05) (Figure 2). These animals exhibited a total

Frontiers in Pediatrics

seizure duration of 2,422's, with approximately 88% of that
time spent in the loss of righting reflex phase (range: 118-
2,142 s; mean: 807.3 + 1,156 s) (Figures 2G, 8A). Most animals
in this group also reached the maximum severity score,
reinforcing that 10 mg/kg is a subeffective dose under these
conditions (Figure 2F).

3.2 Pharmacological interactions between
cannabidiol (CBD) and PB in PTZ-induced
seizures in neonatal rats

Although CBD has been widely explored as a potential
treatment for neonatal seizures, recent studies suggest it has
limited antiseizure efficacy when used as monotherapy. For
example, Witherspoon et al. (41) reported that high doses of
CBD (200 mg/kg) produced only modest effects in a neonatal
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FIGURE 2
Antiseizure effects of cannabidiol (CBD; 30 mg/kg), alone or in combination with phenobarbital (PB; 3, 10, 30, or 75 mg/kg), in the PTZ-induced
seizure model in P10 rats. (A,B) Latency to seizure onset and to the most severe (tonic-clonic) seizure; n=8, 7, 6, 6, 10 (A,B). (C—E) Mean
duration of spasms, loss of righting reflex (postural seizures), and tonic-clonic seizures; n=8, 7, 8, 3, 3, 6, 6, 10, 6, 6 (C—E). (F) Seizure severity
score; n=8,7,8, 3,3, 6,6, 10, 6, 6. (G) Total seizure duration; n=8, 7, 8, 3, 3, 6, 6, 10, 6, 6. Co-administration of 10 mg/kg PB with 30 mg/kg
CBD significantly increased the latency to tonic-clonic seizure onset (B) and reduced the duration of postural seizures (D). However, seizure
severity (F) and total seizure time (G) remained similar across groups. Data are presented as mean + SEM and were analyzed using the Kruskal-
Wallis test. p <0.05 was considered statistically significant (*p = 0.0104, **p = 0.0097 in respective panels).

PTZ-induced seizure model. Based on these findings, we
hypothesized that CBD could potentiate the antiseizure effects
of PB, particularly at subeffective doses.

To test this, we combined effective (30 and 75 mg/kg) and
subeffective (3 and 10mg/kg) doses of PB with CBD
administered at 3, 30, 100, or 200 mg/kg. As expected, animals

Frontiers in Pediatrics 05

receiving PB (30 or 75 mg/kg), either alone or in combination
with any dose of CBD exhibited complete protection against
PTZ-induced seizures (Figures 1-4). In contrast, rats treated
with low-dose PB (3 or 10 mg/kg), low-dose CBD (3 mg/kg), or
their combinations displayed seizure activity comparable to the
control group (Figures 1, 2).
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FIGURE 3
Antiseizure effects of cannabidiol (CBD, 100 mg/kg) alone or in combination with phenobarbital (PB; 3, 10, 30, or 75 mg/kg) in the PTZ-induced
seizure model in P10 rats. (A,B) Latency to seizure onset and to the most severe (tonic-clonic) seizure; n=8, 6, 6, 6 (A,B). (C—E) Duration of
spasms, loss of righting reflex (postural seizures), and tonic-clonic seizures; n=8, 6, 6, 6, 7, 8 (C—E). (F) Seizure severity score; n=38, 6, 6, 6, 7,
8. (G) Total seizure duration; n=8, 6, 6, 6, 7, 8. Co-administration of 100 mg/kg CBD with either 3 or 10 mg/kg PB significantly increased latency
to seizure onset (A,B), and the 10 mg/kg PB + 100 mg/kg CBD combination significantly reduced the duration of postural seizures (D). However,
seizure severity (F) was not significantly altered across groups. Notably, the group receiving CBD alone (100 mg/kg) exhibited a longer total
seizure duration compared to CBD + PB combinations (G), excluding the control group. Statistical analysis was performed using the Kruskal—-
Wallis test. p <0.05 was considered statistically significant (*p = 0.0206, **p = 0.0092, *p = 0.0117 in relevant panels).

Notably, animals treated with 3 mg/kg CBD alone exhibited a
significantly shorter duration of seizure-associated loss of the
righting reflex compared to those receiving 10 mg/kg PB
combined with 3 mg/kg CBD (Kruskal-Wallis, H=9.750,
p=0.0208; Figure 1D). Although some animals in the 3 mg/kg
CBD and 3 mg/kg PB + 3 mg/kg CBD groups did not reach the
maximum seizure severity score of 5, no statistically significant
differences in seizure severity were detected among these groups
(Kruskal-Wallis, p > 0.05; Figure 1F).

Additionally, the group treated with 3 mg/kg CBD alone
exhibited a lower total seizure duration (2,119 s) compared to
the groups that received 3 mg/kg or 10 mg/kg PB combined
with 3 mg/kg CBD, which displayed total seizure durations of
3,549 s and 3,572 s, respectively (Figures 1G, 6B, 7A, 8B). In the
CBD-only group, approximately 84% of the seizure duration
corresponded to the “loss of righting reflex” phase, with a range
of 140-1,788s and a mean duration of 706.3+937.1s
(Figure 6B). In comparison, the groups treated with PB plus
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CBD spent approximately 90% (range of 82-3,196s) and 92%
(range of 95-3,283s) of their total seizure durations in this
same phase, with mean durations of 1,183+1,746s and
1,191 £ 1,813 s, respectively (Figures 7A, 8B).

These findings indicate that while low-dose CBD alone may
modestly reduce seizure duration, it does not substantially
enhance the efficacy of subeffective doses of PB. The lack of
clear and apparent potentiation at these low doses of CBD
suggests that higher doses may be required to achieve
potentiation effects by CBD of PB.

3.2.1 Dose-dependent effects of phenobarbital
(PB) and cannabidiol (CBD) combinations on
seizure parameters

Animals treated with 10 mg/kg of PB in combination with
30 mg/kg CBD exhibited a significantly prolonged latency to
tonic-clonic seizure onset compared to the control group

(Kruskal-Wallis, H=12.14, p=0.0163; Figure 2B). This
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FIGURE 4
Antiseizure effects of cannabidiol (CBD) and phenobarbital (PB), administered alone or in combination, during PTZ-induced seizures in P10 rats. (A)
Mean latency to seizure onset as a function of PB and CBD doses; n=8, 6, 6, 6, 6, 7, 6, 6, 6, 7, 6, 10, 6, 6. (B) Mean seizure severity scores across
treatment groups; n=8,6,6,6,6,7,6, 6,6, 7, 6,10, 6, 6. Co-administration of CBD with PB significantly increased seizure latency in certain groups
(A), although no significant differences in seizure severity were observed (B). Data were analyzed using the Kruskal-Wallis test. p <0.05 was
considered statistically significant (*p = 0.0268).

combination also significantly reduced the duration of seizures
involving loss of the righting reflex (Kruskal-Wallis, H = 12.72,
p =0.0127; Figure 2D). Despite these effects, most animals in the
groups treated with CBD alone (30 mg/kg), 3 mg/kg PB, or
the combination of 10 mg/kg PB + 30 mg/kg CBD still reached
the maximum seizure severity score of 5 (Kruskal-Wallis,
p > 0.05; Figure 2F).

Regarding total seizure duration, animals treated with 30 mg/
kg CBD alone and those receiving 3 or 10 mg/kg PB in
combination with 30 mg/kg CBD displayed similar cumulative
2,707 s, 2,245s, and 2,753s, respectively
(Figures 2G, 6C, 7B, 8C). In all three groups, most of the
seizure time (88%-90%) was spent in the loss of righting reflex

seizure times:

phase. The average durations of this phase were range: 114-
2,440 s; mean: 902.3+ 1,332 s for CBD alone, range: 23-1,973 s;
mean: 748.3+1,067s for PB 3 mg/kg+ CBD 30 mg/kg, and
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range: 126-2,428s; mean: 917.7+1,308s for PB
kg + CBD 30 mg/kg (Figures 6C, 7B, 8C).

Although low-dose CBD alone (3 mg/kg) previously showed a

10 mg/

modest reduction in the duration of severe seizures (Figure 1D),
the combination of 30 mg/kg CBD with subeffective PB (3 or
10 mg/kg) generally failed to significantly alter seizure severity
or total duration. The exception was the 10 mg/kg PB + 30 mg/
kg CBD group, which exhibited increased latency and reduced
duration of severe seizures. These results suggest a potentiation
dose-specific effect by CBD of PB, though limited to certain
seizure parameters.

3.2.2 Effects of high-dose cannabidiol (CBD) in
combination with phenobarbital (PB)

Rats treated with 3 or 10 mg/kg PB in combination with
100 mg/kg CBD exhibited significantly prolonged latencies to
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FIGURE 5

Antiseizure effects of cannabidiol (CBD, 200 mg/kg), administered alone or in combination with phenobarbital (PB; 3, 10, 30, or 75 mg/kg), in the
PTZ-induced seizure model in P10 rats. (A,B) Latency to seizure onset and to the most severe (tonic-clonic) seizure; n=8, 6, 6, 6 (A,B). (C-E)
Duration of spasms, loss of righting reflex (postural seizures), and tonic-clonic seizures; n =8, 6, 6, 6, 6, 6 (C—E). (F) Seizure severity score; n =8,
6, 6, 6, 6, 6. (G) Total seizure duration; n=8, 6, 6, 6, 6, 6. Treatment with 200 mg/kg CBD alone significantly reduced the duration of postural
and tonic-clonic seizures (D,E). Additionally, the combination of 10 mg/kg PB with 200 mg/kg CBD further reduced the duration of spasms, loss
of righting reflex, and tonic-clonic seizures (C—E). No significant reductions in seizure severity (F) or total seizure duration (G) were observed
across groups, excluding the control. Data were analyzed using the Kruskal-Wallis test. p<0.05 was considered statistically significant
(*p =0.0199, *p = 0.0425, *p = 0.0117; **p = 0.0038, **p = 0.0016 in respective panels).

seizure onset compared to the control group (Kruskal-Wallis,  groups, this seizure type comprised 93% (46-1,288s; mean:
H=13.10, p=0.0044 and H=34.98, p=0.0009, respectively; 461.3+715.9s) and 92% (16-777 s; mean: 279 £ 431.5s) of total
Figures 3A, 4A). Furthermore, the combination of 10 mg/kg PB  seizure time, respectively (Figures 7C, 8D). These findings
with 100 mg/kg CBD significantly reduced the duration of  suggest that co-administration of high-dose CBD with
seizure-associated loss of the righting reflex (Kruskal-Wallis,  subeffective PB, particularly at 10 mg/kg, may enhance latency
H=10.63, p=0.0139; Figure 3D). While some animals in these  and reduce the duration of severe seizures.

groups did not reach the maximum seizure severity score,

overall seizure severity did not differ significantly among groups ~ 3.2.3 Effects of the highest dose of cannabidiol
(Kruskal-Wallis, p > 0.05; Figure 3F). (CBD) (200 mg/kg)

The total seizure duration for the group receiving 100 mg/kg Animals treated with 200 mg/kg CBD alone showed a
CBD alone was 2,114 s, compared to 1,384 s and 837 s in the  significant reduction in the duration of both postural (loss of
3 mg/kg PB+100 mg/kg CBD and 10 mg/kg PB+100 mg/kg  righting reflex) and tonic-clonic seizures compared to the
CBD groups, respectively (Figures 3G, 6D, 7C, 8D). In the control group (Kruskal-Wallis, H=12.18, p=0.0068 and
CBD-only group, approximately 94% of seizure activity involved = H=18.16, p=0.0004, respectively; Figures 5D, 5E). Similarly,
loss of the righting reflex, with a duration range of 40-1,994s  the combination of 10mg/kg PB with 200 mg/kg CBD
and a mean of 704.7+1,117 s (Figure 6D). In the PB+CBD  significantly decreased the duration of spasms (Kruskal-Wallis,
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comparison of seizure expression across different treatment groups.

Distribution of PTZ-induced seizure activity in P10 rats following treatment with different doses of cannabidiol (CBD). Total time spent in each seizure
type—spasms, loss of righting reflex (postural seizures), and tonic-clonic seizures—is shown for the the (A) control group (n = 8) and (B—E) animals
treated with 3 (n=6); 30 (n=6); 100 (n=6) or 200 (n =6) mg/kg of CBD. Data reflect the cumulative duration of each seizure type, allowing
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FIGURE 7

loss of posture and tonic-clonic.

B PB3mglkg + CBD 30 mglkg

D PB3mglkg + CBD 200 mg/kg

Distribution of pentylenetetrazole (PTZ)-induced seizures in P10 rats after treatment with the 3 mg/kg dose of phenobarbital (PB), together with the
different doses of cannabidiol (CBD). Total time spent in each seizure by the groups treated with the 3 mg/kg PB dose, (A) together with the 3 mg/kg
(n=7), (B) 30 mg/kg (n = 6), (C) 100 mg/kg (n = 6) or (D) 200 (n = 6) mg/kg CBD doses. Seizures can be called: spasms, loss of the righting reflex or

C PB3mglkg + CBD 100 mg/kg

== Spasm Seizure
= Loss of Posture Seizure
== Tonic-Clonic Seizure

= Spasm Seizure
= Loss of Posture Seizure
== Tonic-Clonic Seizure

Total=1384

®= Spasm Seizure
= Loss of Posture Seizure
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H=9.191, p=0.0269), postural seizures (Kruskal-Wallis,
H=12.18, p=0.0068), and tonic-clonic seizures (Kruskal-Wallis,
H=18.16, p=0.0004) (Figures 5C-E). Although most animals in
these groups did not reach the maximum seizure severity score,
no statistically significant differences in severity were detected
across groups (Kruskal-Wallis, p > 0.05; Figure 5F).

Frontiers in Pediatrics

Total seizure durations were comparable across the CBD-only
and PB + CBD groups: 1,384 s (CBD alone), 1,580 s (PB 3 mg/
kg + CBD), and 956s (PB 10 mg/kg+ CBD) (Figures 5G, 6E,
7D, 8E). In the CBD-only group, 88% of seizure time involved
loss of righting reflex (range: 26-1,217 s; mean: 461.3 +656.9 s;
Figure 6E). In the PB+CBD groups, this proportion rose to
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Distribution of pentylenetetrazole (PTZ)-induced seizures in P10 rats after treatment with the 10 mg/kg dose of phenobarbital (PB), alone or together
with the different doses of cannabidiol (CBD). Total time spent in each seizure by the groups treated with the (A) 10 mg/kg PB dose, alone (n =7) or
(B—E) together with the 3 mg/kg (n = 6), 30 mg/kg (n = 10), 100 mg/kg (n = 6) or 200 mg/kg (n = 6) CBD doses. Seizures can be called: spasms, loss
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94% (17-1,486 s; mean: 526.7 + 831.3 s) and 96% (11-920 s; mean:
318.7 + 520.8 s), respectively (Figures 7D, 8E).

These results demonstrate that high-dose CBD, both alone or
in combination with PB, can reduce the severity and duration of
seizures in neonatal rats. Notably, the treatment with 200 mg/kg
CBD produced the most consistent reduction across multiple
seizure parameters, suggesting a dose-dependent potentiation
effect by CBD at this highest dose.

3.2.4 Effect exerted by different doses of
phenobarbital (PB) and cannabidiol (CBD) on
reducing or increasing the score of epileptic

seizures in the PTZ model for P10 rats

Neonatal rats treated with varying doses of PB and CBD,
either alone or in combination, exhibited differences in seizure
severity and type following PTZ-induced seizures. Although all
animals experienced seizures, the majority reached the highest
severity scores (stages 4 or 5). Notably, only two animals, one
receiving 3 mg/kg CBD and the other receiving 200 mg/kg CBD,
exhibited milder seizure manifestations, classified as stages 1-3.

The distribution of seizure severity scores across treatment
groups, presented as absolute numbers and percentages, is
summarized in Table 1. Statistical analysis using the Kruskal-
Wallis test revealed significant differences among groups in
seizure severity (H=41.43, p<0.0001), indicating that specific
treatment regimens influenced the extent of seizure
expression (Table 1).

In summary, co-administration of 100 mg/kg CBD with 3 or
10 mg/kg PB significantly increased seizure latency, indicating

delayed seizure onset. Furthermore, treatment with 200 mg/kg
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CBD alone, as well as the combinations of 10 mg/kg PB with
either 100 or 200 mg/kg CBD, led to significant reductions in
both the duration and severity of PTZ-induced seizures. These
suggest that higher of CBD, whether
administered alone or in conjunction with subeffective PB, are

findings doses

effective in attenuating seizure activity in neonatal rats.

4 Discussion

Our findings demonstrate a dose-dependent potentiation of
the antiseizure effects of PB by CBD in P10 Wistar rat pups.
When administered alone, CBD did not significantly affect
seizure latency, severity, or the proportion of animals exhibiting
low vs. high seizure scores. However, when combined with PB,
particularly at higher doses (100 mg/kg and 200 mg/kg), CBD
significantly enhanced PB’s efficacy, evidenced by increased
latency to seizure onset, reduced seizure duration, and decreased
seizure severity. Notably, the combination of 10 mg/kg PB with
either 100 mg/kg or 200 mg/kg CBD reduced the incidence of
Stage 5 seizures to levels like those observed with 30 or 75 mg/
kg PB alone.

Although CBD is approved for certain rare pediatric
epilepsies, its efficacy in neonates remains poorly understood.
During early brain development, ongoing maturation of neurons
and circuits can significantly alter pharmacological responses to
antiseizure medications (10, 65, 66). Therefore, investigating
CBD’s therapeutic potential in neonates—and its possible role as
an adjunct to existing therapies—is of particular importance. In
this context, CBD may also offer long-term safety advantages
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TABLE 1 Effect exerted by the isolated doses and in combination of cannabidiol (CBD) and phenobarbital (PB) on the distribution of animals in the
different categories of seizures in the pentylenetetrazole (PTZ) model in P10 rats.

PB (mg/kg) CBD (mg/kg) \[e} Score 1-3 Score 4 Score 5 Total (n)
seizure

0 0 0% (0 0% (0) 0% (0) 100% (8) (8)

0 3 0% (0) 17% (1 0% (0) 83% (5) (6)
30 0% (0) 0% (0) 0% (0) 100% (6) (6)
100 0% (0) 0% (0) 50% (3) 50% (3 (6)
200 0% (0) 17% (1 33% (2 50% 3 (6)

3 3 0% (0) 0% (0) 14% (1) 86% (6) 7)
30 0% (0) 0% (0) 0% (0) 100% (6) (6)
100 0% (0) 0% (0) 50% (3 50% (3) (6)
200 0% (0) 0% (0) 0% (0) 100% (6) (6)

10 0 0% (0) 0% (0) 0% (0) 100% @) 7)
3 0% (0) 0% (0) 0% (0) 100% (6) (6)
30 0% (0) 0% (0) 10% (1) 90% (9) (10)
100 0% (0) 0% (0) 50% (3 50% (3) (6)
200 0% (0) 0% (0) 50% (3 50% 3y (6)

The total number of animals per group and the number of animals that manifested the different types of seizures, following the score of 0-5 points, is shown in parentheses. Also, the
percentage of animals that had each type of seizure is being expressed. The seizure scores are classified as follows: 0 =no change in behavior, 0.5=wet dog tremors, 1 =myoclonic
spasms, 2 =unilateral clonus, 3 =forelimb clonus, 4 =loss of the righting reflex or loss of posture, and 5 = tonic-clonic seizure. There were significant differences between the groups
that scored 5 and the groups that obtained the scores: 0, 1-3 and 4. Kruskal-Wallis test, reference value: p < 0.05.

©p=0.0014; p>0.05.

(39). Most studies assessing CBD’s antiseizure effects have been
conducted in adult rodents (43, 67), leaving a gap in our
understanding of its action in neonates or its interaction with
other drugs like PB (41). PB is a first-line treatment for neonatal
seizures (68), but its efficacy and safety at low doses in neonates
remain limited.

One possible explanation for the observed potentiation by
CBD of PB
GABAergic synapses. PB acts as a positive allosteric modulator

involves pharmacodynamic interactions at
of GABA-A receptors, increasing chloride conductance and

neuronal inhibition. CBD has been shown to modulate
GABAergic transmission indirectly, and also to inhibit the
reuptake of adenosine, a neuromodulator with anticonvulsant
properties (69, 70). These overlapping pathways may contribute
to the enhanced efficacy seen when both drugs are co-
administered (69, 71). Although a pharmacokinetic interaction
cannot be excluded, prior studies suggest that CBD may
influence hepatic cytochrome P450 enzymes, potentially altering
PB metabolism. However, the timing and acute nature of the
that
mechanisms are more likely responsible for the observed effects.

The PTZ-induced seizure model used here is well-established

experiment  suggest immediate  pharmacodynamic

and relies on non-competitive antagonism of GABA-A receptors,
disrupting inhibitory neurotransmission and facilitating excitatory
pathways (52, 53). PB counters this effect through positive
allosteric modulation of GABA-A receptors, increasing chloride
influx and neuronal hyperpolarization (72, 73). Notably, PB is
more effective in preventing seizures than in terminating
ongoing ones (74). Importantly, no direct pharmacokinetic
interaction between PTZ and PB is expected, as PTZ neither
induces nor inhibits cytochrome P450 enzymes (74). Our PB
results align with previous studies (46, 54), which showed that
PB was effective in reducing tonic seizures (Stage 5) in P7 rats.
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The higher doses required in our study may reflect differences
in age (P10 vs. P7) or strain (Wistar vs. Sprague-Dawley), both
known to affect seizure susceptibility (75).

CBD alone, even at high doses (3-100 mg/kg), was generally
ineffective at altering seizure parameters, consistent with other
neonatal studies. However, at 200 mg/kg, CBD significantly
reduced both the duration of tonic-clonic seizures and loss of
righting reflex. This aligns with previous findings: Uttl et al. (60)
observed no effect at 10 mg/kg in P12 Wistar rats, but a 60 mg/
kg dose modestly reduced seizure severity. Similarly,
Witherspoon et al. (41) found that 200 mg/kg CBD increased
seizure latency in P7 rats, but not severity. In older rats (P21),
from 10-200 mg/kg increased latency, but
Other  cannabinoids,
cannabidivarin (CBDV), have shown similar profiles. Huizenga
et al. (45) reported that CBDV at 100-200 mg/kg reduced
seizure severity in P10 rats but did not affect latency. In P20

doses severity

remained  unaffected. such  as

animals, a 200 mg/kg dose reduced severity and increased latency.

In our study, combinations of low-dose CBD (3 or 30 mg/kg)
with subeffecitve PB (3 or 10 mg/kg) failed to interfere with PTZ
effects, except for 30 mg/kg CBD + 10 mg/kg PB, which increased
seizure latency and reduced postural seizure duration. These
findings suggest a modest potentiating effect at intermediate
doses. More strikingly, co-administration of high-dose CBD (100
200 mg/kg) with 10mg/kg PB produced
antiseizure effects across several metrics, including latency,

or consistent
duration, and severity.

Collectively, these results underscore the importance of dose
optimization. Low doses of CBD alone or in combination were
largely ineffective, whereas higher doses enhanced PB’s efficacy
in neonatal animals. This supports the potential of CBD as an
adjunctive therapy in neonatal seizure management, particularly
when standard PB dosing is subeffective.
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However, it is critical to highlight the need for further studies
on the long-term safety and neurodevelopmental impact of CBD
in the immature brain. While CBD shows promise, especially in
enhancing PB’s efficacy, immature neurons differ functionally
from mature ones. CBD’s mechanisms—potentially independent
of CBI receptor activity (43), involving modulation of ion
channels (76) and non-cannabinoid receptors (77)—may operate
differently in neonatal networks.

Developmental differences in receptor expression and synaptic
integration (78-80) likely underlie the reduced efficacy of CBD in
immature brains. Although the endocannabinoid system is present
during embryogenesis (81), receptor binding capacity and

vary — across
(82, 83). This
immaturity, combined with high baseline excitability, may limit

functional maturation brain regions and

developmental stages neurodevelopmental
CBD’s capacity to modulate seizure networks during early life.

In addition, there are few studies on the control of epileptic
seizures with chronic administration of CBD, especially when it
comes to the neonatal period (41). Some studies involving adult
models have reported that CBD, when administered chronically, is
more effective when injected more than once a day, which confers
a constant concentration of such a drug in the body, resulting in a
longer-lasting effect (84, 85). In addition, the efficient doses of
CBD, along with the period of application, suffer variations
dependent on the seizure induction model. Studies with genetic
models of epilepsy, such as the use of WARs (Audiogenic Wistar
Rats) to perform the audiogenic kindling, a protocol that consists
of the stimulation of seizures through sound, showed that animals
that were treated with CBD for a period of around 12 days,
receiving two injections of the drug per day at doses of 25 mg/kg,
presented attenuation of brainstem seizures, such as tonic-clonic,
and limbic seizures. Also, treatment with CBD was able to reduce
the activity of neurons, demonstrated by the reduction of FosB
immunostaining, a marker of neuronal activity, and slowed down
the elevation of CB1 receptor expression in the hippocampus,
normally induced by such kindling (86).

Kindling PTZ was also widely used as a model in adult rodents
to test the efficacy of chronic treatment with CBD, and it was found
that this drug, depending on the dose and route of administration,
was able to reduce animal mortality, in addition to being able to
cause an increase in the latencies of generalized seizures (87). In
addition, studies that have performed chronic applications of
CBD in adult rodents in the hippocampal kindling model have
found that such a drug is able to reduce the progress of
epileptogenesis, in addition to reducing focal and generalized
seizures, and this is due to CBD acting on several receptors
responsible for reducing brain electrical activity (84, 88).

Finally, adult
electroshock seizures (MES)—show that CBD tends to exhibit
antiseizure effects high doses, close do the toxic threshold

studies in models—such as maximal

(around 300 mg/kg), suggesting a narrow therapeutic range (89).
Median effective doses in adults typically range from 80-90 mg/
kg (90, 91). However, few studies have extended these findings
In PTZ-
models, intrahippocampal CBD showed efficacy at low doses,

to neonatal models. and kainate-induced seizure

while systemic administration was less effective (55).
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5 Conclusion

In conclusion, this study demonstrates that CBD, particularly
at high doses, can potentiate the antiseizure effects of PB in
neonatal rats. Although our results support a beneficial
interaction between CBD and PB in acute seizure models, the
long-term consequences of high-dose CBD exposure during
early brain development remain unknown. Studies have shown
that certain antiseizure drugs can cause neurodevelopmental
disturbances when administered during critical periods of brain
maturation. Therefore, future studies should address whether co-
administration of CBD and PB in neonates alters cognitive,
behavioral, or neuroanatomical outcomes during adolescence or
adulthood. These findings highlight the potential of CBD as an
adjunct therapy for neonatal seizures, particularly when PB
alone is insufficient. However, the developing brain presents
unique challenges and risks. Future research should focus on
elucidating the mechanisms underlying these interactions and
evaluating the long-term safety of such combination therapies
during early brain development.
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