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Objective: This study aimed to characterize the clinical and genetic spectrum of 
dynamin 1-like gene (DNM1l)-associated disorders and to investigate genotype- 
phenotype correlations in the largest integrated cohort reported to date.
Methods: Clinical and genetic data from eleven Chinese patients with DNM1l 

variants were prospectively collected between April 2020 and May 2025. In 
addition, a comprehensive review of all published cases was performed.
Results: A total of 66 cases were analyzed, including 11 newly reported Chinese 
patients and 55 previously published cases. The most common clinical 
manifestations were developmental delay (89.4%), epilepsy (66.7%), dystonia 
(53.0%), ataxia (21.2%), and failure to thrive (18.2%). Abnormal neuroimaging 
(80.3%) and electroencephalogram (EEG) abnormalities (78.0%) were also 
frequent. Domain-specific analyses demonstrated that, compared with 
GTPase domain variants (n = 15), autosomal dominant middle domain variants 
(n = 43) were associated with significantly higher risks of epilepsy, status 
epilepticus, cerebral atrophy, and poorer survival, but lower rates of peripheral 
neuropathy and ataxia (all p < 0.05). Nine patients with middle domain 
variants exhibited rhythmic high-amplitude delta with superimposed 
(poly)spikes (RHADS) on EEG. Within the middle domain subgroup, 67.4% 
developed childhood-onset status epilepticus, whereas the remaining 32.6% 
presented with infantile encephalopathy without status epilepticus, a 
phenotype associated with significantly higher mortality and earlier death 
(both p < 0.05). All 21 patients (100%) with the p.Arg403Cys hotspot variant 
experienced status epilepticus. The most severe phenotype was observed in 
two siblings with biallelic truncating variants, both of whom died in the 
neonatal period. Further cases are required to confirm statistically 
associations between variant type and clinical severity.
Conclusion: This study provides the largest clinical and genetic characterization 
of DNM1Lassociated disorders to date and establishes genotype-phenotype 
correlations stratified by protein domain. The identification of RHADS as a 
distinctive EEG signature highlights its potential utility as a biomarker for 
specific clinical and genetic subgroups. Validation in larger, independent 
cohorts is necessary.
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1 Introduction

Mitochondrial dynamics, encompassing both fusion and 

fission, are critical for maintaining cellular function. DRP1 

(dynamin 1-like protein), encoded by DNM1l, is a member of 

the dynamin superfamily of GTPases and mediates 

mitochondrial fission (1). DRP1 is ubiquitously expressed, with 

the highest levels in skeletal muscle, heart, kidney, and brain. 

The protein comprises an N-terminal GTPase domain, a middle 

assembly domain, a short insert, and a GTPase effector domain 

(GED). In animal models, Dnm1l-null mice die during 

embryogenesis, whereas conditional deletion of Dnm1L in the 

mouse brain leads to developmental abnormalities, underscoring 

the essential role of this gene in mammalian development (2, 3).

Pathogenic DNM1l variants that disrupt mitochondrial 

dynamics are associated with multisystem involvement, 

including developmental delay, dystonia, epilepsy (most 

commonly refractory seizures and status epilepticus consistent 

with epileptic encephalopathy), ataxia, optic atrophy, 

microcephaly, peripheral neuropathy, respiratory distress, and 

childhood mortality (4). The clinical course of DNM1l-related 

disorders is highly heterogeneous and may result from de novo 

heterozygous, biallelic compound heterozygous, or homozygous 

recessive variants (5). Evidence from limited studies suggests 

that DRP1 GTPase domain variants are associated with milder 

phenotypes compared with middle domain variants (6). 

However, significant knowledge gaps remain regarding the full 

clinical spectrum and the precise patterns of genotype- 

phenotype correlation.

We reported findings from 11 Chinese patients with DNM1l- 

related disorders and integrated these with all previously 

published cases to conduct the largest genotype-phenotype 

analysis to date. Electroencephalogram (EEG) evaluation 

identified a distinctive pattern, termed rhythmic highamplitude 

delta with superimposed (poly)spikes (RHADS), associated with 

these disorders.

2 Materials and methods

2.1 Patients

Eleven patients with confirmed DNM1l variants were enrolled 

between April 2020 and May 2025. Eight were recruited from 

Beijing Children’s Hospital (BCH), Capital Medical University, 

and three from Wuhan Children’s Hospital (WCH), Huazhong 

University of Science and Technology. The study protocol was 

approved by the ethics committees of both institutions [approval 

nos.: (2022)-E-121Y for BCH and 2021R101-E01 for WCH]. 

Written informed consent for participation in the research and 

genetic analyses was obtained from the parents or legal 

guardians of all patients.

Clinical data were collected, including demographic 

characteristics, personal and family history, age at onset, clinical 

manifestations, outcomes, magnetic resonance imaging (MRI) 

and video EEG findings, laboratory results, and genetic data. All 

EEGs were interpreted by qualified neurophysiologists using the 

following criteria for RHADS: occipital predominance; slow 

rhythm (<1 Hz) of high amplitude (200–1,000 μV); frequent 

occurrence; and superimposed polyspikes (7). Disease prognosis 

was assessed using the Modified Rankin Scale (8). Patient data 

were obtained from the FUTang Updating Medical Records 

Database (9).

2.2 Molecular analysis

Genomic DNA was extracted from peripheral blood 

leukocytes of patients and their parents using standard protocols 

(10). Trio whole-exome sequencing was performed with an 

average depth of over 100×, and mitochondrial genome 

sequencing was conducted with an average depth exceeding 

40,000×. Candidate variants identified through filtered data 

analysis were validated by PCR amplification of target regions 

followed by Sanger sequencing. Variant pathogenicity was 

classified according to the American College of Medical 

Genetics and Genomics guidelines (11, 12).

2.3 Literature review

A literature review was conducted using the keywords 

“DNM1l”, “DNM1l mutation”, and “DNM1l variant” across 

three electronic databases (PubMed, ScienceDirect, and OviSP) 

from January 2007 to June 2025 (Figure 1). Cases with 

incomplete clinical documentation or duplicate reports were 

excluded. Clinical data, laboratory findings, and genotypic 

profiles were extracted.

RHADS were identified by certified EEG specialists who 

retrospectively reviewed the published EEG descriptions and 

images. To facilitate genotype-phenotype correlation analysis, 

patients with DNM1l-associated disorders from both our 

Chinese cohort and the literature were categorized into four 

groups according to inheritance pattern and variant location: 

GTPase domain/autosomal dominant (AD), middle domain/AD, 

GED domain/AD, and GTPase domain/autosomal recessive (AR).

2.4 Statistical analysis

Quantitative variables were summarized as medians with 

interquartile ranges. Continuous data were compared between 

groups using the Mann–Whitney U-test, whereas categorical 

variables were expressed as frequencies and percentages. Survival 

analysis was performed using the logrank test. P-values < 0.05 

were considered statistically significant. Statistical analyses were 

conducted with IBM SPSS Statistics version 20 (IBM Corp., 

Armonk, NY, USA), and graphs were generated using GraphPad 

Prism version 8.
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3 Results

3.1 Case series

This study included 11 Chinese patients (five females and six 

males) with no evidence of consanguinity. Prenatal, perinatal, and 

family histories were unremarkable. The median age at onset was 

3.3 years (range, 1.5–5 years). Developmental delay was observed 

in 7 of 11 patients (63.6%). Patient 1 exhibited developmental 

delay and dystonia from birth and later developed peripheral 

neuropathy; however, epilepsy did not manifest until 4.7 years 

of age. All remaining 10 patients developed drug-resistant 

epilepsy, of whom eight progressed to status epilepticus 

accompanied by respiratory failure. Reported seizure types 

included focal seizures (n = 5), myoclonic seizures (n = 7), 

generalized tonic-clonic seizures (n = 3), and epileptic spasms 

(n = 1). During a median follow-up of 1.4 years (range, 0.4–4.7 

years), two patients discontinued treatment and were lost to 

follow-up. The remaining nine patients (median age, 4.7 years; 

range, 0.7–10.5 years) were alive at the last assessment, with 

persistent manifestations such as cognitive impairment and 

motor delay. Notably, all eight patients with epilepsy continued 

to experience uncontrolled seizures despite intensive 

management with antiseizure medications and mitochondrial 

support. At the final evaluation, the median Modified Rankin 

Scale score was 3 (range, 2–5) (Supplementary Table S1).

Muscle biopsy was performed in one patient and yielded 

unremarkable findings. Hyperlactatemia was detected in 44.4% 

of cases (four of nine). During the acute disease phase, brain 

MRI abnormalities were observed in 6 of 10 patients (60%), 

including thalamic lesions (n = 1), cortical lesions (n = 3), white 

matter lesions (n = 1), and thinning of the corpus callosum 

(n = 1). Followup MRI performed 1.5–6 months after disease 

onset in all eight re-examined patients (100%) revealed new- 

onset cerebral atrophy. Video EEG abnormalities were present 

in all ten patients with epilepsy, including background slowing 

(n = 4), focal epileptiform discharges (n = 5), multifocal 

epileptiform discharges (n = 4), and generalized epileptiform 

discharges (n = 1).

Among those with focal epileptiform discharges, two patients 

(Patients 4 and 5) who developed status epilepticus and carried the 

heterozygous p.Arg403Cys variant demonstrated RHADS on EEG 

(Figure 2A). The predominant epileptiform abnormalities 

included spikes, spike-and-wave complexes, and polyspike-wave 

complexes. Detailed clinical information is provided in 

Figure 2B and Supplementary Table S1.

Six distinct de novo DNM1l variants were identified: 

p.Gly149Asn, p.Gly362Ser, p.Gly362Asp, p.Arg403Cys, 

FIGURE 1 

Flow chat of enrolled cases with DNM1l-related disorders for clinical and genetic analysis.
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p.Leu416Pro, and p.His384Pro. Patient 1 carried the p.Gly149Asn 

variant located in the GTPase domain, whereas the remaining 10 

patients harbored variants in the middle domain (p.Gly362Ser, 

p.Gly362Asp, p.Arg403Cys, p.Leu416Pro, and p.His384Pro). 

Among these, the p.Arg403Cys variant was the most frequent, 

accounting for 54.5% (6 of 11) of cases (Figure 3).

3.2 Literature review

3.2.1 Clinical summary

A total of 82 patients with DNM1l-associated disorders have 

been reported across 32 articles from 2007 to June 2025, 

including the cases described in this study (4–6, 13–41). 

FIGURE 2 

Clinical features in our Chinese cohort. (A) The electroencephalogram (EEG) of patient 4 in Chinese cohort showed typical RHADS in the bilateral 
frontal and central regions (1s,100uv,1.0 Hz,70 Hz). (B) Distribution of clinical features in our Chinese cohort of 11 patients harboring DNM1l variants 
in the GTPase or middle domain. RHADS: rhythmic high amplitude delta waves with superimposed (poly)spikes, EEG: electroencephalogram, MRI: 
magnetic resonance imaging.
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Of these, 16 patients presented with isolated dominant optic 

atrophy without neurological manifestations (13, 14). 

Consequently, the following analysis focuses on the remaining 

66 patients of diverse ethnic and national backgrounds.

The median age at onset was 2.4 years (range, 0–14 years). The 

most common manifestations were developmental delay (59/66, 

89.4%), epilepsy (44/66, 66.7%), dystonia (35/66, 53.0%), status 

epilepticus (32/66, 48.5%), ataxia (14/66, 21.2%), and failure to 

thrive (12/66, 18.2%). Additional features included microcephaly 

(n = 6), cardiomyopathy (n = 7), optic atrophy (n = 5), and 

peripheral neuropathy (n = 9). Follow-up data were available for 

51 patients, among whom 17 deaths were reported.

Brain MRI abnormalities were reported in 80.3% (49 of 61) of 

cases, including cortical lesions (n = 10), basal ganglia or 

brainstem lesions (n = 17), white matter lesions (n = 8), cerebral 

atrophy (n = 29), and corpus callosum thinning or agenesis 

(n = 9). An elevated lactate peak on magnetic resonance 

spectroscopy was observed in 36.4% (4 of 11) of cases. EEG 

abnormalities were identified in 78% (32 of 41), most commonly 

diffuse slow-wave background activity (n = 21) and epileptiform 

discharges (n = 29). Re-analysis of 30 cases (13 articles with 

detailed EEG data along with our cohort) identified RHADS as 

a distinctive EEG feature in 9 patients. Hyperlactatemia was 

reported in 49.1% (27 of 55). Muscle biopsy, performed in 19 

patients, demonstrated decreased respiratory chain enzyme 

activity in 6 cases and abnormal mitochondrial morphology 

in 5 cases.

3.2.2 DNM1l variants

To date, 38 distinct pathogenic or likely pathogenic variants 

have been reported in 82 cases (4–6, 13–41). Of these, 93.9% 

(77 of 82) exhibited an AD inheritance pattern, encompassing 

33 distinct variants: 15 in the GTPase domain, 15 in the middle 

domain, and 3 in the GED domain. The remaining 5 cases 

showed AR inheritance, all involving variants in the GTPase 

domain (Figure 2). The p.Arg403Cys variant was identified in 

FIGURE 3 

Overview of the domain structure of DNM1l, the identiffed variants at each domain. AD: autosomal dominant inheritance, AR: autosomal 
recessive inheritance.
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21 patients, establishing this residue as a mutational hotspot of the 

DNM1l gene across diverse ethnic backgrounds. In addition, 

missense variants affecting glycine residue 362 were observed in 

six cases (p.Gly362Ser, n = 3; p.Gly362Asp, n = 3), suggesting a 

secondary hotspot at this position.

3.2.3 Genotype-phenotype correlation

A total of 66 cases (including our cohort and literature cases) 

were stratified into four groups based on inheritance pattern and 

variant location: GTPase domain/AD group (n = 15), middle 

domain/AD group (n = 43), GED domain/AD group (n = 3), and 

GTPase domain/AR group (n = 5), to enable domain-specific 

phenotype analysis (Figure 4A).

3.2.3.1 Comparison of middle and GTPase domain/AD 

variants

The median age of onset was 2.5 years (range, 0–14 years) in 

the GTPase domain/AD group and 2.0 years (range, 0–13 years) in 

the middle domain/AD group (p = 0.39). The middle domain/AD 

group exhibited significantly higher rates of epilepsy (83.7% vs. 

40%), status epilepticus (67.4% vs. 13.4%), and cerebral atrophy 

(61.0% vs. 45.5%) compared with the GTPase domain/AD group 

(all p < 0.05; Table 1). Conversely, the GTPase domain/AD 

group showed higher frequencies of peripheral neuropathy (40% 

vs. 4.7%) and ataxia (60% vs. 7%) (both p < 0.05; Table 1). 

Other clinical features—including developmental delay, dystonia, 

failure to thrive, microcephaly, cardiomyopathy, and optic 

atrophy—occurred at comparable frequencies between the two 

groups. EEG analysis revealed a significantly higher burden of 

epileptiform discharges in the middle domain/AD group 

(p < 0.05). Notably, RHADS was observed exclusively in nine 

middle domain/AD cases with status epilepticus, five of whom 

carried the p.Arg403Cys variant.

Mortality differed markedly between groups. At last follow-up, two 

deaths (13.3%) were reported in the GTPase domain/AD group, 

occurring at ages 10 and 20 years, whereas the middle domain/AD 

group recorded 17 deaths (39.5%) with a median age at death of 1.8 

years (range, 0.1–20 years). Survival analysis demonstrated a 4.2-fold 

higher mortality risk in the middle domain/AD group (95% CI, 1.8– 

9.6; log-rank p < 0.05) (Figures 4B–D).

3.2.3.2 Phenotypic heterogeneity in middle domain/AD 

group

Within the middle domain/AD group, 67.4% (29 of 43) of 

patients developed status epilepticus. This subgroup 

demonstrated a median age of disease onset of 3.5 years (range, 

0–13) and seizure onset of 4.25 years (range, 1–13). At last 

follow-up, mortality was 26.3% (5 of 19), with a median age at 

death of 5 years (range, 3–20). Notably, all 21 patients carrying 

the p.Arg403Cys variant experienced status epilepticus. The 

remaining 8 cases carried variants including p.Gly362Asp 

(n = 2), p.Gly362Ser (n = 1), p.Phe370Cys (n = 1), p.Gly350Arg 

(n = 1), p.His384Pro (n = 1), and p.Gly401Ser (n = 2).

Conversely, the remaining 14 patients (32.6%) without status 

epilepticus presented with infantile encephalopathy. This 

subgroup exhibited significantly earlier symptom onset (median: 

0 years; range, 0–0.8; p < 0.05) compared with the status 

epilepticus subgroup. Core clinical features included 

developmental delay (100%), dystonia (71.4%), failure to thrive 

(57.1%), respiratory distress (28.6%), and seizures (21.4%). 

Moreover, this subgroup showed significantly higher mortality 

[63.6% (7 of 11); p < 0.05] and an earlier median age at death 

(0.9 years; range, 0.1–2.5; p < 0.05) than patients with status 

epilepticus (Figures 4E–F).

3.2.3.3 GED domain/AD group

Only three cases within the GED domain/AD group have been 

reported to date. The p.Gln721Ter variant was associated with a 

distinctive phenotype characterized by paroxysmal hemiplegia, 

astigmatism, and strabismus. Conversely, the p.Arg710Gly and 

p.Tyr691Cys variants were linked to the core features of 

DNM1l-associated disorders, including dystonia, developmental 

delay, and seizures (Supplementary Table S2).

3.2.3.4 GTPase domain/AR group

Five variants (Figure 3) were identified in the AR state in five 

patients from three families. In two families, asymptomatic 

parents were confirmed to be heterozygous carriers of the 

following variants: p.Ser36Gly, p.Glu116Lysfs6, and 

p.Thr115Met. Two siblings with biallelic truncating variants 

(p.Trp88Metfs9 and p.Glu129Lysfs6) presented with severe 

dystonia and respiratory distress at birth and died at 8 and 21 

days, respectively—representing the most severe phenotype 

reported to date in DNM1l-associated disorders. The remaining 

three patients exhibited profound developmental delay and 

dystonia from birth but survived, with ages ranging from 3 to 

16 years at last follow-up (Supplementary Table S2).

4 Discussion

Mitochondria are highly dynamic organelles whose structure 

and organization are continuously remodeled through 

coordinated processes of division, fusion, and transport. DNM1l 

encodes DRP1, a highly conserved GTPase that is the primary 

mediator of mitochondrial and peroxisomal fission. In response 

to cellular signals, cytosolic DRP1 translocates to the 

mitochondrial outer membrane, where its distinct structural 

domains interact with specific receptors. The GTPase domain 

binds outer membrane receptors, the middle domain facilitates 

DRP1 oligomerization, and the GED enhances GTPase activity 

while stabilizing the DRP1 homodimer complex. Pathogenic 

DNM1l variants disrupt DRP1 oligomerization, impair GTPase- 

dependent constriction, and block mitochondrial fission, 

ultimately driving a broad spectrum of neurological disorders 

(21, 23, 27). Here, we described a cohort of 11 Chinese children 

with DNM1l variants, enriching the clinical and genetic 

information from the Chinese population, to improve our 

understanding of this rare disorder. The clinical phenotypes of 

these patients were consistent with previously reported cases. 

Notably, in a previously healthy school-aged child who developed 

status epilepticus clinically mimicking febrile infection-related 
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epilepsy syndrome or Rasmussen encephalitis, immediate genetic 

testing was warranted to identify monogenic etiologies such as 

DNM1l variants. We conducted a comprehensive analysis of 66 

patients with DNM1l variants, combining our Chinese cohort 

with published cases (excluding 16 patients with isolated 

dominant optic atrophy) (4–6, 13, 41). The age of onset ranged 

from birth to 14 years, with core manifestations including 

developmental delay, dystonia, epilepsy, ataxia, and failure to 

thrive. Additional features included microcephaly, 

cardiomyopathy, optic atrophy, and peripheral neuropathy. 

Although cardiomyopathy is rare in DNM1l-related phenotypes, 

it can present as an life-threatening feature that demands clinical 

vigilance. At last follow-up, one-third of patients had died. Most 

patients exhibited abnormal neuroimaging and EEG findings, 

with MRI abnormalities characterized by brain lesions, cerebral 

atrophy, and corpus callosum thinning or absence, whereas EEG 

alterations predominantly included diffuse slow-wave background 

activity and epileptiform discharges.

FIGURE 4 

The clinical and genetic spectrum and genotype-phenotype correlation analysis of DNM1l-related disorders. (A) The patients’ number in GTPase 
domain/AD group (n = 15), middle domain/AD group (n = 43), GED domain/AD group (n = 3), and GTPase domain/AR group (n = 5). (B) The age of 
death in GTPase vs. middle domain/AD group patients. (C) Survival analysis between GTPase and middle domain/AD group. (D) Distribution of 
the clinical features of patients in GTPase domain/AD group and middle domain/AD group. (E) The age of death in status epilepticus subgroup 
vs. infantile encephalopathy subgroup. (F) The age of onset in status epilepticus subgroup vs. infantile encephalopathy subgroup. * P < 0.05. AD: 
autosomal dominant inheritance, AR: autosomal recessive inheritance, RHADS: rhythmic high amplitude delta waves with superimposed 
(poly)spikes, EEG: electroencephalogram, MRI: magnetic resonance imagin.
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Pathogenic DNM1l variants are predominantly missense mutations, 

with several recurrent variants identified in unrelated patients. Residues 

Arg403 and Gly362 represent mutational hotspots, whereas other 

variants are distributed across the gene, clustering mainly within the 

GTPase and middle domains. DNM1l-related disorders display both 

dominant and recessive inheritance patterns, although most 

pathogenic variants occur in the heterozygous state. Domain-specific 

phenotype analysis demonstrated clear differences between patients 

with heterozygous variants in the GTPase and middle domains. 

Middle domain variants were associated with significantly higher risks 

of epilepsy, status epilepticus, cerebral atrophy, and poorer clinical 

outcomes. Importantly, RHADS on EEG were observed exclusively in 

patients with middle domain variants. Conversely, carriers of GTPase 

domain variants exhibited comparatively stable clinical courses, 

indicating milder pathogenicity, with peripheral neuropathy and 

ataxia occurring more frequently in this group.

Given that most patients carried heterozygous middle domain 

variants, we further analyzed phenotypic heterogeneity within this 

domain. Two distinct subgroups were identified.

Approximately two-thirds developed childhood-onset status 

epilepticus, with a mortality rate of 26.3% and a median age at 

death of 5 years. Notably, all 21 patients harboring the 

p.Arg403Cys variant presented with status epilepticus. 

Conversely, the remaining one-third, who did not develop status 

epilepticus, uniformly manifested infantile encephalopathy and 

showed markedly higher mortality with earlier death.

With only three reported cases harboring GED domain 

variants, phenotypic analysis remains limited. Nonetheless, a 

distinctive phenotype characterized by paroxysmal hemiplegia, 

astigmatism, and strabismus has been described, suggesting a 

potential GED-specific manifestation.

Only five pathogenic variants with recessive inheritance have 

been reported, all located in the GTPase domain. The two 

siblings with biallelic truncating variants presented the most 

severe phenotype, whereas three patients with biallelic missense 

variants demonstrated comparatively milder courses. These 

findings suggest that clinical severity may be inQuenced by 

variant type, although confirmation in larger cohorts is needed.

We also described the distinctive RHADS pattern in DNM1l- 

associated disorders. This EEG signature, previously described in 

mitochondrial diseases such as Alpers syndrome (7), is a hallmark 

of mitochondrial encephalopathy. In our re-analysis of 30 cases 

(including 13 published reports with EEG data and our cohort), 

RHADS was observed in 9 patients. All affected individuals 

presented with refractory status epilepticus and carried 

heterozygous variants in the middle domain of DRP1, five of 

whom harbored the recurrent p.Arg403Cys variant. These findings 

suggest that RHADS may serve as an early diagnostic marker and 

a prognostic indicator of disease severity. Larger studies are needed 

to validate its association with clinical and genetic features.

This study has several limitations. Although combining our 

cohort with retrospective literature data increased the sample 

size, it also introduced potential bias. Variability in clinical 

reporting, follow-up duration, and diagnostic methods across 

published cases may have affected comparability. In addition, 

heterogeneity in subgroup sizes limits the robustness of statistical 

analyses and raises the risk of overinterpretation, particularly in 

smaller subgroups. Despite these limitations—common to studies 

of ultra-rare diseases—our findings provide meaningful insights.

Validation through large-scale, prospective studies 

remains essential.

5 Conclusion

Our study provides a comprehensive clinical and genetic 

characterization of DNM1l-related disorders, underscoring 

genotype–phenotype correlations according to protein domain 

involvement. Importantly, we identify the distinctive RHADS 

electrographic signature as a potential EEG biomarker associated 

with specific clinical and genetic features. Validation of these 

findings in larger cohorts will be essential.

Data availability statement

The raw data supporting the conclusions of this article will be 

made available by the authors, without undue reservation.

TABLE 1 Summary of key clinical features in patients with DNM1l variants 
in middle and GTPase domain/AD groups.

Clinical data %(n/n) GTPase 
domain/AD 

(n = 15)

Middle 
domain/AD 

(n = 43)

Median age of onset (years) 2.5 (range 0–14) 2 (range 0–13)

Died at the last follow-up 13.3% (2/13) 39.5% (12/30)

Development delay 86.7% (13/15） 90.7% (39/43)

Dystonia 66.7% (10/15) 44.2% (19/43)

Epilepsy 40.0% (6/15) 83.7% (36/43)*

Status epilepticus 13.3% (2/15) 62.8% (27/43)*

Ataxia 60.0% (9/15) 7.0% (3/43)*

Microcephalus 20% (3/15) 7.0% (3/43)

Peripheral neuropathy 40% (6/15) 4.7% (2/43)*

Failure to thrive 13.3% (2/15) 23.3% (10/43)

Cardiomyopathy 13.3% (2/15) 11.6% (5/43)

Optic atrophy 13.3% (2/15) 2.3% (1/43)

Abnormal brain MRI 61.5% (8/13) 90.2% (37/41)*

Cortical lesions 7.7% (1/13) 19.5% (8/41)

White matter lesions 23.1% (3/13) 9.8% (4/41)

Basal ganglia/brainstem lesions 15.4% (2/13) 31.7% (13/41)

Cerebral atrophy 23.1% (3/13) 61.0% (25/41)*

Corpus callosum thinning/ 

absence

23.1% (3/13) 14.6% (6/41)

Lactate peak in MRS - 37.5% (3/8)

Abnormal EEG 63.6% (7/11) 92.3% (24/26)*

Epileptiform discharge 45.5% (5/11) 92.3% (24/26)*

Slow background 45.5% (5/11) 57.7% (15/26)

RHADS 0/11 34.6% (9/26)*

Hyperlactacidemia 41.7% (5/12) 52.6% (20/38)

Abnormal in muscle biopsy 33.3% (1/3) 78.6% (11/14)

Abnormal morphology of 

mitochondria

0/3 35.7% (5/14)

Decreased respiratory chain 

enzyme activity

0/3 28.6% (4/14)

Nonspecific findings 33.3% (1/3) 28.6% (4/14)

*Significantly different between middle and GTPase domain/AD group, p < 0.05.
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