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Objective: Metabolic heterogeneity in sepsis is a critical determinant of
prognosis. This study applied group-based trajectory modeling (GBTM) to
identify blood glucose trajectory phenotypes in pediatric sepsis and elucidate
their associations with clinical outcomes.

Methods: A retrospective cohort study was conducted, enrolling 1,178 pediatric
patients diagnosed with sepsis who were admitted to the pediatric intensive
care unit of the Children’s Hospital of Chongging Medical University between
2014 and 2022. Dynamic blood glucose data were collected within 72 h of
ICU admission, and GBTM was employed to classify trajectory phenotypes.
Multivariate logistic regression was used to identify independent predictors of
in-hospital mortality. A subgroup analysis focused specifically on patients with
septic shock.

Results: The analysis identified four distinct blood glucose trajectory
phenotypes: Group 1 (7.3%): Slow-recovery hypoglycemia, predominantly
among infants with severe liver injury, coagulopathy, and hyperlactatemia (in-
hospital mortality: 13.79%). Group 2 (59.9%): Normoglycemia with minimal
organ dysfunction (reference group; mortality: 5.10%). Group 3 (27.7%):
Persistent mild hyperglycemia, characterized by elevated inflammatory
markers and mild organ injury (mortality: 8.26%). Group 4 (4.9%): Persistent
severe hyperglycemia associated with renal impairment and lactate
accumulation (mortality: 17.24%). Multivariate analysis revealed Group 4 as an
independent risk factor for mortality (@OR =3.13, 95% Cl 1.38-7.07). In the
septic shock subgroup, the mortality risks for Group 1 and Group 4 increased
by 5.2-fold and 8.28-fold, respectively (both P<0.05).

Conclusion: GBTM effectively stratifies pediatric sepsis into distinct blood
glucose trajectory phenotypes. Persistent severe hyperglycemia (Group 4)
independently  predicts in-hospital mortality, while  slow-recovery
hypoglycemia (Group 1) indicates a poor prognosis in septic shock.
Phenotype-guided interventions are recommended: early insulin therapy
(target blood glucose <10 mmol/L) for Group 4 and prophylactic glucose
infusion (target >3.8 mmol/L) for Group 1.

KEYWORDS

sepsis, pediatric, group-based trajectory modeling, longitudinal bloodglucose,
phenotype

01 frontiersin.org


http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2025.1663890&domain=pdf&date_stamp=2020-03-12
mailto:lijingwangyi@126.com
https://doi.org/10.3389/fped.2025.1663890
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2025.1663890/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1663890/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1663890/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1663890/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2025.1663890

Wang et al.

1 Introduction

Sepsis, a dysregulated host response to infection causing life-
threatening organ dysfunction, is fundamentally driven by
maladaptive immunity (1). Diagnosed in children using the
Phoenix Sepsis Score (>2 with suspected/confirmed infection)
(2, 3), it affects 25 million pediatric patients annually with
22.9% mortality (4). Despite standardized care bundles, 30%-
40% of patients respond poorly to therapies (e.g., fluids,
antibiotics, vasopressors), and targeted drug trials consistently
fail (5, 6). This reflects sepsis’ heterogeneity—a syndrome
comprising distinct pathophysiological subtypes (7-9).

This heterogeneity involves intertwined mechanisms: dynamic
pro-/anti-inflammatory immune shifts, endothelial glycocalyx
damage causing microcirculatory failure, and coagulopathy (10,
11). Crucially, metabolic reprogramming is a central driver,
where glucose dysregulation strongly correlates with organ
injury and death (12-14). While hypoglycemia and glucose
variability predict adverse outcomes (15, 16), hyperglycemia’s
role remains contentious (17). Current pediatric guidelines
strongly advise against insulin-driven tight glucose control
(<7.8 mmol/L) but lack evidence-based thresholds (18)—a gap
likely arising from studies ignoring metabolic heterogeneity in
unstratified cohorts.

Conventional research relies heavily on cross-sectional glucose
metrics (e.g., admission or extreme values) (15, 16, 19), failing to
that
pathophysiological subtypes. Longitudinal trajectory modeling

capture dynamic temporal adaptations may define
addresses this need. Group-based trajectory modeling (GBTM)
clusters biomarker evolution into distinct phenotypes using
polynomial functions (20-25). Pioneering work by Bhavani et al.
applied GBTM to febrile trajectories, revealing prognostic
subtypes and heterogeneous host responses (25, 26)—providing
a methodological blueprint for metabolic phenotyping.

We therefore propose a precision medicine strategy:
“metabolic phenotyping-guided intervention”. Using GBTM, we
blood

trajectory phenotypes, quantifying their slope, curvature, and

identify  pathophysiologically = meaningful glucose
amplitude. This study addresses: (1) Existence: Do characteristic
blood glucose trajectory phenotypes exist in pediatric sepsis? (2)
Clinical relevance: Do phenotypes correlate with unique organ
injury patterns and outcomes? (3) Translation: Can phenotypes

inform individualized glucose management?

2 Materials and methods

2.1 Study design

This retrospective cohort study included patients admitted to
the Pediatric Intensive Care Unit (PICU) at Children’s Hospital of
Chonggqing Medical University (January 1, 2014 - December 31,
2022). As a major regional referral center in Southwest China,
the hospital serves a catchment population of approximately 30
million children, which contributed to the diversity of the study
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sample. The study was approved by the hospital’s Scientific
Research and Ethics Committee [No.: 2024 Lun Shen (Yan) 334]
with waived informed consent due to its retrospective design.

2.2 Participants

The inclusion criteria comprised patients with discharge
diagnoses of sepsis, bacteremia, or septic shock, aged over 28
days and under 18 years, with a PICU length of stay exceeding
72 h. Exclusion criteria were established for patients with
diabetes mellitus or malignancy. To construct trajectory models,
participants with fewer than three blood glucose tests within
72 h of PICU admission were excluded, ultimately incorporating
1,178 participants into the analysis (Figure 1).

2.3 Data collection

Longitudinal blood glucose measurements (mmol/L) were
obtained via arterial blood gas analysis within 72h of PICU
admission. Approximately 75% of the blood gas analyses were
conducted using the ABL 90 series analyzer (Radiometer ABL
90 flex; while the
remaining analyses were performed using the GEM Premier

Radiometer, Copenhagen, Denmark),
3000 analyzer (Instrumentation Laboratory, Bedford, MA) and
the Nova Stat Profile® Prime CCS Analyzer (Nova Biomedical,
MA, United States). All devices had comparable reference ranges
and underwent daily internal/external quality controls. Baseline
characteristics included age, sex, traumatic brain injury, and
infection site (pulmonary/abdominal/urinary/blood  stream/
intracranial/skin-mucosal). Laboratory parameters encompassed
white blood cell count (WBC), absolute lymphocyte count
(ALC), (ANC), lymphocyte

percentage, neutrophil percentage, C-reactive protein (CRP),

absolute neutrophil count
procalcitonin (PCT), fibrinogen (FIB), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), total bilirubin (TB),
albumin (ALB), lactate dehydrogenase (LDH), platelet count
(PLT), international normalized ratio (INR), D-dimer, blood
urea nitrogen (BUN), serum creatinine (sCr), and blood lactate
(Lac). For parameters measured multiple times within 72 h, the
most clinically significant extreme values were recorded,
including minimum platelet count, maximum lactate, peak and
minimum WBC, and extreme fibrinogen levels. The primary
endpoint was in-hospital mortality; secondary endpoints
included mechanical ventilation, renal replacement therapy, and
septic shock. In this study, the management of dysglycemia in
pediatric  patients strictly adhered to our institution’s
standardized clinical pathway (27). Specifically, when a child’s
blood glucose level consistently exceeded 10 mmol/L, the
standard procedure involved immediate discontinuation of all
sugar-containing infusions, followed by a 2-hour close
observation period. If blood glucose showed a progressive
upward trend during this period, an individualized insulin
regimen was initiated, accompanied by an increase in blood

glucose monitoring frequency to at least once per hour. For
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FIGURE 1

Flowchart of case selection and modeling process.

patients with hypoglycemia (blood glucose <2.8 mmol/L), the

clinical team promptly administered intravenous glucose
infusion as an emergency intervention until blood glucose levels
stabilized within the normal range. No missing data existed for
baseline characteristics or endpoints. Laboratory parameters

(max missing rate: 3.3% for PCT) underwent median imputation.

2.4 Statistical analysis

GBTM, a finite mixture model using polynomial time
functions, clustered longitudinal blood glucose data (20, 21). To

optimize model performance, we implemented several

preprocessing steps: (1) For patients with more than 10 glucose

measurements within 72h, we extracted maximum and
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minimum values at 6-hour intervals, yielding between 3 and 25
data points per patient. (2) Given the significant right skewness
of the glucose values, we applied a logl0 transformation prior to
modeling (Figure 1). To balance model fit and parsimony, we
determined trajectory groups by integrating statistical metrics
with clinical interpretability. The criteria for model selection
included an average posterior probability (AvePP) greater than
70%, closer alignment between posterior probability (Pj) and
estimated group probability (mj), lower Bayesian Information
Criterion (BIC) values indicating a better fit, higher relative
entropy (Ek) values, statistically significant polynomial functions
for each trajectory group (P<0.05), and clinically interpretable
trajectory shapes. Continuous non-normal variables (Shapiro-
Wilk) reported as median [IQR]; compared via Mann-Whitney
U (2-group) or Kruskal-Wallis H (>3 groups). Categorical
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variables reported as # (%); compared via x> or Fisher’s exact test
(expected counts <5). Bonferroni correction applied for significant
multi-group comparisons. Multivariate

logistic  regression

(stepwise) identified independent predictors. Discriminative
power assessed by ROC-AUC (95% CI).

Trajectory modeling was performed using the SAS software
package (version 9.4) with the PROC TRAJ application, while all
other statistical analyses were carried out using R software
(version 4.3.0). Two-tailed tests were employed throughout the
study, with a significance level set at a =0.05; P values less than

0.05 were considered statistically significant.

3 Results
3.1 Blood glucose trajectory phenotypes

We initially fitted linear, quadratic, and cubic polynomial
functions to identify 1-5 trajectory groups. The optimal model
revealed four distinct trajectory phenotypes, determined through
a comprehensive evaluation of the BIC, the Ek and clinical
interpretability (Supplementary Figure S1 and Tables S1-S4):
Group 1 (Slow-Recovery Hypoglycemia): Characterized by initial
hypoglycemia (median 3.8 mmol/L) with gradual normalization,

10.3389/fped.2025.1663890

observed in 87 cases (7.3%). Group 2 (Normoglycemia):
Exhibited stable glucose levels (median 5.7 mmol/L) throughout
the 72h of PICU admission, representing the largest subgroup
with 706 (59.9%). Mild
Hyperglycemia): Demonstrated sustained mild hyperglycemia
(median 7.0 mmol/L) in 327 cases (27.7%). Group 4 (Persistent
Severe  Hyperglycemia):  Displayed severe
hyperglycemia (median 10.1 mmol/L) (4.9%)
(Figure 2). This GBTM analysis stratified pediatric sepsis

cases Group 3 (Persistent

prolonged
in 58 cases

patients into four distinct blood glucose trajectory phenotypes.

3.2 Intergroup differences in clinical
characteristics

Age distribution differed significantly (P < 0.001): Group 1 had
highest infant proportion (68.97%) vs. Group 2 (reference);
Groups 3-4 were predominantly >1 year. Group 3 showed
highest traumatic brain injury rate (2.75%, P <0.05). No sex/
infection site differences (Table 1).

Laboratory parameters revealed marked differences in
systemic inflammation, hepatic and renal function, coagulation
(Table 2). Group 2,

characterized by normoglycemia, exhibited the most favorable

profiles, and lactate metabolism
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FIGURE 2

Time after ICU admission (hours)

Group1(7.3%)
Group3 (27.7%)

Four-group blood glucose trajectories of the best-fitting group trajectory model (n = 1,178).

48 72

Group2(59.9%)
Group4(4.9%)
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TABLE 1 Comparison of baseline characteristics among the four phenotypes.

Variables NE [

Age,(%) 7F=113.61 <.001*
<1 year 482 (40.92) 60° (68.97) 342 (48.44) 75° (22.94) 5° (8.62)

>1 year 696 (59.08) 27° (31.03) 364" (51.56) 252" (77.06) 53°(91.38)

Sex(male),(%) 695 (59.00) 54 (62.07) 416 (58.92) 197 (60.24) 28 (48.28) =331 0.347
TBL,(%) 12 (1.02) 0*® (0.00) 3% (0.42) 9°(2.75) 0°® (0.00) - 0.010*
Infection sites,(%)

Pulmonary 986 (83.70) 74 (85.06) 598 (84.70) 266 (81.35) 48 (82.76) ¥%=2.00 0.572
Abdominal 190 (16.13) 21 (24.14) 104 (14.73) 58 (17.74) 7 (12.07) =648 0.091
Intracranial 288 (24.45) 22 (25.29) 198" (28.05) 53% (16.21) 15%° (25.86) ¥ =17.06 <.001*
Urinary tract 23 (1.95) 0 (0.00) 15 (2.12) 8 (2.45) 0 (0.00) - 0.479
Bloodstream 292 (24.79) 22 (25.29) 174 (24.65) 86 (26.30) 10 (17.24) ¥=2.19 0.534
Skin/mucosal 61 (5.18) 4 (4.60) 37 (5.24) 17 (5.20) 3 (5.17) 1.000

TBI traumatic brain injury; XZ: Chi-square test, -: Fisher exact.
*Values marked in bold indicate statistical significance (P < 0.05).
a""cSigniﬁcant differences (Bonferroni-corrected P < 0.05).

TABLE 2 Comparison of laboratory parameters among the four phenotypes.

Variables Total NENN T

(n=1,178)

WBC_min 7.55 (4.30, 11.79) 5.79% (3.45,9.71) 7.28% (4.49,11.45) 8.18% (4.25,12.47) 8.25% (4.64,12.87) ¥ =8.82° | 0.032*
(x10°/L)

ALC (x10°/L) 1.44 (0.78, 2.49) 1.61% (1.02,3.10) 1.65" (0.86,2.66) 1.18% (0.66,1.94) 1.02" (0.63,1.76) ¥ =42.75° | <.001*
ANC (x10°/L) 4.86 (2.32, 8.54) 2.91° (1.65,5.81) 4.49° (2.28,7.99) 6.15" (2.83,9.79) 6.01°° (3.28,10.93) ¥ =28.79° | <.001*
Neut% 0.82 (0.70, 0.95) 0.73* (0.60,0.82) 0.81° (0.67,0.94) 0.88° (0.75,44.90) 0.88° (0.83,60.97) ¥ =57.51° | <.001*
PCT (ng/ml) 5.20 (1.13, 27.57) 5.87 (1.47,30.00) 5.20 (0.94,26.12) 520 (1.73,28.34) 5.20 (1.05,11.18) ¥ =520° | 0.158
CRP (mg/L) 35.00 (11.00, 77.86) 26.00° (8.00,66.06) 32.00° (9.04,73.00) 45.00° (18.52,90.00) 27.00°*¢ (10.00,74.00) | *=16.70° | <.001*
FIB_max (g/L) 2.72 (1.72, 4.29) 1.58" (1.08,2.82) 2.65° (1.74,4.24) 3.07 (1.98,4.65) 2.78" (1.86,4.54) ¥ =53.61° | <.001*
PLT (x10°/L) 155.50 (57.25, 288.75) | 62.00° (22.50,197.00) | 175.00* (71.25,318.50) | 146.00° (50.50,255.00) | 136.00°> (57.00,206.50) | x*=33.43° | <.001*
D-dimer (mg/L) 6.22 (2.00, 12.83) 8.16% (2.58,14.30) 5.36% (1.69,11.83) 6.58 (2.35,14.32) 6.98% (2.21,12.68) ¥ =1341° | 0.004*
FIB_min (g/L) 2.11 (1.25, 3.47) 1.06" (0.55,1.60) 2.17° (1.38,3.52) 2.24" (1.28,3.90) 2.07° (1.25,3.27) 1 =6342° | <.001*
INR 1.25 (1.08, 1.62) 1.79* (1.24,2.73) 1.20° (1.04,1.50) 1.31¢ (1.11,1.62) 1.33% (1.10,1.60) $=63.90° | <.001*
ALT (U/L) 47.80 (30.90, 120.07) | 106.00° (51.15,459.45) | 44.20° (30.00,98.77) | 44.90° (29.00,111.05) | 75.90%" (36.40,195.05) | x*>=4228° | <.001*
AST (U/L) 81.15 (41.85, 234.83) 174.30° 73.30° (41.00,189.72) | 79.30° (40.20,232.65) | 144.40 (43.82,424.85) | y*=28.91° | <.001*

(54.80,1,179.75)
TB (umol/L) 10.00 (4.40, 23.50) 23.90° (7.70,100.10) 8.15% (4.00,18.60) 10.80°(5.20,26.45) 14.55% (10.15,36.20) | »* =57.64° | <.001*
ALB (g/L) 27.20 (23.30, 31.20) 25.20° (20.35,28.20) | 27.50° (23.83,31.70) 26.60° (22.85,31.05) 29.10° (24.47,3225) | ¥*=25.03° | <.001*
LDH (U/L) 472.15 (299.00, 874.00°¢ 442.05° 490.00° 614.70% ¥ =19.98° | <.001*
1,097.58) (325.85,3375.20) (289.25,949.25) (304.20,1116.95) (394.65,1454.83)

BUN (mmol/L) 4.81 (3.00, 8.50) 6.10° (3.69,10.18) 436" (2.64,7.41) 5.50° (3.38,9.71) 7.79° (4.35,12.13) ¥’ =37.14° | <.001*
sCr (umol/L) 36.00 (24.00, 64.57) 41.80° (26.50,81.70) | 31.35% (22.83,52.98) 42.00° (27.95,78.40) 57.60° (39.67,95.15) | 3> =54.18° | <.001*
Lac (mmol/L) 1.80 (1.20, 3.18) 2.70° (1.75,6.95) 1.60% (1.10,2.60) 2.00° (1.40,3.80) 3.10° (2.00,5.30) ¥ =8191° | <.001*

Notes: Data are median (IQR).
ab‘:Signiﬁcant differences (Bonferroni-corrected P < 0.05).

“Kruskal-waills test.

*Values marked in bold indicate statistical significance (P < 0.05). WBC_min, minimum white blood cell count; ALC, absolute lymphocyte count; ANC, absolute neutrophil count; Neut%,
neutrophil percentage; PCT, procalcitonin; CRP, C-reactive protein; FIB_max, maximum fibrinogen; FIB_min, minimum fibrinogen; PLT, platelet count; INR, international normalized ratio;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; TB, total bilirubin; ALB, albumin; LDH, lactate dehydrogenase; BUN, blood urea nitrogen; sCr, serum creatinine; Lac,
blood lactate.

physiological status, displaying moderate inflammation, minimal
organ injury, normal coagulation, and the lowest lactate levels.

of Group 3 but exhibited more pronounced renal impairment.
Blood lactate levels followed a gradient: Group 2 < Group
3 <Group 1/Group 4 (P<0.001). Visual representations of the
laboratory parameters are illustrated in Supplementary Figure S2.

In contrast, Group 1 demonstrated a distinct pathological
pattern, characterized by attenuated inflammatory responses
coupled with severe hepatic dysfunction and coagulopathy, Among 1,178 patients, 85 experienced in-hospital mortality,
presenting the lowest fibrinogen levels and platelet counts  resulting in an overall mortality rate of 7.22%. Mortality elevated
in Group 1 (13.79%) and Group 4 (17.24%) vs. Group 2 (5.10%,

P<0.001). Mechanical ventilation/renal replacement differed

among all groups (P <0.001). Group 3 was marked by systemic
hyperinflammation, with significantly elevated inflammatory

markers. Conversely, Group 4 mirrored the inflammatory profile (P <0.05); septic shock incidence was comparable (Table 3).
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TABLE 3 Comparison of outcomes and treatment conditions among the four phenotypes.

Variables

Total

Groupl
(n =87)

Group?2
(n=706)

Group3
7

Group4
(n=58)

10.3389/fped.2025.1663890

Statistic

(n=1,178)

In-hospital mortality(%) 85 (7.22) 12° (13.79) 36%(5.10) 27%(8.26) 10°(17.24) ¥ =19.58 <.001*
Septic shock(%) 208 (17.66) 18 (20.69) 126 (17.85) 55 (16.82) 9 (15.52) ¥ =091 0.823
Mechanical ventilation(%) 868 (73.68) 64 (73.56) 499 (70.68) 256 (78.29) 49 (84.48) ¥ =1035 0.016*
Renal replacement therapy(%) 145 (12.31) 15% (17.24) 63 (8.92) 56 (17.13) 11 (18.97) 1 =18.87 <.001*

% Chi-square test, -: Fisher exact; abcSigniﬁcant differences (Bonferroni-corrected P < 0.05); *Values marked in bold indicate statistical significance (P < 0.05).

3.3 Risk factors for in-hospital mortality in
sepsis

Univariate logistic regression was conducted to evaluate the

associations between candidate variables and in-hospital
mortality. The variables analyzed included: (1) Demographics:
age and sex; (2) Clinical features: blood glucose trajectory
phenotypes, septic shock, mechanical ventilation, and renal
replacement therapy; (3) Laboratory parameters: complete blood
count, coagulation profile, hepatic and renal function, and
lactate levels. Using Group 2 (normoglycemia) as the reference,
both Group 1 (odds ratio [OR] 2.98, 95% confidence interval
[CI] 1.49-5.97; P=0.002) and Group 4 (OR 3.88, 95% CI 1.81-
8.29; P<0.001) demonstrated significantly elevated mortality
risks (Supplementary Table S5). Additional significant predictors
included septic shock, renal replacement therapy, decreased PLT,
Hb, and FIB, prolonged INR, and increased levels of D-dimer,
AST, TB, BUN, and Lac.

In the multivariate logistic regression analysis, variables with a
p-value less than 0.05 from the univariate analysis were included
in the

bidirectional stepwise regression for variable selection. The final

multivariate logistic regression model, employing
model identified five independent predictors: blood glucose
trajectory phenotypes, septic shock, renal replacement therapy,
TB, and Lac (Table 4). After adjusting for confounding factors,
blood glucose trajectory phenotypes remained significantly
associated with in-hospital mortality. Compared to Group 2,
Group 4 exhibited a 3.13-fold increase in mortality risk
[adjusted odds ratio (aOR) 3.13, 95% CI 1.38-7.07; P =0.006].
The multivariate model showed good fit (Hosmer-Lemeshow
P=0.589), no collinearity [variance inflation factors (VIF) < 10;
Supplementary Table S6], and moderate discrimination (AUC
0.78, 95% CI 0.72-0.84; Supplementary Figure S3).

3.4 Subgroup analysis

Among 208 septic shock patients (from 1,178 sepsis cases),
multivariate analysis identified four independent mortality
predictors: blood glucose trajectory phenotypes (using Group 2
as the reference: Group 1: aOR 5.20, 95% CI 1.27-21.28;
P=0.022; Group 4: aOR 8.28, 95% CI 1.47-46.55; P=10.016),
renal replacement therapy, elevated BUN and Lac. The model
demonstrated high clinical predictive value, with an AUC of
0.87 (95% CI 0.80-0.93) (Supplementary Table S7 and Figure S4).
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TABLE 4 Multivariate logistic regression analysis of risk factors for in-
hospital mortality in sepsis patients.

Variables p S.E z P aOR (95%Cl)
Intercept -3.77 0.23 —16.48 <.001* 0.02 (0.01~0.04)
Trajectory phenotypes

Group2 1.00 (Reference)
Groupl 0.42 0.41 1.03 0.303 1.53 (0.68~3.42)
Group3 0.31 0.28 1.11 0.265 1.37 (0.79~2.38)
Group4 1.14 0.42 2.74 0.006* 3.13 (1.38~7.07)
Septic shock

no 1.00 (Reference)
yes 0.61 0.28 2.20 0.028* 1.84 (1.07~3.18)
Renal replacement therapy

No 1.00 (Reference)
yes 1.29 0.28 4.60 <.001* 3.62 (2.09~6.25)
TB (umol/L) 0.01 0.00 2.49 0.013* 1.01 (1.01~1.01)
Lac (mmol/L) 0.08 0.03 3.10 0.002* 1.09 (1.03~1.15)

aOR, adjusted Odds Ratio; CI, Confidence Interval; TB, total bilirubin; Lac, blood lactate.
*Values marked in bold indicate statistical significance (P < 0.05).

3.5 Robust analysis

To evaluate the stability of blood glucose trajectory
phenotypes in patients with comorbidities, we conducted a
subgroup analysis of 185 sepsis patients with diabetes or
malignancy using GBTM. The expanded cohort consisted of
1,363 patients. Key findings include: (1) retention of the four
primary glucose trajectory phenotypes; (2) consistent glucose
trends vs. original cohort (n=1,178; Figure 3). This validates
phenotype robustness across comorbidities.

4 Discussion

Using GBTM, we analyzed longitudinal blood glucose data
from 1,178 pediatric sepsis patients during their first 72 h in
PICU. We identified four distinct blood glucose trajectory
phenotypes: Group 1 (slow-recovery hypoglycemia), Group 2
(normoglycemia), Group 3 (persistent mild hyperglycemia),
severe hyperglycemia). These
phenotypes demonstrated significant associations with clinical

and Group 4 (persistent
outcomes. Multivariate regression analysis revealed that Group

4 was an independent risk factor for in-hospital mortality
within the overall sepsis cohort (aOR 3.13, 95% CI 1.38-7.07).
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FIGURE 3

Comparison of glucose trajectories between comorbidity subgroups and the overall cohort (A: original cohort; B: patients with diabetes/cancer).

Notably, in the septic shock subgroup, both Group 1 (aOR 5.20,
95% CI 1.27-21.28) and Group 4 (aOR 8.28, 95% CI 1.47-46.55)
exhibited the highest mortality risks. Furthermore, blood
glucose trajectories correlated with specific patterns of organ
dysfunction: Group 1 was characterized by severe hepatic
injury combined with coagulopathy, while Group 4 showed
prominent renal impairment. Both Groups 1 and 4 had
significantly higher lactate levels compared to Groups 2 and
3 (P<0.001).

4.1 Association between blood glucose and
prognosis in pediatric sepsis

In pediatric sepsis, early stress hyperglycemia (SHG) may
initially support immune cell metabolism via inflammatory/
endocrine pathways (13, 17, 28, 29). However, sustained
hyperglycemia predicts adverse outcomes (30). Meta-analyses
confirm nonlinear mortality risk: U-shaped (diabetic) and

J-shaped (non-diabetic) curves, where persistent
hyperglycemia beyond optimal thresholds increases mortality
(31). Our trajectory analysis validates this, identifying

persistent severe hyperglycemia (Group 4; median 10.1 mmol/
L) as an independent predictor of in-hospital mortality.
Notably, hypoglycemia risk was context-dependent: Slow-
recovery hypoglycemia (Group 1)
mortality risk overall (P> 0.05), potentially due to exclusion of
early fatal hypoglycemia cases (ICU stay <72h exclusion).

showed nonsignificant

However, in septic shock, Group 1 had critically elevated
mortality (aOR=5.20), threat
risk subgroups.

underscoring its in high-
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4.2 Blood glucose and organ dysfunction

Group 1 (slow-recovery hypoglycemia) exhibited significantly
elevated biomarkers of hepatic injury, potentially linked to
(32).
hypoglycemia may deplete glycogen and impair mitochondrial

the“hepatogenic  energy crisis”hypothesis Persistent
function, reducing lactate clearance. A vicious cycle ensues: (1)
injury the mRNA  expression of
phosphoenolpyruvate  carboxykinase = (PEPCK), limiting

gluconeogenesis (33); (2) Decreased hepatic insulin-degrading

Liver suppresses

enzyme (IDE) activity prolongs the half-life of insulin in
peripheral circulation (34), worsening dysregulation. Associated
coagulopathy  (prolonged INR,
thrombocytopenia) reflects impaired synthetic function (35).

hypofibrinogenemia  and

In Group 4 (persistent severe hyperglycemia), serum
creatinine levels were significantly elevated compared to other
phenotypes, indicating that sepsis-associated hyperglycemia may
induce acute kidney injury (AKI) through metabolic toxicity.
Hyperglycemia upregulates the expression of sodium-glucose
cotransporter 2 (SGLT2) in renal tubules, causing glucose
overload and mitochondrial stress—consistent with tubular
SGLT2 (e.g.
mitigate this in sepsis-AKI models (36).

vacuolization/fibrosis. inhibitors dapagliflozin)

In our study, all abnormal phenotypes showed elevated lactate,
indicating disrupted energy homeostasis. Sepsis impairs the
tricarboxylic acid cycle (TAC), shunting pyruvate to lactate.
Hyperglycemia suppresses TCA enzymes (e.g., a-ketoglutarate
dehydrogenase) (37), inhibits
gluconeogenesis (38, 39), creating a glucose-lactate vicious cycle.

while lactate accumulation

Our study suggests a potential phenotype-specific interaction
between glucose dysregulation and immune dysfunction in
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sepsis. Hyperglycemic phenotypes (Groups 3 and 4) exhibited
enhanced activation of myeloid cells alongside significantly
reduced absolute lymphocyte counts, a pattern consistent with
CD8+ T cell exhaustion during the immune paralysis phase of
sepsis. However, the causal relationship between glucose
these
through expanded

necessitates
which
should include interleukin-6 (IL-6) levels, monocyte human
leukocyte antigen DR (mHLA-DR)
T cell ratio (Treg%), Th1/Th2 cytokine balance, and pathogen-
specific antibody titers (40).

fluctuations and immune alterations

validation immunophenotyping,

expression, regulatory

4.3 Clinical implications of blood glucose
trajectories

Optimizing glycemic control in pediatric sepsis remains

challenging. Moderate stress hyperglycemia may support
immunity, but sustained levels >10 mmol/L increase multiorgan
dysfunction and mortality (13, 41, 42). Tight control mitigates
metabolic harm but risks iatrogenic hypoglycemia (41). Our
trajectory analysis identifies two high-risk phenotypes: Group 4
(persistent severe hyperglycemia; median 10.1 mmol/L): highest
mortality overall; Group 1 (slow-recovery hypoglycemia; nadir
3.8 mmol/L):
(Supplementary Table S4).
guidelines (18, 27,

framework: Upper: 10.0 mmol/L (triggering insulin therapy) and

critically elevated mortality in septic shock
Aligning with international

43-45), we propose a dual-threshold

Lower: 3.8 mmol/L (activating glucose infusion protocols).

4.4 Innovations and limitations

This study advances pediatric sepsis research by using GBTM
to link glucose trajectories (vs. isolated measurements) with
outcomes. Our key innovations include: (1) the identification of
both absolute glucose abnormalities (e.g., hypoglycemia in
Group 1, hyperglycemia in Groups 3 and 4) and dynamic
patterns (e.g., sustained hyperglycemic plateaus in Group 4); (2)
the mitigation of static measurement biases inherent to
traditional approaches. However, several limitations warrant
attention: (1) As all participants were recruited from a single
tertiary pediatric center, our findings may reflect region-specific
clinical practices. Generalizability to other settings warrants
validation; (2) the lack of model validation means that the
GBTM-derived phenotypes
validation using datasets such as the Medical Information Mart

require internal and external
for Intensive Care (MIMIC) database; (3) regarding outcome
scope, the inclusion of 28-day mortality and functional recovery

metrics would enhance the phenotypic prognostic interpretation.

5 Conclusion

This study successfully identified four characteristic blood
glucose trajectory phenotypes in children with sepsis using
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GBTM: Group 1 as the slow recovery from hypoglycemia type,
Group 2 as the normoglycemic type, Group 3 as the persistent
mild hyperglycemia type, and Group 4 as the persistent severe
hyperglycemia type. It ultimately revealed the association
between blood glucose trajectories and organ dysfunction, as
well as clinical prognosis in children with sepsis, thereby
providing a new theoretical basis and practical framework for
precise blood glucose management. Future multi-center studies
are essential to confirm the generalizability of these phenotypes.
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