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Machine learning identifies 
immune-perinatal predictors of 
infantile hemangioma

Dongdong Wu and Neng Wan*

Department of Burn and Plastic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing 

Medical University, Huaian, Jiangsu, China

Background: Infantile hemangioma (IH), the most common vascular tumor of 

infancy, exhibits hallmark features of immune and inflammatory dysregulation. 

While most cases are self-limiting, a subset progresses with potentially severe 

complications. Despite its benign classification, IH offers a unique model to 

investigate immune-mediated mechanisms in early tumorigenesis. However, 

risk stratification models incorporating immune-inflammatory markers 

remain underdeveloped.

Methods: A total of 1,466 infants and young children were enrolled, including 

81 with IH. Comprehensive perinatal, clinical, and laboratory data were 

collected. Candidate risk factors were identified using logistic regression. Four 

machine learning algorithms—XGBoost, Random Forest, Support Vector 

Machine, and k-Nearest Neighbors—were employed to construct predictive 

models. Model performance was assessed through internal and external 

validation. SHapley Additive exPlanations (SHAP) were applied to interpret 

feature contributions and immune-inflammatory signatures.

Results: Key risk factors included prematurity, multiple gestation, low birth 

weight, and elevated levels of VEGF, CRP, and SAA—markers linked to 

inflammation and immune activation. The XGBoost model achieved superior 

performance, with an AUC of 0.952 (training), 0.935 (internal validation), and 

0.870 (external validation). SHAP analysis highlighted SAA, VEGF, and low birth 

weight as the most influential predictors, reflecting a critical link between 

innate immune dysregulation and IH development.

Conclusion: This study presents a robust, interpretable machine learning model 

that leverages immune-perinatal features to predict IH risk. Our findings support 

the notion that IH may serve as a paradigm for inflammation-associated 

vascular tumorigenesis, with implications for early detection and personalized 

intervention strategies in immune-driven neoplasms.
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Introduction

Infantile hemangioma (IH) is the most prevalent benign vascular tumor in infancy, 

characterized by abnormal localized or diffuse endothelial proliferation, primarily affecting 

the skin and soft tissues (1, 2). Although most IHs follow a self-limiting course, their 

subtle onset and delayed clinical manifestation frequently preclude detection at birth. As 

lesions emerge and enlarge during early infancy, a subset of cases enters a phase of rapid 

proliferation, potentially resulting in serious complications such as ulceration, bleeding, 
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infection, functional impairment, or even life-threatening events. 

Additionally, the aesthetic and psychosocial consequences of 

disfiguring lesions may cause significant emotional distress and 

hinder social adaptation in early childhood (3–5). Therefore, early 

and accurate identification of high-risk cases is essential to initiate 

timely intervention, reduce disease burden, and improve long- 

term outcomes.

The natural course of IH involves a well-defined proliferative 

phase—typically between 1 and 6 months of age, with the most 

pronounced growth occurring within the first 3 months. During 

this critical window, hemangioma cells exhibit heightened 

mitotic activity, driving rapid tumor expansion. Failure to 

recognize and treat high-risk IHs during this early proliferative 

stage may result in irreversible tissue damage and complications 

affecting vision, hearing, or organ function (6–9). Thus, early 

risk stratification plays a pivotal role in preventing progression 

and preserving healthy development.

Despite its clinical significance, the identification of robust risk 

factors for IH remains challenging. Current risk assessment tools 

rely largely on clinical scoring systems or empirical judgment, 

which often lack sufficient sensitivity, specificity, and scalability 

across diverse populations (10, 11). These conventional models 

tend to incorporate only a limited range of variables, failing to 

capture the complex, multifactorial pathogenesis of IH—an 

interplay of genetic, immunological, environmental, and 

intrauterine factors that remains incompletely understood.

Recent advances in machine learning (ML) offer transformative 

capabilities for disease risk modeling. ML algorithms excel at 

analyzing high-dimensional data, identifying complex nonlinear 

interactions, and generating highly predictive models that surpass 

traditional statistical methods in accuracy and generalizability 

(12–14). Despite its growing application in clinical medicine, ML 

has been underutilized in IH research, especially in Asian 

populations. This gap highlights both the novelty and necessity of 

applying ML approaches to IH risk prediction in demographically 

diverse cohorts.

Although numerous studies from Europe and North America 

have contributed to our understanding of IH epidemiology and 

clinical predictors (10, 15–17), their applicability to Asian 

populations is limited by genetic, environmental, and healthcare 

system differences. As such, developing population-specific 

predictive models is crucial for advancing precision diagnostics 

and personalized care in IH management.

The central hypothesis of this study is that an integrated 

“immune-perinatal signature,” combining perinatal characteristics 

with serum immune-in;ammatory biomarkers, can reliably predict 

the onset of IH. We curated a large infant cohort comprising both 

IH cases and controls and applied multiple machine learning 

algorithms to identify key risk factors and construct a robust, 

interpretable predictive model. In this study, we prioritized three 

biomarkers—VEGF, CRP, and SAA—based on strong biological 

and clinical rationale. First, VEGF-A and its signaling pathway play 

a central role in angiogenesis, and elevated VEGF levels have been 

detected in proliferative IH lesions. Several histological and serum 

studies further suggest that VEGF levels correlate with disease 

activity, providing direct pathophysiological support for its role as 

an angiogenesis-related biomarker. Second, CRP is a widely used 

clinical marker of acute in;ammation. IH lesions, particularly 

when complicated by ulceration or infection, can trigger systemic 

in;ammatory responses and elevated in;ammatory markers; more 

broadly, in;ammation is implicated in IH onset and progression, 

making CRP a useful indicator of host in;ammatory status and IH 

risk. Third, SAA, another major acute-phase protein, has recently 

been recognized for its roles in immune regulation, in;ammatory 

pathway activation, and tumor microenvironment modulation. 

Although direct evidence linking SAA to IH is limited, its potential 

function along the in;ammation–immune–angiogenesis axis 

makes it a compelling candidate biomarker. Additionally, we 

applied Shapley Additive Explanations (SHAP) to interpret model 

outputs and identify the principal biological determinants. This 

study aims to validate our hypothesis, highlighting the potential of 

machine learning–driven approaches for early risk stratification, 

informing personalized therapeutic strategies for IH, and 

advancing mechanistic insights into immune-mediated processes in 

early tumorigenesis.

Materials and methods

Study subjects

This study leveraged clinical data sourced from three tertiary 

medical institutions in China: Wuxi People’s Hospital, Wuxi 

Second People’s Hospital, and Tengzhou Central People’s Hospital. 

Inclusion criteria encompassed: (1) infants aged 0–12 months at 

enrollment; (2) undergoing vascular lesion screening at birth or 

during infancy prompted by physical examination findings or 

clinical symptoms; (3) availability of comprehensive perinatal data, 

including gestational age, birth weight, and Apgar scores; 

(4) detailed maternal-infant records, comprising pregnancy-related 

complications, conception mode, and history of drug exposure; 

(5) documented family consent for longitudinal follow-up, 

alongside either in-hospital birth registration or complete follow-up 

documentation. Exclusion criteria comprised: (1) confirmed 

diagnoses of syndromic vascular anomalies, including but not 

limited to PHACE syndrome, Sturge-Weber syndrome, or 

CLOVES syndrome, as well as concurrent non-hemangioma 

vascular malformations; (2) known chromosomal aberrations or 

major structural defects such as trisomy 21 or severe cardiac and 

cerebral malformations; (3) extreme prematurity (gestational age 

<28 weeks) or extremely low birth weight (<1,000 g); (4) presence 

of profound immunodeficiency or antecedent neoplastic 

conditions, including congenital immunodeficiency syndromes; (5) 

mortality or attrition within 12 months postpartum. In this study, 

the case group comprised infants and young children with 

clinically, radiologically, and pathologically confirmed IH. The 

control group was drawn from contemporaneous infants 

undergoing routine check-ups or clinical visits at the same 

hospitals, all of whom were systematically screened to exclude IH, 

other vascular tumors, and congenital vascular malformations. 

Furthermore, individuals with evident infections, immunological 

disorders, metabolic diseases, or other severe systemic conditions 
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were excluded to ensure that the control group accurately represented 

a population of “healthy infants without IH.” This retrospective 

investigation received ethical approval from the institutional review 

boards of all participating centers, with informed consent 

requirements duly waived.

Study design and data collection

A comprehensive set of 40 clinical variables encompassing 

diverse domains was systematically collected to enable an 

exhaustive risk assessment for infantile hemangiomas. These 

variables comprised: Demographic and parental factors including 

infant sex, small-for-gestational-age (SGA) status, parental age, and 

mode of delivery; Perinatal and obstetric history such as maternal 

American Society of Anesthesiologists (ASA) score, maternal 

smoking and alcohol consumption, history of miscarriage, 

placental abnormalities, paternal smoking and alcohol use, family 

history of hemangiomas, multiple gestation, prematurity, and low 

birth weight. Maternal comorbidities and antenatal conditions 

included hormone therapy during pregnancy, intrauterine 

infection, gestational hypertension, gestational diabetes, maternal 

anemia, and umbilical cord complications. Neonatal conditions 

and congenital anomalies encompassed Apgar scores, congenital 

heart disease (CHD), and gestational age classification. Laboratory 

biomarkers incorporated serum albumin (ALB), C-reactive protein 

(CRP), serum amyloid A (SAA), vascular endothelial growth factor 

(VEGF), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), 

and neutrophil-to-lymphocyte ratio (NLR). Tumor characteristics 

and clinical manifestations were also recorded, including 

hemangioma subtype, age at onset, lesion size and morphology, 

anatomical location, presence of complications, and lesion count. 

The principal outcome measure was the occurrence of infantile 

hemangioma. In this study, biomarkers including VEGF, CRP, and 

SAA were derived from blood tests conducted during routine 

postnatal check-ups and early clinical visits, collected within 1–6 

months after birth. The majority of samples were obtained prior to 

the clinical confirmation of IH or during the early stage of the 

lesion, typically at the time when a suspicious lesion was first 

identified. Recognizing that SAA and CRP are acute-phase 

reactants susceptible to elevation during acute infections, which 

could confound study outcomes, we implemented rigorous 

measures during study design and data collection to mitigate this 

effect. All enrolled infants underwent comprehensive clinical 

evaluation at the time of sampling, with those exhibiting overt 

signs of infection (e.g., fever, respiratory or urinary tract infections) 

systematically excluded. Beyond SAA and CRP, additional 

infection-related laboratory indices, including white blood cell 

count and neutrophil proportion, were incorporated to identify and 

omit cases with potential active infection. Sample collection was 

further confined to infants without a recent history of acute 

infection (e.g., within the preceding two weeks) to minimize 

interference. Collectively, these measures ensured that observed 

variations in SAA and CRP more faithfully re;ected the immune- 

in;ammatory milieu pertinent to infantile hemangioma.

Missing data handling

Variables exhibiting a missing rate below 5% were designated as 

having low missingness, whereas those with missing rates ranging 

from 5% to 30% were considered to possess moderate to high 

missingness. Two complementary strategies were employed to 

address these gaps. For variables with low missingness, simple 

imputation was implemented: continuous variables were imputed 

using the median, and categorical variables were imputed using the 

mode (most frequent category). This method, confined to scenarios 

of minimal missingness, aimed to preserve sample integrity and 

was subsequently benchmarked against multiple imputation 

outcomes in sensitivity analyses. For variables with moderate to 

high missingness, multiple imputation was undertaken. Binary 

variables were imputed via logistic regression models, wherein the 

probability distribution of missing values was inferred from 

available predictors, followed by stochastic sampling to retain 

intrinsic inter-variable correlations. Multicategorical variables were 

addressed using multinomial logistic regression, concurrently 

estimating the probability of each mutually exclusive category and 

imputing missing entries through probabilistic sampling. This 

approach preserved the original data distribution, mitigated bias, 

enhanced the plausibility of imputations, and consequently 

bolstered the predictive robustness of downstream models.

Diagnosis of infantile hemangioma and 
definition of associated factors

The diagnosis of infantile hemangioma was ascertained 

through a comprehensive clinical framework, predominantly 

grounded in meticulous physical examination and augmented by 

high-resolution imaging modalities as warranted (18–20). Initial 

assessments were performed by seasoned pediatricians or 

dermatologists, drawing upon key clinical hallmarks including 

lesion onset, rapid proliferative behavior, characteristic 

coloration ranging from vivid red to bluish-purple, soft and 

elevated consistency, blanching response, and the quintessential 

triphasic pattern of proliferation, plateau, and involution.

For lesions exhibiting classical phenotypes, diagnosis was 

rendered on clinical grounds alone. In instances of atypical 

morphology, suspected deep tissue infiltration, or to discriminate 

from alternative vascular anomalies such as vascular malformations 

or angiosarcoma, color Doppler ultrasonography was employed to 

appraise lesion depth, margins, internal structure, and 

hemodynamic features. Lesions located in anatomically intricate 

regions—such as the orbit, cervical area, oropharynx, or visceral 

organs—or those demonstrating extensive involvement, were 

further evaluated using magnetic resonance imaging (MRI) to 

precisely delineate lesion boundaries and their spatial relationships 

with adjacent tissues. Cases presenting equivocal imaging findings 

underwent multidisciplinary review by senior radiologists. 

Definitive diagnoses were established through consensus by no 

fewer than two senior pediatric specialists, synthesizing clinical 

presentation, imaging data, and longitudinal follow-up, thereby 
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ensuring strict adherence to diagnostic criteria for infantile 

hemangioma among all enrolled subjects.

Development and evaluation of predictive 
models for machine learning algorithms

This study utilized SPSS and R software to develop and 

systematically evaluate a clinical prediction model through the 

following steps: 

1. Data preprocessing.

The study population consisted of infants and young children 

treated at Wuxi People’s Hospital and Wuxi Second People’s 

Hospital from January 2020 to January 2024, designated as the 

internal validation cohort. Concurrently, patients with 

comparable conditions from Tengzhou Central People’s Hospital 

during the same period formed the external validation cohort to 

assess model generalizability. Within the internal cohort, 

stratified random sampling was applied to split the data into 

training and test sets at a 7:3 ratio. This stratification aimed to 

enhance detection of low-prevalence outcomes, such as infantile 

hemangioma, mitigating bias toward the majority class and 

improving both predictive performance and clinical applicability. 

2. Variable selection.

A systematic statistical analysis of candidate variables within the 

internal cohort was performed to identify clinical characteristics 

significantly associated with infantile hemangioma. Univariate 

analyses employed chi-square tests for categorical variables and 

independent-samples t-tests for continuous variables, with variables 

reaching significance (P < 0.05) considered potential risk factors. 

These variables were further analyzed in a multivariable logistic 

regression model to control for confounding and identify 

independent predictors, with adjusted odds ratios and 95% 

confidence intervals quantifying their predictive strength. 

Complementing traditional statistical approaches, four classical 

machine learning algorithms—Extreme Gradient Boosting 

(XGBoost), Random Forest (RF), Support Vector Machine (SVM), 

and k-Nearest Neighbor (KNN)—were applied to assess feature 

importance in a high-dimensional context. Cross-validation of 

feature importance rankings across the four models identified the 

top ten consistently ranked features, which were selected as key 

predictors. This consensus-driven, multi-algorithm feature selection 

strategy enhanced robustness and interpretability, ensuring 

consistency across modeling frameworks and providing a solid 

foundation for model development. In this study, hyperparameter 

optimization for all four models was conducted via grid search, 

systematically exploring every possible combination within a 

predefined parameter space and assessing model performance 

through cross-validation to identify the configuration that 

maximized validation set outcomes. This exhaustive strategy ensures 

that potentially optimal parameter sets are not overlooked and is 

especially suited to moderately sized search spaces. Despite its 

computational demands, grid search offers robust stability and 

reliability in hyperparameter selection, thereby enhancing model 

generalizability and predictive precision. Coupled with ten-fold 

cross-validation, this approach effectively mitigates overfitting and 

upholds the rigor and scientific integrity of the tuning process. 

3. Model construction and evaluation.

The selected features were incorporated into the four machine 

learning models to predict infantile hemangioma risk. Model 

performance was assessed across three dimensions: discrimination, 

TABLE 1 Provides a detailed overview of the demographic and clinical 
characteristics of pediatric patients diagnosed with 
infantile hemangioma.

Characteristic Hemangioma 
patients (N = 81)

Sex, N (%) Female 58 (71.605%)

Male 23 (28.395%)

Ageatonset, median 

[Q1–Q3]

18.000 [9.000;26.000]

SGA, N (%) No 54 (66.667%)

Yes 27 (33.333%)

Primiparity, N (%) No 59 (72.840%)

Yes 22 (27.160%)

Apgar score, N (%) ≥7 52 (64.198%)

<7 29 (35.802%)

MP, N (%) No 38 (46.914%)

Yes 43 (53.086%)

Preterm birth, N (%): No 45 (55.556%)

Yes 36 (44.444%)

Low birth weight 

infant, N (%)

No 32 (39.506%)

Yes 49 (60.494%)

Mode of delivery, N 

(%)

Vaginal delivery

Cesarean section

Nuchal cord, N (%) No 68 (83.951%)

Yes 13 (16.049%)

Lesion size, median 

[Q1–Q3]

6.900 [4.200;11.200]

Lesion type, N (%) Localized 50 (61.728%)

Segmental 10 (12.346%)

Indeterminate 20 (24.691%)

Multifocal 1 (1.235%)

Number of lesions, N 

(%)

Single 63 (77.778%)

Multiple 18 (22.222%)

Localization, N (%) Head and neck 51 (62.963%)

Face 13 (16.049%)

Trunk 9 (11.111%)

Extremities 6 (7.407%)

Perineum 2 (2.469%)

Lesions with 

complications, N (%)

Ulceration 18 (22.222%)

Auditory canal or 

airway obstruction

4 (4.938%)

Visual threat or 

impairment

2 (2.469%)

Ulceration with 

secondary infection

2 (2.469%)

Ulceration with 

bleeding

2 (2.469%)

No complications 53 (65.432%)

SGA, small for gestational age; MP, multiple pregnancy.
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calibration, and clinical utility. Discriminative ability was evaluated 

via receiver operating characteristic (ROC) curves and area under 

the curve (AUC). Calibration was assessed with calibration plots 

comparing predicted vs. observed outcomes, supplemented by 

Brier scores as quantitative measures. Clinical utility was evaluated 

using decision curve analysis (DCA), wherein the x-axis represents 

threshold probability—re;ecting the risk level at which clinical 

intervention is warranted—and the y-axis denotes net benefit, 

balancing true positive gains against overtreatment harms. DCA 

includes three reference curves: model prediction, treat-all, and 

treat-none strategies. Superior clinical value is indicated when the 

model’s net benefit curve surpasses the extremes. To improve 

generalizability and reduce bias from data partitioning, 10-fold 

cross-validation was implemented. The internal dataset was 

randomly divided into ten equal, non-overlapping folds; in each 

iteration, one fold served as validation, while the other nine were 

combined for training and hyperparameter tuning. Performance 

metrics including accuracy, AUC, and Brier score were computed 

per fold and averaged to yield robust estimates, minimizing chance 

effects and enhancing evaluation reliability. 

4. External validation.

The optimal model and hyperparameters identified during 

internal validation were applied directly to the external cohort. 

Model performance metrics were recalculated to verify 

consistency with internal results and evaluate generalizability 

and clinical utility in a real-world setting. 

5. Assessment of model robustness and performance.

To evaluate the robustness and performance of the model within the 

constraints of a limited sample size, we conducted a series of post-hoc 

analyses. First, Kolmogorov–Smirnov (KS) curves were constructed to 

assess the separation of predicted risk scores between IH cases and 

non-IH controls. Second, confusion matrices for both the training 

and testing sets were generated to visually appraise classification 

performance, delineating true positives (TP), false negatives (FN), 

false positives (FP), and true negatives (TN), thereby offering a 

precise representation of the model’s capacity to accurately 

discriminate IH from non-IH samples. Third, parallel coordinates 

plots were employed to interrogate the contribution of individual 

FIGURE 1 

Illustrates the patient enrollment flowchart, clearly outlining the sample selection process.
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TABLE 2 Comparison of features between the internal and external datasets.

Variables All (N = 1,466) Internal dataset (N = 818) External dataset (N = 648) P-value

Sex Female 1,014 (69.168%) 561 (68.582%) 453 (69.907%) 0.625

Male 452 (30.832%) 257 (31.418%) 195 (30.093%)

Age <35 1,172 (79.945%) 645 (78.851%) 527 (81.327%) 0.267

≥35 294 (20.055%) 173 (21.149%) 121 (18.673%)

Age* <35 986 (67.258%) 557 (68.093%) 429 (66.204%) 0.478

≥35 480 (32.742%) 261 (31.907%) 219 (33.796%)

ASA <3 1,322 (90.177%) 739 (90.342%) 583 (89.969%) 0.881

≥3 144 (9.823%) 79 (9.658%) 65 (10.031%)

Drinking history No 1,128 (76.944%) 621 (75.917%) 507 (78.241%) 0.324

Yes 338 (23.056%) 197 (24.083%) 141 (21.759%)

Smoking history No 1,322 (90.177%) 729 (89.120%) 593 (91.512%) 0.15

Yes 144 (9.823%) 89 (10.880%) 55 (8.488%)

Drinking history* No 1,016 (69.304%) 547 (66.870%) 469 (72.377%) 0.027

Yes 450 (30.696%) 271 (33.130%) 179 (27.623%)

Smoking history* No 1,226 (83.629%) 679 (83.007%) 547 (84.414%) 0.515

Yes 240 (16.371%) 139 (16.993%) 101 (15.586%)

Family history No 1,272 (86.767%) 697 (85.208%) 575 (88.735%) 0.057

Yes 194 (13.233%) 121 (14.792%) 73 (11.265%)

History of miscarriage No 1,189 (81.105%) 656 (80.196%) 533 (82.253%) 0.351

Yes 277 (18.895%) 162 (19.804%) 115 (17.747%)

Primiparity No 1,220 (83.220%) 660 (80.685%) 560 (86.420%) 0.004

Yes 246 (16.780%) 158 (19.315%) 88 (13.580%)

Hormonal therapy No 1,152 (78.581%) 619 (75.672%) 533 (82.253%) 0.003

Yes 314 (21.419%) 199 (24.328%) 115 (17.747%)

Anemia No 1,346 (91.814%) 744 (90.954%) 602 (92.901%) 0.209

Yes 120 (8.186%) 74 (9.046%) 46 (7.099%)

CHD No 1,258 (85.812%) 676 (82.641%) 582 (89.815%) <0.001

Yes 208 (14.188%) 142 (17.359%) 66 (10.185%)

Hyperlipidemia No 1,048 (71.487%) 567 (69.315%) 481 (74.228%) 0.044

Yes 418 (28.513%) 251 (30.685%) 167 (25.772%)

Infection during pregnancy No 1,124 (76.671%) 604 (73.839%) 520 (80.247%) 0.005

Yes 342 (23.329%) 214 (26.161%) 128 (19.753%)

Gestational hypertension No 1,048 (71.487%) 559 (68.337%) 489 (75.463%) 0.003

Yes 418 (28.513%) 259 (31.663%) 159 (24.537%)

Gestational diabetes mellitus No 1,010 (68.895%) 535 (65.403%) 475 (73.302%) 0.001

Yes 456 (31.105%) 283 (34.597%) 173 (26.698%)

ALB ≥30 g/L 1,146 (78.172%) 617 (75.428%) 529 (81.636%) 0.005

<30 g/L 320 (21.828%) 201 (24.572%) 119 (18.364%)

Mode of delivery Vaginal delivery 1,213 (82.742%) 671 (82.029%) 542 (83.642%) 0.458

Cesarean section 253 (17.258%) 147 (17.971%) 106 (16.358%)

Multiple pregnancy No 1,162 (79.263%) 644 (78.729%) 518 (79.938%) 0.615

Yes 304 (20.737%) 174 (21.271%) 130 (20.062%)

Preterm birth No 1,291 (88.063%) 719 (87.897%) 572 (88.272%) 0.89

Yes 175 (11.937%) 99 (12.103%) 76 (11.728%)

Placental abnormalities No 1,445 (98.568%) 807 (98.655%) 638 (98.457%) 0.923

Yes 21 (1.432%) 11 (1.345%) 10 (1.543%)

Nuchal cord No 1,317 (89.836%) 728 (88.998%) 589 (90.895%) 0.268

Yes 149 (10.164%) 90 (11.002%) 59 (9.105%)

Low birth weight infant No 1,310 (89.359%) 729 (89.120%) 581 (89.660%) 0.804

Yes 156 (10.641%) 89 (10.880%) 67 (10.340%)

SGA No 1,200 (81.855%) 668 (81.663%) 532 (82.099%) 0.883

Yes 266 (18.145%) 150 (18.337%) 116 (17.901%)

Apgar score ≥7 1,306 (89.086%) 722 (88.264%) 584 (90.123%) 0.294

<7 160 (10.914%) 96 (11.736%) 64 (9.877%)

VEGF level <115 pg/mL 1,189 (81.105%) 639 (78.117%) 550 (84.877%) 0.001

≥115 pg/mL 277 (18.895%) 179 (21.883%) 98 (15.123%)

CRP level <10 mg/L 1,062 (72.442%) 570 (69.682%) 492 (75.926%) 0.009

≥10 mg/L 404 (27.558%) 248 (30.318%) 156 (24.074%)

SAA level <10 mg/L 1,178 (80.355%) 629 (76.895%) 549 (84.722%) <0.001

(Continued) 
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features to predictions and to evaluate the consistency of prediction 

patterns across samples. Collectively, these analyses demonstrate 

that, notwithstanding the limited IH case count, the model 

sustained stable discriminative power and consistent predictive 

behavior, corroborating the reliability of the study’s findings. 

6. Model interpretation.

To elucidate model decision mechanisms, SHapley Additive 

exPlanations (SHAP) were utilized. SHAP values quantify each 

feature’s marginal contribution across varying feature 

combinations, providing a fair attribution of variable impact on 

overall predictions. SHAP visualizations enhanced transparency 

and interpretability: summary plots displayed distributions of 

SHAP values for all features across samples, indicating feature 

importance and effect directionality, with each dot representing 

a sample’s SHAP value colored by original feature value. This 

visualization identified dominant risk factors and their impact 

patterns. Additionally, SHAP force plots offered individualized 

explanations, illustrating how each feature in;uenced a single 

sample’s prediction through positive or negative “forces,” 

beginning from a baseline and culminating in the predicted risk. 

These plots facilitate interpretation at both population and 

individual levels, supporting personalized risk profiling.

Results

Basic clinical information of the patient

A total of 1,466 infants and young children were enrolled in the 

study, including 81 cases of hemangioma (Table 1, Supplementary 

Table S1 and Figure 1). The cohort was predominantly female 

(71.6%), with males comprising 28.4%. The median age at onset 

was 18.0 months. Within the group, 33.3% were SGA, 27.2% were 

firstborns, and 35.8% had a neonatal Apgar score below 7. Multiple 

gestations accounted for 53.1% of cases, 44.4% were born 

prematurely, and 60.5% had low birth weight. Nuchal cord 

occurrence was observed in 16.0% of neonates. Consistent with 

prior research, hemangiomas were classified morphologically into 

focal, segmental, indeterminate, and multifocal subtypes. Focal 

hemangiomas predominated, representing 61.7% of cases, followed 

by indeterminate (24.7%) and segmental (12.3%) types; multifocal 

lesions were rare, present in only 1.2% of patients. The majority of 

children (77.8%) presented with solitary lesions, whereas 22.2% 

exhibited multiple lesions. Lesion distribution was highest on the 

head and neck (62.96%), followed by the face (16.0%), trunk 

(11.1%), extremities (7.4%), and perineum (2.5%). Regarding 

complications, 65.4% of patients were complication-free. Among 

those affected, ulceration was the most frequent (22.2%), followed 

by auditory or airway obstruction (4.9%), vision impairment 

(2.5%), secondary infection (2.5%), and bleeding (2.5%). Notably, 

these complications frequently co-occurred with ulceration. The 

internal dataset included 818 participants, of whom 48 had 

infantile hemangioma (IH). The external dataset comprised 648 

participants, including 33 IH cases. A comparison of the features is 

presented in Table 2. The internal dataset was randomly divided 

into training and testing sets at a 7:3 ratio, with their characteristics 

compared in Table 3. The original dataset utilized in this study 

is provided in Supplementary Table S2. To ensure the 

reproducibility and transparency of this study, all source code used 

—including scripts for data preprocessing, model construction, 

performance evaluation, and SHAP analysis—is available at 

the permanent access link (https://www.jianguoyun.com/p/ 

DWh9chMQl-GKDBjEj-sFIAA).

Identification of risk factors for infantile 
hemangioma

Both univariate and multivariate logistic regression analyses 

identified several independent risk factors for infantile 

hemangioma development, including gestational diabetes 

mellitus, mode of delivery, multiple pregnancy, preterm birth, 

low birth weight, Apgar score, and elevated levels of VEGF, 

CRP, and SAA (P < 0.05) (Table 4). These results highlight the 

multifactorial etiology of infantile hemangioma, implicating 

perinatal factors alongside in;ammatory and angiogenic 

biomarkers in its pathogenesis.

TABLE 2 Continued

Variables All (N = 1,466) Internal dataset (N = 818) External dataset (N = 648) P-value

≥10 mg/L 288 (19.645%) 189 (23.105%) 99 (15.278%)

NLR <3 1,110 (75.716%) 597 (72.983%) 513 (79.167%) 0.007

≥3 356 (24.284%) 221 (27.017%) 135 (20.833%)

TNF-α <8 pg/mL 1,174 (80.082%) 637 (77.873%) 537 (82.870%) 0.021

≥8 pg/mL 292 (19.918%) 181 (22.127%) 111 (17.130%)

IL-6 <7 pg/mL 1,225 (83.561%) 672 (82.152%) 553 (85.340%) 0.118

≥7 pg/mL 241 (16.439%) 146 (17.848%) 95 (14.660%)

Hemangioma No 1,385 (94.475%) 770 (94.132%) 615 (94.907%) 0.596

Yes 81 (5.525%) 48 (5.868%) 33 (5.093%)

Sex, Family history, Primiparity, Mode of delivery, Multiple pregnancy, Preterm birth, Placental abnormalities, Nuchal cord, Low birth weight infant, SGA, Apgar score, VEGF level, CRP 

level, SAA level, NLR, TNF-α, IL-6 — Infant clinical characteristics; Age, ASA, Drinking history, Smoking history, History of miscarriage, Hormonal therapy, Anemia, CHD, Hyperlipidemia, 

Infection during pregnancy, Gestational hypertension, Gestational diabetes, ALB — Maternal clinical characteristics; Age*, Drinking history*, Smoking history* — Paternal clinical 

characteristics. SGA, Small for Gestational Age; VEGF, Vascular Endothelial Growth Factor; CRP, C-Reactive Protein; SAA, Serum Amyloid A; NLR, Neutrophil-to-Lymphocyte Ratio; 

TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6; ASA, Acute Phase Serum Amyloid A; OR, odds ratio; CI, confidence interval.
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TABLE 3 Comparison of features between the training and testing datasets.

Variables All (N = 818) Training set (N = 572) Testing set (N = 246) P-value

Sex Female 561 (68.582%) 401 (70.105%) 160 (65.041%) 0.177

Male 257 (31.418%) 171 (29.895%) 86 (34.959%)

Age <35 645 (78.851%) 447 (78.147%) 198 (80.488%) 0.51

≥35 173 (21.149%) 125 (21.853%) 48 (19.512%)

Age* <35 557 (68.093%) 392 (68.531%) 165 (67.073%) 0.742

≥35 261 (31.907%) 180 (31.469%) 81 (32.927%)

ASA <3 739 (90.342%) 516 (90.210%) 223 (90.650%) 0.947

≥3 79 (9.658%) 56 (9.790%) 23 (9.350%)

Drinking history No 621 (75.917%) 432 (75.524%) 189 (76.829%) 0.756

Yes 197 (24.083%) 140 (24.476%) 57 (23.171%)

Smoking history No 729 (89.120%) 512 (89.510%) 217 (88.211%) 0.671

Yes 89 (10.880%) 60 (10.490%) 29 (11.789%)

Drinking history* No 547 (66.870%) 382 (66.783%) 165 (67.073%) 1

Yes 271 (33.130%) 190 (33.217%) 81 (32.927%)

Smoking history* No 679 (83.007%) 475 (83.042%) 204 (82.927%) 1

Yes 139 (16.993%) 97 (16.958%) 42 (17.073%)

Family history No 697 (85.208%) 486 (84.965%) 211 (85.772%) 0.849

Yes 121 (14.792%) 86 (15.035%) 35 (14.228%)

History of miscarriage No 656 (80.196%) 454 (79.371%) 202 (82.114%) 0.42

Yes 162 (19.804%) 118 (20.629%) 44 (17.886%)

First pregnancy No 660 (80.685%) 466 (81.469%) 194 (78.862%) 0.442

Yes 158 (19.315%) 106 (18.531%) 52 (21.138%)

Hormonal therapy No 619 (75.672%) 441 (77.098%) 178 (72.358%) 0.174

Yes 199 (24.328%) 131 (22.902%) 68 (27.642%)

Anemia No 744 (90.954%) 523 (91.434%) 221 (89.837%) 0.551

Yes 74 (9.046%) 49 (8.566%) 25 (10.163%)

CHD No 676 (82.641%) 474 (82.867%) 202 (82.114%) 0.873

Yes 142 (17.359%) 98 (17.133%) 44 (17.886%)

Hyperlipidemia No 567 (69.315%) 391 (68.357%) 176 (71.545%) 0.41

Yes 251 (30.685%) 181 (31.643%) 70 (28.455%)

Infection during pregnancy No 604 (73.839%) 425 (74.301%) 179 (72.764%) 0.71

Yes 214 (26.161%) 147 (25.699%) 67 (27.236%)

Gestational hypertension No 559 (68.337%) 385 (67.308%) 174 (70.732%) 0.377

Yes 259 (31.663%) 187 (32.692%) 72 (29.268%)

Gestational diabetes mellitus No 535 (65.403%) 393 (68.706%) 142 (57.724%) 0.003

Yes 283 (34.597%) 179 (31.294%) 104 (42.276%)

ALB ≥30 g/L 617 (75.428%) 434 (75.874%) 183 (74.390%) 0.716

<30 g/L 201 (24.572%) 138 (24.126%) 63 (25.610%)

Mode of delivery Vaginal delivery 671 (82.029%) 480 (83.916%) 191 (77.642%) 0.041

Cesarean section 147 (17.971%) 92 (16.084%) 55 (22.358%)

Multiple pregnancy No 644 (78.729%) 448 (78.322%) 196 (79.675%) 0.733

Yes 174 (21.271%) 124 (21.678%) 50 (20.325%)

Preterm birth No 719 (87.897%) 497 (86.888%) 222 (90.244%) 0.218

Yes 99 (12.103%) 75 (13.112%) 24 (9.756%)

Placental abnormalities No 807 (98.655%) 566 (98.951%) 241 (97.967%) 0.321

Yes 11 (1.345%) 6 (1.049%) 5 (2.033%)

Nuchal cord No 728 (88.998%) 505 (88.287%) 223 (90.650%) 0.385

Yes 90 (11.002%) 67 (11.713%) 23 (9.350%)

Low birth weight infant No 729 (89.120%) 507 (88.636%) 222 (90.244%) 0.579

Yes 89 (10.880%) 65 (11.364%) 24 (9.756%)

SGA No 668 (81.663%) 479 (83.741%) 189 (76.829%) 0.025

Yes 150 (18.337%) 93 (16.259%) 57 (23.171%)

Apgar score ≥7 722 (88.264%) 512 (89.510%) 210 (85.366%) 0.116

<7 96 (11.736%) 60 (10.490%) 36 (14.634%)

VEGF level <115 pg/mL 639 (78.117%) 441 (77.098%) 198 (80.488%) 0.326

≥115 pg/mL 179 (21.883%) 131 (22.902%) 48 (19.512%)

CRP level <10 mg/L 570 (69.682%) 393 (68.706%) 177 (71.951%) 0.399

≥10 mg/L 248 (30.318%) 179 (31.294%) 69 (28.049%)

SAA level <10 mg/L 629 (76.895%) 443 (77.448%) 186 (75.610%) 0.63

(Continued) 
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To further refine the risk factor profile, we employed four classical 

machine learning algorithms—XGBoost, RF, SVM, and KNN—for 

feature selection. The overlap of top-ranked features across all 

models consistently identified multiple pregnancy, preterm birth, 

low birth weight, and elevated VEGF, CRP, and SAA levels as the 

strongest predictors of infantile hemangioma (Figures 2A–D). This 

machine learning–augmented strategy corroborated the logistic 

regression findings and enhanced the robustness of the key 

predictive variables. The hyperparameters of the four machine 

learning models were optimized via grid search, with XGBoost set 

as colsample_bytree = 1, learning_rate = 0.3, max_depth = 4, 

min_child_weight = 4, n_estimators = 20, reg_lambda = 0.5, and 

subsample = 1; RF as criterion = gini, max_depth = None, 

max_features = sqrt, min_impurity_decrease = 0.0, min_samples_ 

leaf = 1, min_samples_split = 2, and n_estimators = 100; SVM as 

C = 1.0, gamma = scale, kernel = rbf, max_iter = 50, 

probability = True, and tol = 0.001; and KNN as algorithm = auto, 

leaf_size = 10, n_neighbors = 4, p = 2, and weights = uniform.

Model building and evaluation

ROC curve analysis demonstrated that the XGBoost model 

exhibited superior predictive performance in both the training and 

validation cohorts, achieving an AUC of 0.952 in the training 

set and 0.935 in the validation set—the highest among the 

four evaluated machine learning algorithms (Table 5 and 

Figures 3A–C). These elevated AUC values underscore the model’s 

excellent discriminative ability to differentiate between high- and 

low-risk infants, re;ecting a high degree of predictive accuracy. 

Calibration curves for XGBoost, RF, SVM, and KNN revealed 

strong agreement between predicted probabilities and observed 

outcomes, indicating good calibration and reliable probability 

estimation across all models. Additionally, DCA assessed the clinical 

utility of each model, demonstrating that across a spectrum of 

threshold probabilities, all models provided greater net clinical 

benefit compared to “treat-all” or “treat-none” approaches 

(Figure 3D). Notably, XGBoost delivered the most favorable clinical 

decision support, highlighting its promise for personalized risk 

stratification in infantile hemangioma. To rigorously evaluate model 

generalizability, 10-fold cross-validation was performed within the 

internal cohort. Specifically, 245 cases (30.0%) were randomly 

assigned as a test set, while the remainder were used for training 

and cross-validation. This approach minimized sampling bias and 

enhanced robustness by averaging performance across multiple data 

partitions. In cross-validation, XGBoost achieved the highest overall 

performance with a validation AUC of 0.9438 ± 0.0484, test set 

AUC of 0.8366, and accuracy of 0.8943 (Figures 4A–C). By 

comparison, the RF model showed a validation AUC of 

0.8510 ± 0.1334, test AUC of 0.8353, and accuracy of 0.8415; SVM 

yielded a validation AUC of 0.8326 ± 0.1362, test AUC of 0.6827, 

but the highest accuracy at 0.9472; and KNN demonstrated a 

validation AUC of 0.8466 ± 0.1243, test AUC of 0.8064, and 

accuracy of 0.8780. These results collectively emphasize the 

consistent superiority of XGBoost in terms of AUC, accuracy, and 

stability, establishing it as the most effective algorithm for predicting 

high-risk infantile hemangioma. External validation using an 

independent cohort further corroborated the model’s 

generalizability, with XGBoost achieving an AUC of 0.870 

(Figure 4D), confirming robust predictive capability on unseen data. 

The Kolmogorov–Smirnov (KS) curve demonstrates a clear 

separation between the cumulative distribution curves of IH cases 

and non-IH controls, with a pronounced maximum vertical 

distance (KS value), indicating the model’s efficacy in distinguishing 

high-risk from low-risk samples. The confusion matrices for both 

the training and testing sets reveal that true positives (TP) and true 

negatives (TN) markedly exceed false positives (FP) and false 

negatives (FN), underscoring the model’s robust classification 

performance and accuracy. Parallel coordinates plots exhibit 

consistent line patterns across samples for different features, 

effectively illustrating each feature’s contribution to model 

predictions and highlighting distinctions in the multi-feature space 

between high-risk and low-risk samples, with prediction patterns 

remaining stable and devoid of notable anomalies (Figures 5A–D).

Model explanation

The SHAP summary plot (Figure 6) offers a lucid visualization 

of the principal risk factors associated with infantile hemangioma, 

TABLE 3 Continued

Variables All (N = 818) Training set (N = 572) Testing set (N = 246) P-value

≥10 mg/L 189 (23.105%) 129 (22.552%) 60 (24.390%)

NLR <3 597 (72.983%) 415 (72.552%) 182 (73.984%) 0.736

≥3 221 (27.017%) 157 (27.448%) 64 (26.016%)

TNF-α <8 pg/mL 637 (77.873%) 454 (79.371%) 183 (74.390%) 0.138

≥8 pg/mL 181 (22.127%) 118 (20.629%) 63 (25.610%)

IL-6 <7 pg/mL 672 (82.152%) 476 (83.217%) 196 (79.675%) 0.265

≥7 pg/mL 146 (17.848%) 96 (16.783%) 50 (20.325%)

Hemangioma No 770 (94.132%) 537 (93.881%) 233 (94.715%) 0.762

Yes 48 (5.868%) 35 (6.119%) 13 (5.285%)

Sex, Family history, Primiparity, Mode of delivery, Multiple pregnancy, Preterm birth, Placental abnormalities, Nuchal cord, Low birth weight infant, SGA, Apgar score, VEGF level, CRP 

level, SAA level, NLR, TNF-α, IL-6 — Infant clinical characteristics; Age, ASA, Drinking history, Smoking history, History of miscarriage, Hormonal therapy, Anemia, CHD, Hyperlipidemia, 

Infection during pregnancy, Gestational hypertension, Gestational diabetes, ALB — Maternal clinical characteristics; Age*, Drinking history*, Smoking history* — Paternal clinical 

characteristics. SGA, Small for Gestational Age; VEGF, Vascular Endothelial Growth Factor; CRP, C-Reactive Protein; SAA, Serum Amyloid A; NLR, Neutrophil-to-Lymphocyte Ratio; 

TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6; ASA, Acute Phase Serum Amyloid A; OR, odds ratio; CI, confidence interval.
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TABLE 4 Summarizes the findings from univariate and multivariate analyses identifying variables significantly associated with infantile hemangioma.

Variables N Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

Sex Female 561 Reference

Male 257 0.992 [0.529,1.860] 0.979

Age <35 645 Reference Reference

≥35 173 6.034 [3.307,11.013] <0.001 2.663 [0.930, 7.563] 0.065

Age* <35 557 Reference Reference

≥35 261 1.88 [1.044,3.384] 0.035 2.422 [0.850, 7.056] 0.098

ASA <3 739 Reference Reference

≥3 79 2.674 [1.277,5.599] 0.009 2.126 [0.575, 7.126] 0.235

Drinking history No 621 Reference

Yes 197 1.321 [0.694,2.515] 0.397

Smoking history No 729 Reference

Yes 89 0.95 [0.366,2.464] 0.915

Drinking history* No 547 Reference Reference

Yes 271 4.444 [2.392,8.254] <0.001 1.643 [0.593, 4.607] 0.338

Smoking history* No 679 Reference

Yes 139 0.684 [0.285,1.642] 0.396

Family history No 697 Reference

Yes 121 1.356 [0.639,2.876] 0.428

History of miscarriage No 656 Reference

Yes 162 1.731 [0.905,3.307] 0.097

Primiparity No 660 Reference

Yes 158 1.601 [0.826,3.103] 0.163

Hormonal therapy No 619 Reference

Yes 199 0.809 [0.395,1.655] 0.562

Anemia No 744 Reference

Yes 74 1.791 [0.774,4.149] 0.174

CHD No 676 Reference

Yes 142 1.272 [0.618,2.617] 0.513

Hyperlipidemia No 567 Reference

Yes 251 0.926 [0.488,1.758] 0.814

Infection during pregnancy No 604 Reference Reference

Yes 214 0.386 [0.162,0.921] 0.032 0.302 [0.067, 1.084] 0.089

Gestational hypertension No 559 Reference

Yes 259 1.447 [0.795,2.632] 0.226

Gestational diabetes mellitus No 535 Reference Reference

Yes 283 3.101 [1.706,5.637] <0.001 2.919 [1.149, 7.839] 0.027

ALB ≥30 g/L 617 Reference

<30 g/L 201 1.15 [0.596,2.219] 0.677

Mode of delivery Vaginal delivery 671 Reference Reference

Cesarean section 147 2.7 [1.451,5.023] 0.002 4.41 [1.225, 16.865] 0.025

Multiple pregnancy No 644 Reference Reference

Yes 174 6.579 [3.589,12.060] <0.001 5.139 [1.910, 14.758] 0.002

Preterm birth No 719 Reference Reference

Yes 99 7.615 [4.119,14.081] <0.001 3.733 [1.170, 11.957] 0.025

Placental abnormalities No 807 Reference

Yes 11 3.676 [0.772,17.509] 0.102

Nuchal cord No 728 Reference

Yes 90 1.678 [0.759,3.708] 0.201

Low birth weight infant No 729 Reference Reference

Yes 89 20.085 [10.571,38.161] <0.001 32.241 [10.979, 111.198] <0.001

SGA No 668 Reference Reference

Yes 150 2.626 [1.412,4.884] 0.002 0.735 [0.194, 2.592] 0.638

Apgar score ≥7 722 Reference Reference

<7 96 4.312 [2.267,8.205] <0.001 4.317 [1.217, 15.073] 0.022

VEGF level <115 pg/mL 639 Reference Reference

≥115 pg/mL 179 4.766 [2.629,8.638] <0.001 9.105 [3.086, 29.906] <0.001

(Continued) 
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ranking them according to their relative contribution to the 

model’s output. The analysis identified SAA level, low birth 

weight, VEGF level, multiple pregnancy, preterm birth, and CRP 

level as the most in;uential predictors.

To further assess the model’s clinical interpretability and 

applicability, we examined individual prediction outcomes for four 

representative patients using SHAP force plots (Figures 7A–D). 

These plots illuminate patient-specific high-risk contributors and 

quantify their respective impact magnitudes. Patient 1: The model 

predicted a high probability (0.82) of developing infantile 

hemangioma, primarily driven by elevated CRP and SAA levels, 

preterm birth, and multiple pregnancy, indicating a high-risk 

profile. Patient 2: Predicted risk was low (0.06), with minor 

contributions from CRP levels and low birth weight, suggesting a 

limited cumulative effect of risk factors in this case. Patient 3: The 

model estimated a probability of 0.04, where CRP levels and 

multiple pregnancy were the main contributors, indicating a low 

overall risk. Patient 4: Predicted probability was 0.05, with CRP 

level and multiple pregnancy as the key contributing factors. 

Although classified as low risk, ongoing monitoring of these 

variables may be advisable. These individualized explanations 

demonstrate the capacity of the XGBoost model combined with 

SHAP analysis to enable precision risk stratification, thereby 

supporting nuanced and informed clinical decision-making.

Discussion

In this study, we employed four widely used machine learning 

algorithms—RF, SVM, KNN, and XGBoost—to develop a clinical 

prediction model for infantile hemangioma. RF, which aggregates 

numerous decision trees via majority voting, exhibits robust noise 

tolerance and excels with high-dimensional data by effectively 

evaluating feature importance; however, it can struggle with 

capturing complex nonlinear interactions and is computationally 

intensive due to its intricate architecture (12, 21, 22). SVM 

constructs a maximal-margin hyperplane and performs well on 

high-dimensional, small-to-medium datasets but is sensitive to 

kernel selection and parameter tuning, with reduced efficiency 

on large datasets. KNN offers intuitive simplicity by predicting 

outcomes based on sample proximity, making it suitable for 

low-dimensional, small-sample contexts, but it suffers from the 

curse of dimensionality and high computational demands, 

limiting scalability. Conversely, XGBoost, an ensemble method 

leveraging gradient boosting, iteratively builds weak learners to 

capture complex nonlinear relationships efficiently. Its integrated 

regularization mitigates overfitting, while support for parallel 

computation and automatic handling of missing data enhances 

both accuracy and efficiency (23–25).

Our systematic model construction and evaluation revealed 

XGBoost’s superior performance across multiple metrics. ROC 

analysis demonstrated outstanding predictive capability, with AUCs 

of 0.952 and 0.935 in training and validation cohorts, respectively, 

outperforming RF, SVM, and KNN. These values attest to its 

exceptional discriminative power in stratifying high- vs. low-risk 

patients. Calibration curves confirmed excellent concordance 

between predicted and observed probabilities, supporting the 

model’s reliability in both risk stratification and probability 

estimation. Decision curve analysis further substantiated XGBoost’s 

clinical utility, consistently yielding higher net benefits across a wide 

range of thresholds, underscoring its translational potential in 

clinical settings. K-fold cross-validation within the internal cohort 

reinforced these findings: XGBoost achieved a mean validation 

AUC of 0.9438 ± 0.0484, a test set AUC of 0.8366, and accuracy of 

0.8943—surpassing RF (AUC = 0.8510 ± 0.1334, accuracy = 0.8415), 

SVM (AUC = 0.8326 ± 0.1362, accuracy = 0.9472), and KNN 

(AUC = 0.8466 ± 0.1243, accuracy = 0.8780). These results 

underscore XGBoost’s superior discriminative capacity, accuracy, 

generalizability, and stability. External validation confirmed the 

model’s robustness, with XGBoost achieving an AUC of 0.870, 

demonstrating adaptability to unseen data across different 

populations and clinical environments. Accordingly, XGBoost 

emerged as the optimal algorithm for predicting high-risk IH 

factors by effectively modeling nonlinearities, minimizing overfitting 

TABLE 4 Continued

Variables N Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

CRP level <10 mg/L 570 Reference Reference

≥10 mg/L 248 2.917 [1.619,5.256] <0.001 8.898 [3.206, 27.778] <0.001

SAA level <10 mg/L 629 Reference Reference

≥10 mg/L 189 10.769 [5.563,20.849] <0.001 6.126 [2.222, 18.096] 0.001

NLR <3 597 Reference

≥3 221 1.004 [0.521,1.934] 0.992

TNF-α <8 pg/mL 637 Reference Reference

≥8 pg/mL 181 2.026 [1.094,3.752] 0.025 1.091 [0.357, 3.123] 0.874

IL-6 <7 pg/mL 672 Reference

≥7 pg/mL 146 1.227 [0.597,2.522] 0.578

Sex, Family history, Primiparity, Mode of delivery, Multiple pregnancy, Preterm birth, Placental abnormalities, Nuchal cord, Low birth weight infant, SGA, Apgar score, VEGF level, CRP 

level, SAA level, NLR, TNF-α, IL-6 — Infant clinical characteristics; Age, ASA, Drinking history, Smoking history, History of miscarriage, Hormonal therapy, Anemia, CHD, Hyperlipidemia, 

Infection during pregnancy, Gestational hypertension, Gestational diabetes, ALB — Maternal clinical characteristics; Age*, Drinking history*, Smoking history* — Paternal clinical 

characteristics. SGA, Small for Gestational Age; VEGF, Vascular Endothelial Growth Factor; CRP, C-Reactive Protein; SAA, Serum Amyloid A; NLR, Neutrophil-to-Lymphocyte Ratio; 

TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6; ASA, Acute Phase Serum Amyloid A; OR, odds ratio; CI, confidence interval.
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FIGURE 2 

Displays the feature importance rankings for each predictive model: (A) extreme gradient boosting (XGBoost), (B) random forest (RF), (C) support 

vector machine (SVM), and (D) k-nearest neighbor (KNN).

TABLE 5 Presents the performance metrics of the four predictive models assessed in this study.

Machine learning  
algorithms

Cohort AUC (95% CI) Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

F1 score 
(95% CI)

KNN Training set 0.928 (0.876–0.979) 0.899 (0.884–0.914) 0.897 (0.876–0.919) 0.899 (0.884–0.915) 0.519 (0.487–0.552)

Validation set 0.863 (0.726–0.978) 0.878 (0.863–0.893) 0.783 (0.685–0.880) 0.886 (0.866–0.906) 0.411 (0.356–0.465)

XGBoost Training set 0.952 (0.916–0.987) 0.898 (0.872–0.925) 0.88 (0.856–0.903) 0.9 (0.870–0.929) 0.524 (0.469–0.580)

Validation set 0.935 (0.864–0.995) 0.88 (0.852–0.908) 0.743 (0.648–0.839) 0.89 (0.855–0.924) 0.416 (0.356–0.476)

RF Training set 0.825 (0.758–0.891) 0.718 (0.693–0.744) 0.848 (0.806–0.889) 0.71 (0.681–0.740) 0.265 (0.249–0.282)

Validation set 0.811 (0.675–0.947) 0.722 (0.681–0.762) 0.836 (0.747–0.925) 0.717 (0.671–0.762) 0.253 (0.212–0.295)

SVM Training set 0.853 (0.769–0.937) 0.958 (0.943–0.973) 0.74 (0.726–0.754) 0.972 (0.955–0.988) 0.692 (0.634–0.750)

Validation set 0.787 (0.565–0.978) 0.945 (0.927–0.964) 0.641 (0.527–0.755) 0.965 (0.941–0.988) 0.566(0.499–0.634)

CI, confidence interval.
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via regularization, and utilizing parallelism to optimize training 

efficiency—providing a solid foundation for early screening and 

individualized interventions.

Leveraging feature importance rankings from XGBoost, we 

explored key risk factors through SHAP analysis, focusing on two 

biological pathways implicated in IH pathogenesis: immune 

activation and hypoxic stress. SAA and CRP, acute-phase 

in;ammatory markers, emerged as significant contributors, 

suggesting a pivotal role of immune responses in hemangioma 

development. Both SAA and CRP rise markedly during infection, 

FIGURE 3 

Offers a comprehensive evaluation of the models’ predictive performance, including: (A) ROC curves for the training dataset; (B) ROC curves for the 

validation dataset; (C) calibration curves, where the 45° dashed line represents perfect alignment between predicted and observed outcomes— 

curves closer to this line indicate superior calibration; and (D) decision curve analysis (DCA), with the red curve illustrating the model’s net 

clinical benefit across varying risk thresholds. The intersections between the red curve and the “All” and “None” strategies define the ranges of 

risk thresholds where the model provides clinical utility.
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tissue injury, or in;ammation; notably, SAA may promote 

angiogenesis by facilitating endothelial cell migration and 

proliferation (26–28). Mechanistically, this likely involves activation 

of Toll-like receptors and NF-κB signaling, upregulating pro- 

angiogenic mediators such as VEGF, thereby driving hemangioma 

formation (8, 29–31). In;ammation can also alter the immune 

microenvironment and impair T cell–mediated surveillance, 

allowing aberrant endothelial proliferation to evade immune 

detection and promote tumor growth. Given the immaturity of the 

neonatal immune system, perinatal in;ammatory stimuli—such as 

maternal immune activation or infection—may predispose infants 

to immune dysregulation and abnormal angiogenesis.

SHAP-based analyses of individual risk profiles further 

underscored hypoxic stress as a key pathogenic mechanism. For 

example, Patient 1’s risk was in;uenced by multiple pregnancy, 

prematurity, and low birth weight—all associated with intrauterine 

or perinatal hypoxia. Hypoxia activates hypoxia-inducible factor-1α 
(HIF-1α), which enhances VEGF and other angiogenic factors, 

promoting endothelial proliferation, migration, and aberrant 

vascular formation (32, 33). Preterm and low birth weight infants 

FIGURE 4 

Presents the internal and external validation results for the XGBoost model: (A) ROC curve from the training set; (B) ROC curve from the validation 

set; (C) ROC curve from the testing set; and (D) ROC curve from the external validation cohort.
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often experience systemic hypoxia due to placental insufficiency or 

immature pulmonary function, stimulating angiogenesis and 

aberrant endothelial progenitor cell mobilization, accelerating 

hemangioma growth. Hypoxia may also impair immune 

maturation, amplifying in;ammation and immune dysregulation, 

synergistically fostering tumor progression (34–38).

The predictive model developed herein offers a complementary 

tool for the early identification of high-risk IH in neonates and can 

be seamlessly integrated into clinical screening work;ows. During 

birth or early follow-up, infants’ perinatal data and serum 

immune–in;ammatory biomarkers can be collected, and the model 

employed to stratify them into high- and low-risk groups. High- 

risk infants may be prioritized for imaging evaluations (e.g., 

ultrasound or MRI) to confirm diagnosis and facilitate timely 

intervention, whereas low-risk infants can continue with standard 

follow-up, thereby optimizing allocation of healthcare resources. 

Beyond guiding clinicians in devising personalized monitoring 

protocols and health education strategies—enhancing early 

detection and minimizing delayed diagnoses—the model mitigates 

unnecessary testing and associated economic burdens while 

maintaining safety. At a public health level, it provides quantitative 

evidence to inform newborn screening policies and health 

management strategies. Conceptually, by integrating immune– 

in;ammatory biomarkers with machine learning, the model affords 

novel insights into IH pathogenesis and informs future strategies 

for early prediction and personalized intervention. Consequently, 

FIGURE 5 

post-hoc analyses for model robustness and performance. To evaluate model stability given the limited sample size, (A) Kolmogorov–Smirnov (KS) 

curves were generated to assess separation of predicted risk scores between IH cases and non-IH controls. (B–C) Confusion matrices for the training 

and testing sets compare predicted outcomes with true labels, showing the numbers of true positives (TP), false negatives (FN), false positives (FP), 

and true negatives (TN), thereby illustrating the model’s classification accuracy. (D) Parallel coordinates plots display the contribution of each feature 

to predictions and assess consistency of prediction patterns across samples.
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the principal beneficiaries encompass neonates and their families, 

clinicians, and public health authorities, while the research 

community gains a broadly applicable framework for predictive 

modeling and decision support.

Previous studies typically involved small sample sizes, lacked 

systematic integration of perinatal and immune–in;ammatory 

indicators, and largely relied on conventional statistical methods 

(39). This study uniquely integrates immune-related biomarkers 

into the IH risk prediction framework, overcoming limitations 

of prior research that focused mainly on clinical or imaging 

features. Incorporating immunological parameters enhances 

biological interpretability and elucidates disease mechanisms. 

The comprehensive comparison and validation of multiple 

machine learning models across internal and external cohorts 

demonstrate the XGBoost model’s superior stability, 

reproducibility, and clinical applicability. Multi-dimensional 

evaluation—including calibration and decision curve analyses— 

further reinforces model reliability and translational potential. 

Nonetheless, limitations exist. First, data were sourced from a 

single center; despite external validation, limited geographic and 

demographic diversity may restrict generalizability. Second, 

immune biomarkers such as SAA and CRP are susceptible to 

confounding factors like infection or medication, potentially 

introducing variability; future studies should consider dynamic 

monitoring to improve precision. Third, despite SHAP’s 

interpretability advantages, the inherent “black-box” nature of 

complex models like XGBoost may impede clinical transparency 

and acceptance. Future research should integrate more 

interpretable approaches and involve larger, multicenter datasets 

to validate robustness and facilitate clinical integration. With 

regard to class imbalance, the proportion of IH cases in this 

study was approximately 5.5%, re;ecting a moderate degree of 

imbalance. We did not implement techniques such as SMOTE, 

undersampling, or class weighting, guided by the following 

considerations: first, ensemble algorithms like XGBoost and 

Random Forest inherently possess strong robustness to class 

imbalance, mitigating its effects through internal sample 

weighting and structural mechanisms; second, stratified random 

sampling was applied to preserve consistent class distributions 

between training and testing sets, coupled with ten-fold cross- 

validation to enhance model stability and generalizability. 

Nonetheless, the absence of dedicated imbalance-handling 

strategies may have constrained the performance of certain 

models—particularly SVM and KNN—in accurately identifying 

minority-class samples, representing a limitation of this study. 

Future investigations will consider incorporating SMOTE, class 

weighting, and related approaches, systematically evaluating their 

in;uence on model performance. Furthermore, due to limitations 

of the medical record system, detailed data on pregnancy-related 

pathological factors could not be comprehensively obtained or 

presented, representing an additional study limitation. Moreover, 

different IH subtypes may have distinct pathogenic mechanisms 

and risk factors, which could lead to variability in the predictive 

performance of the model. However, in this study, the total IH 

sample comprised only 81 cases, with limited numbers in each 

subtype (superficial, n = 50; deep, n = 20; mixed, n = 11). 

Conducting subgroup analyses under these conditions may result 

in insufficient statistical power, precluding reliable conclusions. 

This represents a major limitation of the current study. In future 

research, we plan to perform subtype-specific analyses in larger, 

multicenter cohorts to validate the model’s predictive 

performance across different IH subtypes.

FIGURE 6 

Depicts the SHAP summary plot, ranking risk factors according to their mean absolute shapley values, with higher-ranked factors exerting greater 

influence on model predictions.
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Conclusion

This study systematically evaluated the predictive 

performance of four machine learning algorithms for high- 

risk infantile hemangioma, demonstrating that XGBoost 

significantly outperformed the others in accuracy, 

robustness, and generalizability. Utilizing SHAP analysis, we 

elucidated the relative importance of key risk factors, 

identifying serum amyloid A SAA levels, low birth weight, 

VEGF expression, multiple gestations, prematurity, and CRP 

levels as the most prognostically in;uential variables. These 

findings provide critical insights for early clinical 

FIGURE 7 

Illustrates SHAP force plots that provide individualized explanations of prediction outcomes. Variables are arranged horizontally based on their 

absolute impact magnitude, with blue bars indicating features that reduce predicted risk (negative SHAP values) and red bars indicating features 

that increase predicted risk (positive SHAP values). Panels (A) through (D) correspond to four representative patients, respectively.
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identification of high-risk infants and lay the foundation for 

developing personalized intervention strategies.
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