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Machine learning identifies
iImmune-perinatal predictors of
infantile hemangioma

Dongdong Wu and Neng Wan*

Department of Burn and Plastic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing
Medical University, Huaian, Jiangsu, China

Background: Infantile hemangioma (IH), the most common vascular tumor of
infancy, exhibits hallmark features of immune and inflammatory dysregulation.
While most cases are self-limiting, a subset progresses with potentially severe
complications. Despite its benign classification, IH offers a unique model to
investigate immune-mediated mechanisms in early tumorigenesis. However,
risk stratification models incorporating immune-inflammatory markers
remain underdeveloped.

Methods: A total of 1,466 infants and young children were enrolled, including
81 with IH. Comprehensive perinatal, clinical, and laboratory data were
collected. Candidate risk factors were identified using logistic regression. Four
machine learning algorithms—XGBoost, Random Forest, Support Vector
Machine, and k-Nearest Neighbors—were employed to construct predictive
models. Model performance was assessed through internal and external
validation. SHapley Additive exPlanations (SHAP) were applied to interpret
feature contributions and immune-inflammatory signatures.

Results: Key risk factors included prematurity, multiple gestation, low birth
weight, and elevated levels of VEGF, CRP, and SAA—markers linked to
inflammation and immune activation. The XGBoost model achieved superior
performance, with an AUC of 0.952 (training), 0.935 (internal validation), and
0.870 (external validation). SHAP analysis highlighted SAA, VEGF, and low birth
weight as the most influential predictors, reflecting a critical link between
innate immune dysregulation and IH development.

Conclusion: This study presents a robust, interpretable machine learning model
that leverages immune-perinatal features to predict IH risk. Our findings support
the notion that IH may serve as a paradigm for inflammation-associated
vascular tumorigenesis, with implications for early detection and personalized
intervention strategies in immune-driven neoplasms.
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Introduction

Infantile hemangioma (IH) is the most prevalent benign vascular tumor in infancy,
characterized by abnormal localized or diffuse endothelial proliferation, primarily affecting
the skin and soft tissues (1, 2). Although most IHs follow a self-limiting course, their
subtle onset and delayed clinical manifestation frequently preclude detection at birth. As
lesions emerge and enlarge during early infancy, a subset of cases enters a phase of rapid
proliferation, potentially resulting in serious complications such as ulceration, bleeding,
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infection, functional impairment, or even life-threatening events.
Additionally, the aesthetic and psychosocial consequences of
disfiguring lesions may cause significant emotional distress and
hinder social adaptation in early childhood (3-5). Therefore, early
and accurate identification of high-risk cases is essential to initiate
timely intervention, reduce disease burden, and improve long-
term outcomes.

The natural course of IH involves a well-defined proliferative
phase—typically between 1 and 6 months of age, with the most
pronounced growth occurring within the first 3 months. During
this critical window, hemangioma cells exhibit heightened
mitotic activity, driving rapid tumor expansion. Failure to
recognize and treat high-risk IHs during this early proliferative
stage may result in irreversible tissue damage and complications
affecting vision, hearing, or organ function (6-9). Thus, early
risk stratification plays a pivotal role in preventing progression
and preserving healthy development.

Despite its clinical significance, the identification of robust risk
factors for IH remains challenging. Current risk assessment tools
rely largely on clinical scoring systems or empirical judgment,
which often lack sufficient sensitivity, specificity, and scalability
across diverse populations (10, 11). These conventional models
tend to incorporate only a limited range of variables, failing to
capture the complex, multifactorial pathogenesis of IH—an
interplay of genetic, immunological, environmental, and
intrauterine factors that remains incompletely understood.

Recent advances in machine learning (ML) offer transformative
capabilities for disease risk modeling. ML algorithms excel at
analyzing high-dimensional data, identifying complex nonlinear
interactions, and generating highly predictive models that surpass
traditional statistical methods in accuracy and generalizability
(12-14). Despite its growing application in clinical medicine, ML
has been underutilized in IH research, especially in Asian
populations. This gap highlights both the novelty and necessity of
applying ML approaches to IH risk prediction in demographically
diverse cohorts.

Although numerous studies from Europe and North America
have contributed to our understanding of IH epidemiology and
clinical predictors (10, 15-17), their applicability to Asian
populations is limited by genetic, environmental, and healthcare
system differences. As such, developing population-specific
predictive models is crucial for advancing precision diagnostics
and personalized care in TH management.

The central hypothesis of this study is that an integrated
“immune-perinatal signature,” combining perinatal characteristics
with serum immune-inflammatory biomarkers, can reliably predict
the onset of IH. We curated a large infant cohort comprising both
IH cases and controls and applied multiple machine learning
algorithms to identify key risk factors and construct a robust,
interpretable predictive model. In this study, we prioritized three
biomarkers—VEGF, CRP, and SAA—based on strong biological
and clinical rationale. First, VEGF-A and its signaling pathway play
a central role in angiogenesis, and elevated VEGF levels have been
detected in proliferative IH lesions. Several histological and serum
studies further suggest that VEGF levels correlate with disease
activity, providing direct pathophysiological support for its role as
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an angiogenesis-related biomarker. Second, CRP is a widely used
clinical marker of acute inflammation. IH lesions, particularly
when complicated by ulceration or infection, can trigger systemic
inflammatory responses and elevated inflammatory markers; more
broadly, inflammation is implicated in IH onset and progression,
making CRP a useful indicator of host inflammatory status and TH
risk. Third, SAA, another major acute-phase protein, has recently
been recognized for its roles in immune regulation, inflammatory
pathway activation, and tumor microenvironment modulation.
Although direct evidence linking SAA to IH is limited, its potential
function along the inflammation-immune-angiogenesis axis
makes it a compelling candidate biomarker. Additionally, we
applied Shapley Additive Explanations (SHAP) to interpret model
outputs and identify the principal biological determinants. This
study aims to validate our hypothesis, highlighting the potential of
machine learning-driven approaches for early risk stratification,
informing personalized therapeutic strategies for IH, and
advancing mechanistic insights into immune-mediated processes in
early tumorigenesis.

Materials and methods
Study subjects

This study leveraged clinical data sourced from three tertiary
medical institutions in China: Wuxi People’s Hospital, Wuxi
Second People’s Hospital, and Tengzhou Central People’s Hospital.
Inclusion criteria encompassed: (1) infants aged 0-12 months at
enrollment; (2) undergoing vascular lesion screening at birth or
during infancy prompted by physical examination findings or
clinical symptoms; (3) availability of comprehensive perinatal data,
including gestational age, birth weight, and Apgar scores;
(4) detailed maternal-infant records, comprising pregnancy-related
complications, conception mode, and history of drug exposure;
(5) documented family consent for longitudinal follow-up,
alongside either in-hospital birth registration or complete follow-up
(1) confirmed
diagnoses of syndromic vascular anomalies, including but not

documentation. Exclusion criteria comprised:

limited to PHACE syndrome, Sturge-Weber syndrome, or
CLOVES syndrome, as well as concurrent non-hemangioma
vascular malformations; (2) known chromosomal aberrations or
major structural defects such as trisomy 21 or severe cardiac and
cerebral malformations; (3) extreme prematurity (gestational age
<28 weeks) or extremely low birth weight (<1,000 g); (4) presence
of profound immunodeficiency or antecedent neoplastic
conditions, including congenital immunodeficiency syndromes; (5)
mortality or attrition within 12 months postpartum. In this study,
the case group comprised infants and young children with
clinically, radiologically, and pathologically confirmed IH. The
control group was drawn from contemporaneous infants
undergoing routine check-ups or clinical visits at the same
hospitals, all of whom were systematically screened to exclude IH,
other vascular tumors, and congenital vascular malformations.
Furthermore, individuals with evident infections, immunological

disorders, metabolic diseases, or other severe systemic conditions
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were excluded to ensure that the control group accurately represented
a population of “healthy infants without IH.” This retrospective
investigation received ethical approval from the institutional review
boards of all participating centers, with informed consent
requirements duly waived.

Study design and data collection

A comprehensive set of 40 clinical variables encompassing
diverse domains was systematically collected to enable an
exhaustive risk assessment for infantile hemangiomas. These
variables comprised: Demographic and parental factors including
infant sex, small-for-gestational-age (SGA) status, parental age, and
mode of delivery; Perinatal and obstetric history such as maternal
American Society of Anesthesiologists (ASA) score, maternal
smoking and alcohol consumption, history of miscarriage,
placental abnormalities, paternal smoking and alcohol use, family
history of hemangiomas, multiple gestation, prematurity, and low
birth weight. Maternal comorbidities and antenatal conditions
included hormone therapy during pregnancy, intrauterine
infection, gestational hypertension, gestational diabetes, maternal
anemia, and umbilical cord complications. Neonatal conditions
and congenital anomalies encompassed Apgar scores, congenital
heart disease (CHD), and gestational age classification. Laboratory
biomarkers incorporated serum albumin (ALB), C-reactive protein
(CRP), serum amyloid A (SAA), vascular endothelial growth factor
(VEGF), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a),
and neutrophil-to-lymphocyte ratio (NLR). Tumor characteristics
and clinical manifestations were also recorded, including
hemangioma subtype, age at onset, lesion size and morphology,
anatomical location, presence of complications, and lesion count.
The principal outcome measure was the occurrence of infantile
hemangioma. In this study, biomarkers including VEGF, CRP, and
SAA were derived from blood tests conducted during routine
postnatal check-ups and early clinical visits, collected within 1-6
months after birth. The majority of samples were obtained prior to
the clinical confirmation of IH or during the early stage of the
lesion, typically at the time when a suspicious lesion was first
identified. Recognizing that SAA and CRP are acute-phase
reactants susceptible to elevation during acute infections, which
could confound study outcomes, we implemented rigorous
measures during study design and data collection to mitigate this
effect. All enrolled infants underwent comprehensive clinical
evaluation at the time of sampling, with those exhibiting overt
signs of infection (e.g., fever, respiratory or urinary tract infections)
systematically excluded. Beyond SAA and CRP, additional
infection-related laboratory indices, including white blood cell
count and neutrophil proportion, were incorporated to identify and
omit cases with potential active infection. Sample collection was
further confined to infants without a recent history of acute
infection (e.g., within the preceding two weeks) to minimize
interference. Collectively, these measures ensured that observed
variations in SAA and CRP more faithfully reflected the immune-

inflammatory milieu pertinent to infantile hemangioma.
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Missing data handling

Variables exhibiting a missing rate below 5% were designated as
having low missingness, whereas those with missing rates ranging
from 5% to 30% were considered to possess moderate to high
missingness. Two complementary strategies were employed to
address these gaps. For variables with low missingness, simple
imputation was implemented: continuous variables were imputed
using the median, and categorical variables were imputed using the
mode (most frequent category). This method, confined to scenarios
of minimal missingness, aimed to preserve sample integrity and
was subsequently benchmarked against multiple imputation
outcomes in sensitivity analyses. For variables with moderate to
high missingness, multiple imputation was undertaken. Binary
variables were imputed via logistic regression models, wherein the
probability distribution of missing values was inferred from
available predictors, followed by stochastic sampling to retain
intrinsic inter-variable correlations. Multicategorical variables were
addressed using multinomial logistic regression, concurrently
estimating the probability of each mutually exclusive category and
imputing missing entries through probabilistic sampling. This
approach preserved the original data distribution, mitigated bias,
enhanced the plausibility of imputations, and consequently
bolstered the predictive robustness of downstream models.

Diagnosis of infantile hemangioma and
definition of associated factors

The diagnosis of infantile hemangioma was ascertained
through a comprehensive clinical framework, predominantly
grounded in meticulous physical examination and augmented by
high-resolution imaging modalities as warranted (18-20). Initial
assessments were performed by seasoned pediatricians or
dermatologists, drawing upon key clinical hallmarks including
lesion onset, rapid proliferative behavior, characteristic
coloration ranging from vivid red to bluish-purple, soft and
elevated consistency, blanching response, and the quintessential
triphasic pattern of proliferation, plateau, and involution.

For lesions exhibiting classical phenotypes, diagnosis was
rendered on clinical grounds alone. In instances of atypical
morphology, suspected deep tissue infiltration, or to discriminate
from alternative vascular anomalies such as vascular malformations
or angiosarcoma, color Doppler ultrasonography was employed to
appraise lesion depth, margins, internal structure, and
hemodynamic features. Lesions located in anatomically intricate
regions—such as the orbit, cervical area, oropharynx, or visceral
organs—or those demonstrating extensive involvement, were
further evaluated using magnetic resonance imaging (MRI) to
precisely delineate lesion boundaries and their spatial relationships
with adjacent tissues. Cases presenting equivocal imaging findings
underwent multidisciplinary review by senior radiologists.
Definitive diagnoses were established through consensus by no
fewer than two senior pediatric specialists, synthesizing clinical

presentation, imaging data, and longitudinal follow-up, thereby
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ensuring strict adherence to diagnostic criteria for infantile
hemangioma among all enrolled subjects.

Development and evaluation of predictive
models for machine learning algorithms

This study utilized SPSS and R software to develop and
systematically evaluate a clinical prediction model through the
following steps:

1. Data preprocessing.

The study population consisted of infants and young children
treated at Wuxi People’s Hospital and Wuxi Second People’s
Hospital from January 2020 to January 2024, designated as the
with
comparable conditions from Tengzhou Central People’s Hospital

internal  validation cohort. Concurrently, patients
during the same period formed the external validation cohort to
assess model generalizability. Within the internal cohort,
stratified random sampling was applied to split the data into
training and test sets at a 7:3 ratio. This stratification aimed to
enhance detection of low-prevalence outcomes, such as infantile
hemangioma, mitigating bias toward the majority class and

improving both predictive performance and clinical applicability.
2. Variable selection.

A systematic statistical analysis of candidate variables within the
internal cohort was performed to identify clinical characteristics
significantly associated with infantile hemangioma. Univariate
analyses employed chi-square tests for categorical variables and
independent-samples t-tests for continuous variables, with variables
reaching significance (P <0.05) considered potential risk factors.
These variables were further analyzed in a multivariable logistic
regression model to control for confounding and identify
independent predictors, with adjusted odds ratios and 95%

confidence intervals quantifying their predictive strength.
Complementing traditional statistical approaches, four classical
machine learning algorithms—Extreme Gradient Boosting

(XGBoost), Random Forest (RF), Support Vector Machine (SVM),
and k-Nearest Neighbor (KNN)—were applied to assess feature
importance in a high-dimensional context. Cross-validation of
feature importance rankings across the four models identified the
top ten consistently ranked features, which were selected as key
predictors. This consensus-driven, multi-algorithm feature selection
strategy enhanced robustness and interpretability, ensuring
consistency across modeling frameworks and providing a solid
foundation for model development. In this study, hyperparameter
optimization for all four models was conducted via grid search,
systematically exploring every possible combination within a
predefined parameter space and assessing model performance
identify the

maximized validation set outcomes. This exhaustive strategy ensures

through cross-validation to configuration that
that potentially optimal parameter sets are not overlooked and is
especially suited to moderately sized search spaces. Despite its
computational demands, grid search offers robust stability and
reliability in hyperparameter selection, thereby enhancing model
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generalizability and predictive precision. Coupled with ten-fold
cross-validation, this approach effectively mitigates overfitting and
upholds the rigor and scientific integrity of the tuning process.

3. Model construction and evaluation.

The selected features were incorporated into the four machine
learning models to predict infantile hemangioma risk. Model
performance was assessed across three dimensions: discrimination,

TABLE 1 Provides a detailed overview of the demographic and clinical
characteristics of pediatric patients diagnosed with
infantile hemangioma.

Characteristic Hemangioma
patients (N = 81)

Sex, N (%) Female 58 (71.605%)
Male 23 (28.395%)
Ageatonset, median 18.000 [9.000;26.000]
[Q1-Q3]
SGA, N (%) No 54 (66.667%)
Yes 27 (33.333%)
Primiparity, N (%) No 59 (72.840%)
Yes 22 (27.160%)
Apgar score, N (%) >7 52 (64.198%)
<7 29 (35.802%)
MP, N (%) No 38 (46.914%)
Yes 43 (53.086%)
Preterm birth, N (%): | No 45 (55.556%)
Yes 36 (44.444%)
Low birth weight No 32 (39.506%)
infant, N (%)
Yes 49 (60.494%)

Mode of delivery, N
(%)

Vaginal delivery

Cesarean section
Nuchal cord, N (%) No 68 (83.951%)
Yes 13 (16.049%)
Lesion size, median 6.900 [4.200;11.200]

[Q1-Q3]

Lesion type, N (%) Localized 50 (61.728%)
Segmental 10 (12.346%)
Indeterminate 20 (24.691%)
Multifocal 1 (1.235%)
Number of lesions, N | Single 63 (77.778%)
(%)
Multiple 18 (22.222%)
Localization, N (%) Head and neck 51 (62.963%)
Face 13 (16.049%)
Trunk 9 (11.111%)
Extremities 6 (7.407%)
Perineum 2 (2.469%)
Lesions with Ulceration 18 (22.222%)

complications, N (%)

Auditory canal or 4 (4.938%)
airway obstruction
Visual threat or

impairment

2 (2.469%)
Ulceration with 2 (2.469%)
secondary infection
Ulceration with 2 (2.469%)
bleeding

No complications 53 (65.432%)

SGA, small for gestational age; MP, multiple pregnancy.
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calibration, and clinical utility. Discriminative ability was evaluated
via receiver operating characteristic (ROC) curves and area under
the curve (AUC). Calibration was assessed with calibration plots
comparing predicted vs. observed outcomes, supplemented by
Brier scores as quantitative measures. Clinical utility was evaluated
using decision curve analysis (DCA), wherein the x-axis represents
threshold probability—reflecting the risk level at which clinical
intervention is warranted—and the y-axis denotes net benefit,
balancing true positive gains against overtreatment harms. DCA
includes three reference curves: model prediction, treat-all, and
treat-none strategies. Superior clinical value is indicated when the
model’s net benefit curve surpasses the extremes. To improve
generalizability and reduce bias from data partitioning, 10-fold
cross-validation was implemented. The internal dataset was
randomly divided into ten equal, non-overlapping folds; in each
iteration, one fold served as validation, while the other nine were
combined for training and hyperparameter tuning. Performance
metrics including accuracy, AUC, and Brier score were computed
per fold and averaged to yield robust estimates, minimizing chance
effects and enhancing evaluation reliability.

10.3389/fped.2025.1662381

4. External validation.

The optimal model and hyperparameters identified during
internal validation were applied directly to the external cohort.
Model to verify
consistency with internal results and evaluate generalizability

performance metrics were recalculated

and clinical utility in a real-world setting.
5. Assessment of model robustness and performance.

To evaluate the robustness and performance of the model within the
constraints of a limited sample size, we conducted a series of post-hoc
analyses. First, Kolmogorov-Smirnov (KS) curves were constructed to
assess the separation of predicted risk scores between IH cases and
non-IH controls. Second, confusion matrices for both the training
and testing sets were generated to visually appraise classification
performance, delineating true positives (TP), false negatives (FN),
false positives (FP), and true negatives (TN), thereby offering a
precise representation of the model’s capacity to accurately
discriminate IH from non-IH samples. Third, parallel coordinates
plots were employed to interrogate the contribution of individual

Infants and young children who received diagnosis and
treatment between January 2020 and January 2024(n=1712)

With a confirmed diagnosis of vascular syndrome or other
types of vascular malformations (n=36)

With definite chromosomal abnormalities or severe structural
malformation disorders (n=24)

PExtremely premature infants or ultra-low birth weight infants (n=
10)

With severe immune system diseases or a history of tumors
(n=94)

Died or were lost to follow-up within 12 months after birth (n=3)

\ 4
Enrolled in the study (n=1 545)|

_>| Loss of follow up (n=79)|

Internal validation set (n=818)| External validation set (n=648)|

Infantile hemangioma |Non-infantile hemangioma
(n=33) (n=615)

Infantile hemangioma [ Non-infantile hemangioma
(n=48) (n=770)

FIGURE 1
Illustrates the patient enrollment flowchart, clearly outlining the sample selection process.
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TABLE 2 Comparison of features between the internal and external datasets.

10.3389/fped.2025.1662381

Variables All (N =1,466) | Internal dataset (N = 818) External dataset (N = 648) P-value
Sex Female 1,014 (69.168%) 561 (68.582%) 453 (69.907%) 0.625
Male 452 (30.832%) 257 (31.418%) 195 (30.093%)
Age <35 1,172 (79.945%) 645 (78.851%) 527 (81.327%) 0.267
>35 294 (20.055%) 173 (21.149%) 121 (18.673%)
Age* <35 986 (67.258%) 557 (68.093%) 429 (66.204%) 0.478
>35 480 (32.742%) 261 (31.907%) 219 (33.796%)
ASA <3 1,322 (90.177%) 739 (90.342%) 583 (89.969%) 0.881
>3 144 (9.823%) 79 (9.658%) 65 (10.031%)
Drinking history No 1,128 (76.944%) 621 (75.917%) 507 (78.241%) 0.324
Yes 338 (23.056%) 197 (24.083%) 141 (21.759%)
Smoking history No 1,322 (90.177%) 729 (89.120%) 593 (91.512%) 0.15
Yes 144 (9.823%) 89 (10.880%) 55 (8.488%)
Drinking history* No 1,016 (69.304%) 547 (66.870%) 469 (72.377%) 0.027
Yes 450 (30.696%) 271 (33.130%) 179 (27.623%)
Smoking history* No 1,226 (83.629%) 679 (83.007%) 547 (84.414%) 0.515
Yes 240 (16.371%) 139 (16.993%) 101 (15.586%)
Family history No 1,272 (86.767%) 697 (85.208%) 575 (88.735%) 0.057
Yes 194 (13.233%) 121 (14.792%) 73 (11.265%)
History of miscarriage No 1,189 (81.105%) 656 (80.196%) 533 (82.253%) 0.351
Yes 277 (18.895%) 162 (19.804%) 115 (17.747%)
Primiparity No 1,220 (83.220%) 660 (80.685%) 560 (86.420%) 0.004
Yes 246 (16.780%) 158 (19.315%) 88 (13.580%)
Hormonal therapy No 1,152 (78.581%) 619 (75.672%) 533 (82.253%) 0.003
Yes 314 (21.419%) 199 (24.328%) 115 (17.747%)
Anemia No 1,346 (91.814%) 744 (90.954%) 602 (92.901%) 0.209
Yes 120 (8.186%) 74 (9.046%) 46 (7.099%)
CHD No 1,258 (85.812%) 676 (82.641%) 582 (89.815%) <0.001
Yes 208 (14.188%) 142 (17.359%) 66 (10.185%)
Hyperlipidemia No 1,048 (71.487%) 567 (69.315%) 481 (74.228%) 0.044
Yes 418 (28.513%) 251 (30.685%) 167 (25.772%)
Infection during pregnancy No 1,124 (76.671%) 604 (73.839%) 520 (80.247%) 0.005
Yes 342 (23.329%) 214 (26.161%) 128 (19.753%)
Gestational hypertension No 1,048 (71.487%) 559 (68.337%) 489 (75.463%) 0.003
Yes 418 (28.513%) 259 (31.663%) 159 (24.537%)
Gestational diabetes mellitus No 1,010 (68.895%) 535 (65.403%) 475 (73.302%) 0.001
Yes 456 (31.105%) 283 (34.597%) 173 (26.698%)
ALB >30 g/L 1,146 (78.172%) 617 (75.428%) 529 (81.636%) 0.005
<30 g/L 320 (21.828%) 201 (24.572%) 119 (18.364%)
Mode of delivery Vaginal delivery 1,213 (82.742%) 671 (82.029%) 542 (83.642%) 0.458
Cesarean section 253 (17.258%) 147 (17.971%) 106 (16.358%)
Multiple pregnancy No 1,162 (79.263%) 644 (78.729%) 518 (79.938%) 0.615
Yes 304 (20.737%) 174 (21.271%) 130 (20.062%)
Preterm birth No 1,291 (88.063%) 719 (87.897%) 572 (88.272%) 0.89
Yes 175 (11.937%) 99 (12.103%) 76 (11.728%)
Placental abnormalities No 1,445 (98.568%) 807 (98.655%) 638 (98.457%) 0.923
Yes 21 (1.432%) 11 (1.345%) 10 (1.543%)
Nuchal cord No 1,317 (89.836%) 728 (88.998%) 589 (90.895%) 0.268
Yes 149 (10.164%) 90 (11.002%) 59 (9.105%)
Low birth weight infant No 1,310 (89.359%) 729 (89.120%) 581 (89.660%) 0.804
Yes 156 (10.641%) 89 (10.880%) 67 (10.340%)
SGA No 1,200 (81.855%) 668 (81.663%) 532 (82.099%) 0.883
Yes 266 (18.145%) 150 (18.337%) 116 (17.901%)
Apgar score >7 1,306 (89.086%) 722 (88.264%) 584 (90.123%) 0.294
<7 160 (10.914%) 96 (11.736%) 64 (9.877%)
VEGEF level <115 pg/mL 1,189 (81.105%) 639 (78.117%) 550 (84.877%) 0.001
>115 pg/mL 277 (18.895%) 179 (21.883%) 98 (15.123%)
CRP level <10 mg/L 1,062 (72.442%) 570 (69.682%) 492 (75.926%) 0.009
>10 mg/L 404 (27.558%) 248 (30.318%) 156 (24.074%)
SAA level <10 mg/L 1,178 (80.355%) 629 (76.895%) 549 (84.722%) <0.001
(Continued)
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TABLE 2 Continued

10.3389/fped.2025.1662381

‘ All (N =1,466) | Internal dataset (N = 818) External dataset (N = 648)

>10 mg/L 288 (19.645%)
NLR <3 1,110 (75.716%)
>3 356 (24.284%)

TNF-a <8 pg/mL 1,174 (80.082%)

>8 pg/mL 292 (19.918%)

IL-6 <7 pg/mL 1,225 (83.561%)

>7 pg/mL 241 (16.439%)

Hemangioma No 1,385 (94.475%)
Yes 81 (5.525%)

189 (23.105% 99 (15.278%)

)
597 (72.983%) 513 (79.167%) 0.007
221 (27.017%) 135 (20.833%)
637 (77.873%) 537 (82.870%) 0.021
181 (22.127%) 111 (17.130%)
672 (82.152%) 553 (85.340%) 0.118
146 (17.848%) 95 (14.660%)
770 (94.132%) 615 (94.907%) 0.596

48 (5.868%) 33 (5.093%)

Sex, Family history, Primiparity, Mode of delivery, Multiple pregnancy, Preterm birth, Placental abnormalities, Nuchal cord, Low birth weight infant, SGA, Apgar score, VEGF level, CRP
level, SAA level, NLR, TNF-a, IL-6 — Infant clinical characteristics; Age, ASA, Drinking history, Smoking history, History of miscarriage, Hormonal therapy, Anemia, CHD, Hyperlipidemia,

Infection during pregnancy, Gestational hypertension, Gestational diabetes, ALB — Maternal clinical characteristics; Age*,

Drinking history*, Smoking history* — Paternal clinical

characteristics. SGA, Small for Gestational Age; VEGF, Vascular Endothelial Growth Factor; CRP, C-Reactive Protein; SAA, Serum Amyloid A; NLR, Neutrophil-to-Lymphocyte Ratio;
TNF-a, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6; ASA, Acute Phase Serum Amyloid A; OR, odds ratio; CI, confidence interval.

features to predictions and to evaluate the consistency of prediction
patterns across samples. Collectively, these analyses demonstrate
that, notwithstanding the limited IH case count, the model
sustained stable discriminative power and consistent predictive
behavior, corroborating the reliability of the study’s findings.

6. Model interpretation.

To elucidate model decision mechanisms, SHapley Additive
exPlanations (SHAP) were utilized. SHAP values quantify each
feature’s varying
combinations, providing a fair attribution of variable impact on

marginal  contribution  across feature
overall predictions. SHAP visualizations enhanced transparency
and interpretability: summary plots displayed distributions of
SHAP values for all features across samples, indicating feature
importance and effect directionality, with each dot representing
a sample’s SHAP value colored by original feature value. This
visualization identified dominant risk factors and their impact
patterns. Additionally, SHAP force plots offered individualized
explanations, illustrating how each feature influenced a single
sample’s prediction through positive or negative “forces,”
beginning from a baseline and culminating in the predicted risk.
These plots facilitate interpretation at both population and

individual levels, supporting personalized risk profiling.

Results
Basic clinical information of the patient

A total of 1,466 infants and young children were enrolled in the
study, including 81 cases of hemangioma (Table 1, Supplementary
Table S1 and Figure 1). The cohort was predominantly female
(71.6%), with males comprising 28.4%. The median age at onset
was 18.0 months. Within the group, 33.3% were SGA, 27.2% were
firstborns, and 35.8% had a neonatal Apgar score below 7. Multiple
gestations accounted for 53.1% of cases, 44.4% were born
prematurely, and 60.5% had low birth weight. Nuchal cord
occurrence was observed in 16.0% of neonates. Consistent with
prior research, hemangiomas were classified morphologically into
focal, segmental, indeterminate, and multifocal subtypes. Focal
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hemangiomas predominated, representing 61.7% of cases, followed
by indeterminate (24.7%) and segmental (12.3%) types; multifocal
lesions were rare, present in only 1.2% of patients. The majority of
children (77.8%) presented with solitary lesions, whereas 22.2%
exhibited multiple lesions. Lesion distribution was highest on the
head and neck (62.96%), followed by the face (16.0%), trunk
(11.1%), extremities (7.4%),
complications, 65.4% of patients were complication-free. Among

and perineum (2.5%). Regarding

those affected, ulceration was the most frequent (22.2%), followed
by auditory or airway obstruction (4.9%), vision impairment
(2.5%), secondary infection (2.5%), and bleeding (2.5%). Notably,
these complications frequently co-occurred with ulceration. The
internal dataset included 818 participants, of whom 48 had
infantile hemangioma (IH). The external dataset comprised 648
participants, including 33 IH cases. A comparison of the features is
presented in Table 2. The internal dataset was randomly divided
into training and testing sets at a 7:3 ratio, with their characteristics
compared in Table 3. The original dataset utilized in this study
is provided in Supplementary Table S2. To ensure the
reproducibility and transparency of this study, all source code used
—including scripts for data preprocessing, model construction,
performance evaluation, and SHAP analysis—is available at
the permanent access link

DWh9chMQI-GKDBjEj-sFIAA).

(https://www.jianguoyun.com/p/

Identification of risk factors for infantile
hemangioma

Both univariate and multivariate logistic regression analyses
identified
hemangioma

several independent risk factors for infantile

development, including gestational diabetes
mellitus, mode of delivery, multiple pregnancy, preterm birth,
low birth weight, Apgar score, and elevated levels of VEGEF,
CRP, and SAA (P<0.05) (Table 4). These results highlight the
multifactorial etiology of infantile hemangioma, implicating
perinatal factors alongside

inflammatory and angiogenic

biomarkers in its pathogenesis.
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TABLE 3 Comparison of features between the training and testing datasets.

Variables

All (N = 818)

Training set (N = 572)

10.3389/fped.2025.1662381

Testing set (N = 246)

P-value
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Sex Female 561 (68.582%) 401 (70.105%) 160 (65.041%) 0.177
Male 257 (31.418%) 171 (29.895%) 86 (34.959%)
Age <35 645 (78.851%) 447 (78.147%) 198 (80.488%) 0.51
>35 173 (21.149%) 125 (21.853%) 48 (19.512%)
Age* <35 557 (68.093%) 392 (68.531%) 165 (67.073%) 0.742
>35 261 (31.907%) 180 (31.469%) 81 (32.927%)
ASA <3 739 (90.342%) 516 (90.210%) 223 (90.650%) 0.947
>3 79 (9.658%) 56 (9.790%) 23 (9.350%)
Drinking history No 621 (75.917%) 432 (75.524%) 189 (76.829%) 0.756
Yes 197 (24.083%) 140 (24.476%) 57 (23.171%)
Smoking history No 729 (89.120%) 512 (89.510%) 217 (88.211%) 0.671
Yes 89 (10.880%) 60 (10.490%) 29 (11.789%)
Drinking history* No 547 (66.870%) 382 (66.783%) 165 (67.073%) 1
Yes 271 (33.130%) 190 (33.217%) 81 (32.927%)
Smoking history* No 679 (83.007%) 475 (83.042%) 204 (82.927%) 1
Yes 139 (16.993%) 97 (16.958%) 42 (17.073%)
Family history No 697 (85.208%) 486 (84.965%) 211 (85.772%) 0.849
Yes 121 (14.792%) 86 (15.035%) 35 (14.228%)
History of miscarriage No 656 (80.196%) 454 (79.371%) 202 (82.114%) 0.42
Yes 162 (19.804%) 118 (20.629%) 44 (17.886%)
First pregnancy No 660 (80.685%) 466 (81.469%) 194 (78.862%) 0.442
Yes 158 (19.315%) 106 (18.531%) 52 (21.138%)
Hormonal therapy No 619 (75.672%) 441 (77.098%) 178 (72.358%) 0.174
Yes 199 (24.328%) 131 (22.902%) 68 (27.642%)
Anemia No 744 (90.954%) 523 (91.434%) 221 (89.837%) 0.551
Yes 74 (9.046%) 49 (8.566%) 25 (10.163%)
CHD No 676 (82.641%) 474 (82.867%) 202 (82.114%) 0.873
Yes 142 (17.359%) 98 (17.133%) 44 (17.886%)
Hyperlipidemia No 567 (69.315%) 391 (68.357%) 176 (71.545%) 0.41
Yes 251 (30.685%) 181 (31.643%) 70 (28.455%)
Infection during pregnancy No 604 (73.839%) 425 (74.301%) 179 (72.764%) 0.71
Yes 214 (26.161%) 147 (25.699%) 67 (27.236%)
Gestational hypertension No 559 (68.337%) 385 (67.308%) 174 (70.732%) 0.377
Yes 259 (31.663%) 187 (32.692%) 72 (29.268%)
Gestational diabetes mellitus No 535 (65.403%) 393 (68.706%) 142 (57.724%) 0.003
Yes 283 (34.597%) 179 (31.294%) 104 (42.276%)
ALB >30 g/L. 617 (75.428%) 434 (75.874%) 183 (74.390%) 0.716
<30 g/L 201 (24.572%) 138 (24.126%) 63 (25.610%)
Mode of delivery Vaginal delivery 671 (82.029%) 480 (83.916%) 191 (77.642%) 0.041
Cesarean section 147 (17.971%) 92 (16.084%) 55 (22.358%)
Multiple pregnancy No 644 (78.729%) 448 (78.322%) 196 (79.675%) 0.733
Yes 174 (21.271%) 124 (21.678%) 50 (20.325%)
Preterm birth No 719 (87.897%) 497 (86.888%) 222 (90.244%) 0.218
Yes 99 (12.103%) 75 (13.112%) 24 (9.756%)
Placental abnormalities No 807 (98.655%) 566 (98.951%) 241 (97.967%) 0.321
Yes 11 (1.345%) 6 (1.049%) 5 (2.033%)
Nuchal cord No 728 (88.998%) 505 (88.287%) 223 (90.650%) 0.385
Yes 90 (11.002%) 67 (11.713%) 23 (9.350%)
Low birth weight infant No 729 (89.120%) 507 (88.636%) 222 (90.244%) 0.579
Yes 89 (10.880%) 65 (11.364%) 24 (9.756%)
SGA No 668 (81.663%) 479 (83.741%) 189 (76.829%) 0.025
Yes 150 (18.337%) 93 (16.259%) 57 (23.171%)
Apgar score >7 722 (88.264%) 512 (89.510%) 210 (85.366%) 0.116
<7 96 (11.736%) 60 (10.490%) 36 (14.634%)
VEGEF level <115 pg/mL 639 (78.117%) 441 (77.098%) 198 (80.488%) 0.326
>115 pg/mL 179 (21.883%) 131 (22.902%) 48 (19.512%)
CRP level <10 mg/L 570 (69.682%) 393 (68.706%) 177 (71.951%) 0.399
>10 mg/L 248 (30.318%) 179 (31.294%) 69 (28.049%)
SAA level <10 mg/L 629 (76.895%) 443 (77.448%) 186 (75.610%) 0.63
(Continued)
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TABLE 3 Continued

‘ All (N=818) | Training set (N=572) @ Testing set (N = 246)

>10 mg/L 189 (23.105%) 129 (22.552%) 60 (24.390%)

NLR <3 597 (72.983%) 415 (72.552%) 182 (73.984%) 0.736
>3 221 (27.017%) 157 (27.448%) 64 (26.016%)

TNF-a <8 pg/mL 637 (77.873%) 454 (79.371%) 183 (74.390%) 0.138
>8 pg/mL 181 (22.127%) 118 (20.629%) 63 (25.610%)

IL-6 <7 pg/mL 672 (82.152%) 476 (83.217%) 196 (79.675%) 0.265
>7 pg/mL 146 (17.848%) 96 (16.783%) 50 (20.325%)

Hemangioma No 770 (94.132%) 537 (93.881%) 233 (94.715%) 0.762
Yes 8 (5.868%) 35 (6.119%) 13 (5.285%)

Sex, Family history, Primiparity, Mode of delivery, Multiple pregnancy, Preterm birth, Placental abnormalities, Nuchal cord, Low birth weight infant, SGA, Apgar score, VEGF level, CRP
level, SAA level, NLR, TNF-a, IL-6 — Infant clinical characteristics; Age, ASA, Drinking history, Smoking history, History of miscarriage, Hormonal therapy, Anemia, CHD, Hyperlipidemia,
Infection during pregnancy, Gestational hypertension, Gestational diabetes, ALB — Maternal clinical characteristics; Age*, Drinking history*, Smoking history* — Paternal clinical
characteristics. SGA, Small for Gestational Age; VEGF, Vascular Endothelial Growth Factor; CRP, C-Reactive Protein; SAA, Serum Amyloid A; NLR, Neutrophil-to-Lymphocyte Ratio;

TNF-a, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6; ASA, Acute Phase Serum Amyloid A; OR, odds ratio; CI, confidence interval.

To further refine the risk factor profile, we employed four classical
machine learning algorithms—XGBoost, RF, SVM, and KNN—for
feature selection. The overlap of top-ranked features across all
models consistently identified multiple pregnancy, preterm birth,
low birth weight, and elevated VEGF, CRP, and SAA levels as the
strongest predictors of infantile hemangioma (Figures 2A-D). This
machine learning-augmented strategy corroborated the logistic
regression findings and enhanced the robustness of the key
predictive variables. The hyperparameters of the four machine
learning models were optimized via grid search, with XGBoost set
max_depth =4,

as  colsample_bytree=1, learning rate=0.3,

min_child_weight =4, n_estimators=20, reg lambda=0.5, and

subsample=1; RF as criterion =gini, max_depth = None,
max_features = sqrt, min_impurity_decrease =0.0, min_samples_
leaf =1, min_samples_split =2, and n_estimators=100; SVM as
C=10, gamma = scale, kernel = rbf, max_iter = 50,
probability = True, and tol=0.001; and KNN as algorithm = auto,

leaf_size = 10, n_neighbors = 4, p = 2, and weights = uniform.

Model building and evaluation

ROC curve analysis demonstrated that the XGBoost model
exhibited superior predictive performance in both the training and
validation cohorts, achieving an AUC of 0.952 in the training
set and 0.935 in the validation set—the highest among the
four evaluated machine learning algorithms (Table 5 and
Figures 3A-C). These elevated AUC values underscore the model’s
excellent discriminative ability to differentiate between high- and
low-risk infants, reflecting a high degree of predictive accuracy.
Calibration curves for XGBoost, RF, SVM, and KNN revealed
strong agreement between predicted probabilities and observed
outcomes, indicating good calibration and reliable probability
estimation across all models. Additionally, DCA assessed the clinical
utility of each model, demonstrating that across a spectrum of
threshold probabilities, all models provided greater net clinical
benefit compared to “treat-all” or “treat-none” approaches
(Figure 3D). Notably, XGBoost delivered the most favorable clinical
decision support, highlighting its promise for personalized risk
stratification in infantile hemangioma. To rigorously evaluate model
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generalizability, 10-fold cross-validation was performed within the
internal cohort. Specifically, 245 cases (30.0%) were randomly
assigned as a test set, while the remainder were used for training
and cross-validation. This approach minimized sampling bias and
enhanced robustness by averaging performance across multiple data
partitions. In cross-validation, XGBoost achieved the highest overall
performance with a validation AUC of 0.9438 +0.0484, test set
AUC of 0.8366, and accuracy of 0.8943 (Figures 4A-C). By
comparison, the RF model showed a validation AUC of
0.8510 +0.1334, test AUC of 0.8353, and accuracy of 0.8415; SVM
yielded a validation AUC of 0.8326 + 0.1362, test AUC of 0.6827,
but the highest accuracy at 0.9472; and KNN demonstrated a
validation AUC of 0.8466+0.1243, test AUC of 0.8064, and
accuracy of 0.8780. These results collectively emphasize the
consistent superiority of XGBoost in terms of AUC, accuracy, and
stability, establishing it as the most effective algorithm for predicting
high-risk infantile hemangioma. External validation using an
independent  cohort further  corroborated the model’s
generalizability, with XGBoost achieving an AUC of 0.870
(Figure 4D), confirming robust predictive capability on unseen data.
The Kolmogorov-Smirnov (KS) curve demonstrates a clear
separation between the cumulative distribution curves of IH cases
and non-IH controls, with a pronounced maximum vertical
distance (KS value), indicating the model’s efficacy in distinguishing
high-risk from low-risk samples. The confusion matrices for both
the training and testing sets reveal that true positives (TP) and true
negatives (TN) markedly exceed false positives (FP) and false
negatives (FN), underscoring the model’s robust classification
performance and accuracy. Parallel coordinates plots exhibit
consistent line patterns across samples for different features,
effectively illustrating each feature’s contribution to model
predictions and highlighting distinctions in the multi-feature space
between high-risk and low-risk samples, with prediction patterns
remaining stable and devoid of notable anomalies (Figures 5A-D).

Model explanation

The SHAP summary plot (Figure 6) offers a lucid visualization
of the principal risk factors associated with infantile hemangioma,
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TABLE 4 Summarizes the findings from univariate and multivariate analyses identifying variables significantly associated with infantile hemangioma.

Variables Univariate analysis Multivariate analysis
95%Cl P-value OR 95%Cl P-value
Sex Female 561 Reference
Male 257 0.992 [0.529,1.860] 0.979
Age <35 645 Reference Reference
>35 173 6.034 [3.307,11.013] <0.001 2.663 [0.930, 7.563] 0.065
Age* <35 557 Reference Reference
>35 261 1.88 [1.044,3.384] 0.035 2.422 [0.850, 7.056] 0.098
ASA <3 739 Reference Reference
>3 79 2.674 [1.277,5.599] 0.009 2.126 [0.575, 7.126] 0.235
Drinking history No 621 Reference
Yes 197 1.321 [0.694,2.515] 0.397
Smoking history No 729 Reference
Yes 89 0.95 [0.366,2.464] 0.915
Drinking history* No 547 Reference Reference
Yes 271 4.444 [2.392,8.254] <0.001 1.643 [0.593, 4.607] 0.338
Smoking history* No 679 Reference
Yes 139 0.684 [0.285,1.642] 0.396
Family history No 697 Reference
Yes 121 1.356 [0.639,2.876] 0.428
History of miscarriage No 656 Reference
Yes 162 1.731 [0.905,3.307] 0.097
Primiparity No 660 Reference
Yes 158 1.601 [0.826,3.103] 0.163
Hormonal therapy No 619 Reference
Yes 199 0.809 [0.395,1.655] 0.562
Anemia No 744 Reference
Yes 74 1.791 [0.774,4.149] 0.174
CHD No 676 Reference
Yes 142 1.272 [0.618,2.617] 0.513
Hyperlipidemia No 567 Reference
Yes 251 0.926 [0.488,1.758] 0.814
Infection during pregnancy No 604 Reference Reference
Yes 214 0.386 [0.162,0.921] 0.032 0.302 [0.067, 1.084] 0.089
Gestational hypertension No 559 Reference
Yes 259 1.447 [0.795,2.632] 0.226
Gestational diabetes mellitus No 535 Reference Reference
Yes 283 3.101 [1.706,5.637] <0.001 2.919 [1.149, 7.839] 0.027
ALB >30g/L 617 Reference
<30 g/L 201 1.15 [0.596,2.219] 0.677
Mode of delivery Vaginal delivery 671 Reference Reference
Cesarean section 147 2.7 [1.451,5.023] 0.002 4.41 [1.225, 16.865] 0.025
Multiple pregnancy No 644 Reference Reference
Yes 174 6.579 [3.589,12.060] <0.001 5.139 [1.910, 14.758] 0.002
Preterm birth No 719 Reference Reference
Yes 99 7.615 [4.119,14.081] <0.001 3.733 [1.170, 11.957] 0.025
Placental abnormalities No 807 Reference
Yes 11 3.676 [0.772,17.509] 0.102
Nuchal cord No 728 Reference
Yes 90 1.678 [0.759,3.708] 0.201
Low birth weight infant No 729 Reference Reference
Yes 89 20.085 [10.571,38.161] <0.001 32.241 [10.979, 111.198] <0.001
SGA No 668 Reference Reference
Yes 150 2.626 [1.412,4.884] 0.002 0.735 [0.194, 2.592] 0.638
Apgar score >7 722 Reference Reference
<7 96 4.312 [2.267,8.205] <0.001 4.317 [1.217, 15.073] 0.022
VEGF level <115 pg/mL 639 Reference Reference
>115 pg/mL 179 4.766 [2.629,8.638] <0.001 9.105 [3.086, 29.906] <0.001

(Continued)
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Variables Univariate analysis Multivariate analysis
OR 95%Cl P-value 95%Cl P-value

CRP level <10 mg/L 570 Reference Reference

>10 mg/L 248 2917 [1.619,5.256] <0.001 8.898 [3.206, 27.778] <0.001
SAA level <10 mg/L 629 Reference Reference

>10 mg/L 189 10.769 [5.563,20.849] <0.001 6.126 [2.222, 18.096] 0.001
NLR <3 597 Reference

>3 221 1.004 [0.521,1.934] 0.992

TNF-a <8 pg/mL 637 Reference Reference

>8 pg/mL 181 2.026 [1.094,3.752] 0.025 1.091 [0.357, 3.123] 0.874
IL-6 <7 pg/mL 672 Reference

>7 pg/mL 146 1.227 [0.597,2.522] 0.578

Sex, Family history, Primiparity, Mode of delivery, Multiple pregnancy, Preterm birth, Placental abnormalities, Nuchal cord, Low birth weight infant, SGA, Apgar score, VEGF level, CRP
level, SAA level, NLR, TNF-a, IL-6 — Infant clinical characteristics; Age, ASA, Drinking history, Smoking history, History of miscarriage, Hormonal therapy, Anemia, CHD, Hyperlipidemia,
Infection during pregnancy, Gestational hypertension, Gestational diabetes, ALB — Maternal clinical characteristics; Age*, Drinking history*, Smoking history* — Paternal clinical
characteristics. SGA, Small for Gestational Age; VEGF, Vascular Endothelial Growth Factor; CRP, C-Reactive Protein; SAA, Serum Amyloid A; NLR, Neutrophil-to-Lymphocyte Ratio;
TNEF-a, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6; ASA, Acute Phase Serum Amyloid A; OR, odds ratio; CI, confidence interval.

ranking them according to their relative contribution to the
model’s output. The analysis identified SAA level, low birth
weight, VEGF level, multiple pregnancy, preterm birth, and CRP
level as the most influential predictors.

To further assess the model’s clinical interpretability and
applicability, we examined individual prediction outcomes for four
representative patients using SHAP force plots (Figures 7A-D).
These plots illuminate patient-specific high-risk contributors and
quantify their respective impact magnitudes. Patient 1: The model
predicted a high probability (0.82) of developing infantile
hemangioma, primarily driven by elevated CRP and SAA levels,
preterm birth, and multiple pregnancy, indicating a high-risk
profile. Patient 2: Predicted risk was low (0.06), with minor
contributions from CRP levels and low birth weight, suggesting a
limited cumulative effect of risk factors in this case. Patient 3: The
model estimated a probability of 0.04, where CRP levels and
multiple pregnancy were the main contributors, indicating a low
overall risk. Patient 4: Predicted probability was 0.05, with CRP
level and multiple pregnancy as the key contributing factors.
Although classified as low risk, ongoing monitoring of these
variables may be advisable. These individualized explanations
demonstrate the capacity of the XGBoost model combined with
SHAP analysis to enable precision risk stratification, thereby
supporting nuanced and informed clinical decision-making.

Discussion

In this study, we employed four widely used machine learning
algorithms—RF, SVM, KNN, and XGBoost—to develop a clinical
prediction model for infantile hemangioma. RF, which aggregates
numerous decision trees via majority voting, exhibits robust noise
tolerance and excels with high-dimensional data by effectively
evaluating feature importance; however, it can struggle with
capturing complex nonlinear interactions and is computationally
intensive due to its intricate architecture (12, 21, 22). SVM
constructs a maximal-margin hyperplane and performs well on
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high-dimensional, small-to-medium datasets but is sensitive to
kernel selection and parameter tuning, with reduced efficiency
on large datasets. KNN offers intuitive simplicity by predicting
outcomes based on sample proximity, making it suitable for
low-dimensional, small-sample contexts, but it suffers from the
curse of dimensionality and high computational demands,
limiting scalability. Conversely, XGBoost, an ensemble method
leveraging gradient boosting, iteratively builds weak learners to
capture complex nonlinear relationships efficiently. Its integrated
regularization mitigates overfitting, while support for parallel
computation and automatic handling of missing data enhances
both accuracy and efficiency (23-25).

Our systematic model construction and evaluation revealed
XGBoost’s superior performance across multiple metrics. ROC
analysis demonstrated outstanding predictive capability, with AUCs
of 0.952 and 0.935 in training and validation cohorts, respectively,
outperforming RF, SVM, and KNN. These values attest to its
exceptional discriminative power in stratifying high- vs. low-risk
patients. Calibration curves confirmed excellent concordance
between predicted and observed probabilities, supporting the
model’s reliability in both risk stratification and probability
estimation. Decision curve analysis further substantiated XGBoost’s
clinical utility, consistently yielding higher net benefits across a wide
range of thresholds, underscoring its translational potential in
clinical settings. K-fold cross-validation within the internal cohort
reinforced these findings: XGBoost achieved a mean validation
AUC of 0.9438 £ 0.0484, a test set AUC of 0.8366, and accuracy of
0.8943—surpassing RF (AUC =0.8510 + 0.1334, accuracy = 0.8415),
SVM  (AUC=0.8326+0.1362, accuracy=0.9472), and KNN
(AUC =0.8466 + 0.1243, These
underscore XGBoost’s superior discriminative capacity, accuracy,
generalizability, and stability. External validation confirmed the
model’s robustness, with XGBoost achieving an AUC of 0.870,
demonstrating adaptability to unseen data across different

accuracy = 0.8780). results

populations and clinical environments. Accordingly, XGBoost
emerged as the optimal algorithm for predicting high-risk TH
factors by effectively modeling nonlinearities, minimizing overfitting
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TABLE 5 Presents the performance metrics of the four predictive models assessed in this study.

Machine learning  Cohort | AUC (95% ClI) Accuracy Sensitivity Specificity F1 score
algorithms (95% ClI) (95% ClI) (95% Cl) (95% ClI)
KNN Training set | 0.928 (0.876-0.979) |  0.899 (0.884-0.914) 0.897 (0.876-0.919) 0.899 (0.884-0.915) 0.519 (0.487-0.552)
Validation set | 0.863 (0.726-0.978) |  0.878 (0.863-0.893) 0.783 (0.685-0.880) 0.886 (0.866-0.906) 0.411 (0.356-0.465)
XGBoost Training set | 0.952 (0.916-0.987) |  0.898 (0.872-0.925) 0.88 (0.856-0.903) 0.9 (0.870-0.929) 0.524 (0.469-0.580)
Validation set | 0.935 (0.864-0.995) |  0.88 (0.852-0.908) 0.743 (0.648-0.839) 0.89 (0.855-0.924) 0.416 (0.356-0.476)
RF Training set | 0.825 (0.758-0.891) |  0.718 (0.693-0.744) 0.848 (0.806-0.889) 0.71 (0.681-0.740) 0.265 (0.249-0.282)
Validation set | 0.811 (0.675-0.947) |  0.722 (0.681-0.762) 0.836 (0.747-0.925) 0.717 (0.671-0.762) 0.253 (0.212-0.295)
SVM Training set | 0.853 (0.769-0.937) |  0.958 (0.943-0.973) 0.74 (0.726-0.754) 0.972 (0.955-0.988) 0.692 (0.634-0.750)
Validation set | 0.787 (0.565-0.978) |  0.945 (0.927-0.964) 0.641 (0.527-0.755) 0.965 (0.941-0.988) 0.566(0.499-0.634)

CI, confidence interval.
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via regularization, and utilizing parallelism to optimize training
efficiency—providing a solid foundation for early screening and
individualized interventions.

Leveraging feature importance rankings from XGBoost, we
explored key risk factors through SHAP analysis, focusing on two
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biological pathways implicated in IH pathogenesis: immune
activation and hypoxic stress. SAA and CRP, acute-phase
inflammatory markers, emerged as significant contributors,
suggesting a pivotal role of immune responses in hemangioma

development. Both SAA and CRP rise markedly during infection,
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Presents the internal and external validation results for the XGBoost model: (A) ROC curve from the training set; (B) ROC curve from the validation
set; (C) ROC curve from the testing set; and (D) ROC curve from the external validation cohort.
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tissue injury, or inflammation; notably, SAA may promote
angiogenesis by facilitating endothelial cell migration and
proliferation (26-28). Mechanistically, this likely involves activation
of Toll-like receptors and NF-xB signaling, upregulating pro-
angiogenic mediators such as VEGF, thereby driving hemangioma
formation (8, 29-31). Inflammation can also alter the immune
microenvironment and impair T cell-mediated surveillance,
allowing aberrant endothelial proliferation to evade immune
detection and promote tumor growth. Given the immaturity of the

neonatal immune system, perinatal inflammatory stimuli—such as

Frontiers in Pediatrics

maternal immune activation or infection—may predispose infants
to immune dysregulation and abnormal angiogenesis.

SHAP-based analyses of individual risk profiles further
underscored hypoxic stress as a key pathogenic mechanism. For
example, Patient 1’s risk was influenced by multiple pregnancy,
prematurity, and low birth weight—all associated with intrauterine
or perinatal hypoxia. Hypoxia activates hypoxia-inducible factor-1a
(HIF-1c), which enhances VEGF and other angiogenic factors,
promoting endothelial proliferation, migration, and aberrant
vascular formation (32, 33). Preterm and low birth weight infants
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post-hoc analyses for model robustness and performance. To evaluate model stability given the limited sample size, (A) Kolmogorov—-Smirnov (KS)
curves were generated to assess separation of predicted risk scores between IH cases and non-IH controls. (B—C) Confusion matrices for the training
and testing sets compare predicted outcomes with true labels, showing the numbers of true positives (TP), false negatives (FN), false positives (FP),
and true negatives (TN), thereby illustrating the model’s classification accuracy. (D) Parallel coordinates plots display the contribution of each feature
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often experience systemic hypoxia due to placental insufficiency or
immature pulmonary function, stimulating angiogenesis and
aberrant endothelial progenitor cell mobilization, accelerating
hemangioma growth. Hypoxia may also impair immune
maturation, amplifying inflammation and immune dysregulation,
synergistically fostering tumor progression (34-38).

The predictive model developed herein offers a complementary
tool for the early identification of high-risk IH in neonates and can
be seamlessly integrated into clinical screening workflows. During
birth or early follow-up, infants’ perinatal data and serum
immune-inflammatory biomarkers can be collected, and the model
employed to stratify them into high- and low-risk groups. High-

risk infants may be prioritized for imaging evaluations (e.g.,
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ultrasound or MRI) to confirm diagnosis and facilitate timely
intervention, whereas low-risk infants can continue with standard
follow-up, thereby optimizing allocation of healthcare resources.
Beyond guiding clinicians in devising personalized monitoring
and health
detection and minimizing delayed diagnoses—the model mitigates

protocols education strategies—enhancing early
unnecessary testing and associated economic burdens while
maintaining safety. At a public health level, it provides quantitative
evidence to inform newborn screening policies and health
management strategies. Conceptually, by integrating immune-
inflammatory biomarkers with machine learning, the model affords
novel insights into IH pathogenesis and informs future strategies

for early prediction and personalized intervention. Consequently,
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influence on model predictions.

the principal beneficiaries encompass neonates and their families,
clinicians, and public health authorities, while the research
community gains a broadly applicable framework for predictive
modeling and decision support.

Previous studies typically involved small sample sizes, lacked
systematic integration of perinatal and immune-inflammatory
indicators, and largely relied on conventional statistical methods
(39). This study uniquely integrates immune-related biomarkers
into the IH risk prediction framework, overcoming limitations
of prior research that focused mainly on clinical or imaging
features. Incorporating immunological parameters enhances
biological interpretability and elucidates disease mechanisms.
The comprehensive comparison and validation of multiple
machine learning models across internal and external cohorts
demonstrate the XGBoost model’s superior stability,
reproducibility, and clinical applicability. Multi-dimensional
evaluation—including calibration and decision curve analyses—
further reinforces model reliability and translational potential.
Nonetheless, limitations exist. First, data were sourced from a
single center; despite external validation, limited geographic and
demographic diversity may restrict generalizability. Second,
immune biomarkers such as SAA and CRP are susceptible to
confounding factors like infection or medication, potentially
introducing variability; future studies should consider dynamic
monitoring to improve precision. Third, despite SHAP’s
interpretability advantages, the inherent “black-box” nature of
complex models like XGBoost may impede clinical transparency
and acceptance. Future research should integrate more
interpretable approaches and involve larger, multicenter datasets
to validate robustness and facilitate clinical integration. With
regard to class imbalance, the proportion of IH cases in this
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study was approximately 5.5%, reflecting a moderate degree of
imbalance. We did not implement techniques such as SMOTE,
undersampling, or class weighting, guided by the following
considerations: first, ensemble algorithms like XGBoost and
Random Forest inherently possess strong robustness to class
imbalance, mitigating its effects through internal sample
weighting and structural mechanisms; second, stratified random
sampling was applied to preserve consistent class distributions
between training and testing sets, coupled with ten-fold cross-
validation to enhance model stability and generalizability.
Nonetheless, the absence of dedicated imbalance-handling
strategies may have constrained the performance of certain
models—particularly SVM and KNN—in accurately identifying
minority-class samples, representing a limitation of this study.
Future investigations will consider incorporating SMOTE, class
weighting, and related approaches, systematically evaluating their
influence on model performance. Furthermore, due to limitations
of the medical record system, detailed data on pregnancy-related
pathological factors could not be comprehensively obtained or
presented, representing an additional study limitation. Moreover,
different TH subtypes may have distinct pathogenic mechanisms
and risk factors, which could lead to variability in the predictive
performance of the model. However, in this study, the total IH
sample comprised only 81 cases, with limited numbers in each
subtype (superficial, n=50; deep, n=20; mixed, n=11).
Conducting subgroup analyses under these conditions may result
in insufficient statistical power, precluding reliable conclusions.
This represents a major limitation of the current study. In future
research, we plan to perform subtype-specific analyses in larger,
multicenter cohorts to validate the model's predictive
performance across different IH subtypes.
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Illustrates SHAP force plots that provide individualized explanations of prediction outcomes. Variables are arranged horizontally based on their
absolute impact magnitude, with blue bars indicating features that reduce predicted risk (negative SHAP values) and red bars indicating features
that increase predicted risk (positive SHAP values). Panels (A) through (D) correspond to four representative patients, respectively.

Conclusion robustness, and generalizability. Utilizing SHAP analysis, we
elucidated the relative importance of key risk factors,
This study systematically evaluated the predictive identifying serum amyloid A SAA levels, low birth weight,

performance of four machine learning algorithms for high-
risk infantile hemangioma, demonstrating that XGBoost

significantly ~ outperformed the others in accuracy,
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VEGF expression, multiple gestations, prematurity, and CRP
levels as the most prognostically influential variables. These

findings provide critical insights for early clinical
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identification of high-risk infants and lay the foundation for
developing personalized intervention strategies.
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