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Necrotizing enterocolitis (NEC) is an acute, life-threatening intestinal disorder in
neonates, associated with notably high mortality. It is characterized by insidious
and non-specific early clinical manifestations, a rapid disease progression
course, and often results in long-term sequelae in affected infants, such as
short bowel syndrome and neurodevelopmental impairments. The
pathogenesis of NEC remains complex and not fully elucidated; thus, the
screening and validation of biomarkers with high specificity, high sensitivity,
and clinical applicability constitutes a core strategy to enhance the efficacy of
early diagnosis and accuracy of prognostic assessment for this disease. This
article aims to systematically synthesize the current clinical dilemmas in the
field of NEC and the update status of relevant clinical guidelines, with a focus
on reviewing the research advances of both traditional and emerging
biomarkers in the contexts of NEC early diagnosis, disease staging, severity
stratification, prediction of surgical intervention requirements, and prognostic
evaluation. Additionally, it analyzes the consistencies and discrepancies
between cutting-edge research findings and clinical guidelines, and prospects
the future development direction of precision diagnosis and treatment for NEC.
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1 Introduction

Necrotizing enterocolitis (NEC) is a severe inflammatory intestinal disorder that
poses a life threat to preterm infants and accounts for a major cause of death in
neonatal intensive care units (NICUs) (1). This disease predominantly affects preterm
infants (accounting for 90% of cases), with an incidence rate of 0.5%0-5.0%0 and a
domestic mortality rate as high as 10%-50% (2, 3). Despite significant advancements
in perinatal medicine and neonatal intensive care technologies, the incidence and
mortality rates of NEC remain persistently high, presenting a major clinical challenge.
The pathogenesis of NEC is complex and has not been fully elucidated. Currently, its
diagnosis and treatment primarily rely on the comprehensive assessment of clinical
manifestations, laboratory tests, and imaging examinations (4, 5), which is associated
with limitations such as delayed diagnosis, inaccurate assessment, and difficulty in
prediction. In recent years, research focus has shifted to the molecular level; a large
number of potential biomarkers—ranging from serum proteins and fecal microbiota to
urine metabolites—have been successively identified. The integration of multi-omics
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technologies with machine learning algorithms has driven the
advancement of NEC diagnosis and treatment toward precision
This
traditional and emerging biomarkers in the early diagnosis,

medicine. article reviews the research progress of
staging and severity assessment, prediction of surgical needs,

and prognosis evaluation of NEC.

2 Clinical challenges

The clinical management of NEC is fraught with substantial

challenges, with core issues including delayed diagnosis,
difficulty in differential diagnosis, and rapid disease progression.
First and foremost, the primary clinical challenge manifests as
non-specific early manifestations: its symptoms overlap
significantly with those of other common neonatal conditions
(e.g., sepsis, feeding intolerance) (6), often leading to difficulty
in differentiation and subsequent delay in the initiation of
optimal treatment. Secondly, NEC is characterized by rapid
progression: some infants can deteriorate from Bell Stage I to
full-thickness intestinal wall necrosis, perforation, and even
sepsis or shock (Bell Stage III) within hours (7), resulting in a
sharp increase in mortality. Furthermore, differential diagnosis
is exceptionally challenging: NEC shares striking similarities
with neonatal sepsis, spontaneous intestinal perforation, and
in terms of clinical manifestations and
their differ

significantly (8); thus, accurate differentiation is critical for

other conditions
laboratory findings, yet treatment  strategies
guiding treatment. Additionally, the Bell Staging Criteria—
currently the primary tool for assessing disease severity—suffers
from strong subjectivity, as its evaluation of abdominal signs
relies on clinicians’ subjective judgment. Moreover, characteristic
imaging findings such as pneumatosis intestinalis and portal
venous gas either appear late or present atypically. Finally,
clinical practice also faces the dilemma of a lack of reliable
prognostic prediction tools, making it difficult to reliably
identify which infants will progress to severe stages requiring
surgery or develop long-term sequelae such as short bowel
syndrome and neurodevelopmental delay (9, 10).

3 Guideline summary

Currently, authoritative guidelines both domestically and
internationally have established a standardized framework for
the diagnosis and management of NEC, which is based on
clinical manifestations and centered on imaging findings.
Regarding  diagnosis,

guidelines  generally

(e.g.
abdominal distension, bilious vomiting, hematochezia) and

regard  the

combination of clinical manifestations progressive
characteristic findings on abdominal radiography (plain film)
(e.g., pneumatosis intestinalis, portal venous gas) as the “gold
standard” for diagnosis and staging. Additionally, dynamic
abdominal

oxygenation assessment

sign  monitoring via ultrasound, intestinal

using infrared spectroscopy, and

surveillance of laboratory parameters (including complete blood
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count, C-reactive protein, procalcitonin, interleukin-6, and blood
gas analysis) are recommended, while routine testing of fecal
calprotectin is not advised (11, 12). In terms of treatment, once
NEC is suspected or confirmed, the core principles include
immediate  fasting, gastrointestinal ~ decompression, and
administration of broad-spectrum antibiotics and nutritional
support via the intravenous route (12). For surgical intervention,
radiologically  confirmed

pneumoperitoneum  (indicating

intestinal perforation) constitutes an absolute indication,
whereas failure of conservative medical treatment or persistent
disease deterioration serves as a relative indication (13). Notably,
the international expert consensus published in 2025 specifically
emphasizes the importance of regular pain assessment [e.g.,
using the Neonatal Pain, Agitation, and Sedation Scale (N-
PASS)]

(particularly those with Bell stage>II). It recommends a

and prophylactic analgesia for infants with NEC

regimen of acetaminophen combined with opioids, which
reflects the advancement in humanistic care for infants in the
management of NEC (14). In terms of prevention, guidelines
strongly recommend breastfeeding and the administration of
glucocorticoids to mothers at risk of preterm birth (12).

4 Traditional biomarkers
4.1 Inflammatory markers

4.1.1 Serum Amyloid A

Serum Amyloid A (SAA) is an acute-phase reactant protein
whose levels rise rapidly in the early stage of infection, correlate
with the severity of inflammation, and participate in the
inflammatory process by regulating proinflammatory cytokines
(15-17). This property endows it with
potential value in the early diagnosis of NEC, serving as an

and angiogenesis

auxiliary indicator for the early diagnosis of NEC. A study by
Qian et al. (18) revealed that the combined detection of SAA,
platelet-to-lymphocyte ratio (PLR), and procalcitonin (PCT)
exhibited higher diagnostic value for NEC than single SAA
detection (AUC=0.856, sensitivity =84.3%, specificity = 87.5%
vs. AUC=0.807, specificity = 78.8%).
However, a study by Reisinger et al. (19) pointed out that the

sensitivity = 83.1%,

combined use of SAA and intestinal fatty acid-binding protein
(I-FABP) did not significantly improve the diagnostic accuracy
of NEC, suggesting insufficient specificity of SAA in this
combination mode. This may be attributed to the mismatch in
pathophysiological time windows between SAA and I-FABP.
Existing studies also clearly demonstrate that SAA levels are
closely associated with the staging and severity of NEC.
Cetinkaya et al. (20) found through dynamic monitoring of SAA
levels that the SAA levels of NEC infants at the initial onset
(0 h) were significantly higher than those at later stages (24 h,
48 h). Moreover, infants with Bell stage II-III showed higher
SAA levels at all monitoring time points compared with those
with stage I. When the cut-off value was set at 23.3 mg/dl, SAA
could distinguish NEC from sepsis. This result suggests that
changes in SAA levels not only serve as an important reference
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indicator for predicting the severity of NEC but also assist in
differential diagnosis for early detection of the disease. In
addition, a study by Qian et al. (18) further confirmed that SAA
levels showed a positive correlation with the severity of NEC—
ie, as the severity of NEC increased, SAA levels increased
correspondingly—further verifying the clinical significance of
SAA in evaluating the staging and severity of NEC.

Meanwhile, SAA also holds certain research value in predicting
the surgical indications of NEC. A study by Coufal et al. (21) found
that infants who progressed to stage IIIB had significantly higher
SAA levels than those with stage II or IIIA. Furthermore, when
SAA was used in combination with indicators such as fatty acid-
binding protein (FABP) and trefoil factor 3 (TFF-3), it could
NEC-related (e.g.
intestinalis or portal venous gas), providing a reference for the

predict imaging features pneumatosis
assessment of NEC surgical indications. In addition, through
ROC curve analysis, Chen et al. (22) found that when the cut-off
value of SAA was 19.25 mg/L, the AUC for predicting surgical
needs was 0.784; however, when SAA was combined with four
indicators [C-reactive protein [CRP], neutrophil-to-lymphocyte
ratio [NLR], and platelet distribution width [PDW]], the AUC
significantly increased to 0.974. This indicates that combined
detection of specific biomarkers including SAA enables more
accurate determination of whether NEC infants require surgery
and selection of the appropriate surgical timing, providing
stronger support for clinical surgical decision-making.

There is also a certain association between SAA and disease
prognosis. A nested case-control study followed up 126 NEC
infants for 60 days, and the results showed that the serum SAA
levels of infants in the death group at the time of diagnosis were
significantly higher than those in the survival group. More
importantly, Cox proportional hazards regression analysis
confirmed that high SAA expression was an independent risk
factor for poor prognosis of neonatal NEC, regardless of
whether other confounding factors were adjusted (23). This
suggests that SAA is not only an inflammatory marker but also
directly associated with the risk of death. Although long-term
studies that directly track the neurodevelopment or growth of
NEC infants in the years following diagnosis are still lacking,
SAA has become an important biomarker for evaluating the
prognosis of NEC due to its strong association with disease
severity, surgical needs, and short-term mortality. In clinical
practice, dynamic monitoring of SAA levels combined with
other indicators (e.g., CRP, NLR, PCT, PLR, PDW) can improve
the accuracy of prognosis prediction.

4.1.2 C-reactive protein

C-reactive protein (CRP) is an acute-phase reactant protein
synthesized by the liver under the induction of interleukin-6
(IL-6). It increases 6-8 h after the onset of inflammation, peaks
at 48-72h, and its
inflammation (24, 25). It is widely used in the assessment of

levels can quantify the degree of
diseases such as cancer (26), autoimmune diseases (27, 28), and
cardiovascular diseases (29, 30). Currently, as a single indicator,
CRP has obvious limitations in the early diagnosis of NEC. On

one hand, its elevation is not exclusive to NEC and may be
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associated with other inflammatory diseases or infections.
A controlled study showed that there was no statistically
significant difference in high-sensitivity C-reactive protein (hs-
CRP) levels between the NEC group and the sepsis group,
indicating insufficient specificity (31). On the other hand, its
diagnostic efficacy as a single indicator is inadequate. A study
demonstrated that the value of CRP in diagnosing NEC in
preterm infants is lower than that of intestinal tissue oxygen
content (rSO2), and its sensitivity also needs to be improved
(32). This may be because preterm infants are prone to various
infectious diseases, and CRP alone cannot distinguish the source
of inflammation. In contrast, rSO2 focuses on changes in local
intestinal oxygenation and 1is significantly less affected by
inflammation in other parts of the body. Meanwhile, numerous
studies have confirmed that CRP levels are closely associated
with the staging and severity of NEC. A foreign prospective
study showed that regardless of whether sepsis was complicated
or not, CRP levels were significantly abnormal in infants with
Bell stage II/III NEC (33). Moreover, CRP levels in stage II
infants without complications mostly returned to normal within
9 days; if CRP levels continued to rise, it indicated a risk of
complications. A domestic prospective study involving 142 cases
further confirmed that CRP levels in infants with stage III NEC
were higher than those in infants with stage I/II NEC before
treatment, on the day after treatment, and during the recovery
period (34). Additionally, CRP levels showed a further increase
on the day after treatment. This trend clearly reflects the
association between CRP levels and disease severity, supporting
CRP as an important reference indicator for evaluating the
staging and severity of NEC. Furthermore, CRP has certain
clinical reference value in determining the surgical indications
for NEC and selecting the timing of surgery. The results of a
study by Duci et al. (35) showed that elevated CRP levels were
positively correlated with the surgical needs of NEC infants.
Meanwhile, dynamic monitoring of CRP changes can also help
assess the progression of intestinal necrosis, providing a basis
for clinically evaluating the necessity of surgery. The
aforementioned domestic prospective study indicated that CRP
levels before treatment and on the day after treatment had
predictive value for NEC surgery (with optimal cut-off values of
14.6 mg/L and 42.9 mg/L, respectively) (34). The conclusion
from the foreign prospective study—that persistent elevation of
CRP indicates a risk of complications—can also indirectly
provide a reference for the selection of surgical timing, helping
clinicians formulate more reasonable surgical decisions (33). In
addition, there is an association between CRP and the prognosis
of NEC infants. A study by Lu et al. (36) clearly pointed out
that elevated CRP levels are associated with the prognosis of
NEC, and the CRP levels of infants with poor prognosis were
significantly higher than those with good prognosis. However,
current research data on the specific mechanism of association
between CRP and the long-term prognosis of NEC as well as
more detailed clinical studies remain limited. In the future,
more long-term follow-up studies are needed to further clarify
the specific value and application mode of CRP in the
evaluation of the long-term prognosis of NEC.
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4.1.3 Procalcitonin

Procalcitonin (PCT), an infectious biomarker produced by
thyroid C cells, holds certain value in the early diagnosis of
NEC. It can be detected within 2h after the onset of severe
bacterial infection, rises rapidly at 6 h, and peaks at 8-24h,
exhibiting high diagnostic efficacy for bacterial infections (37,
38). A prospective case-control study by Elfarargy et al. (39)
showed that PCT levels in infants with NEC were significantly
higher than those in the healthy control group, and this
difference could assist in the early identification of NEC.
Meanwhile, a study by Turner et al. (40) found that PCT has
potential for differential diagnosis: PCT levels in infants with
sepsis (up to 4.1 ng/ml) were significantly higher than those in
infants with NEC, suggesting that PCT can be used to
distinguish NEC from systemic infections, further providing a
reference for the early diagnosis of NEC. Existing studies have
indicated that PCT levels are also closely associated with the
staging and severity of NEC, and the magnitude of its elevation
is linked to disease progression. A retrospective cohort study
demonstrated that PCT levels in infants with NEC stage III were
higher than those in infants with stage I/II; this difference serves
as an important basis for evaluating the staging and severity of
NEC (41). Additionally, the combined detection of PCT and
mean platelet volume (MPV) not only improves diagnostic
efficacy (AUC=0.895 vs. AUC=0.706 for PCT alone) but also
acts as an effective tool for determining the severity of NEC.
PCT can also be used for surgical risk stratification. The results
of a study by Liebe et al. (42) showed that a PCT level >1.4 ng/
ml indicates the need for surgical intervention; this threshold
provides clinicians with a clear reference indicator for assessing
whether an infant requires surgery, facilitating more rational
judgment of surgical indications. However, the study also found
that single PCT detection cannot fully distinguish NEC from
sepsis, and this finding differs from the results of Turner et al.
(40). PCT also shows significant value in evaluating the
prognosis of neonatal NEC. A retrospective multicenter study
involving 188 infants with NEC found that the first PCT level
detected at the onset of symptoms was an independent predictor
of post-NEC intestinal stenosis (RR=1.82; 95% CI=0.98-3.15;
P=0.009) (43). This implies that monitoring PCT levels in the
early stage of the disease helps identify infants at higher risk of
developing intestinal stenosis in the future, thereby enabling
more intensive follow-up.

4.2 Immune markers

4.2.1 Interleukins

Interleukins (ILs) are signal proteins that facilitate cell-cell
interactions, exhibiting pro-inflammatory or anti-inflammatory
activities and mediating a variety of immune responses. Certain
subtypes play key roles in inflammatory regulation and intestinal
injury in NEC (44). A study involving animal models and
clinical trials showed that IL-6 levels were significantly higher in
the NEC group than in the healthy group (P <0.05), and this
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abnormal level could assist in the identification of early-stage
NEC (45). The diagnostic value of IL-33 is even more
prominent: a study by Cakir et al. (46) demonstrated that IL-33
levels in the NEC group were significantly higher than those in
the non-NEC group at 1, 3, and 7 days after disease onset. This
level difference from non-affected populations can indicate the
possibility of NEC in the early stage of the disease, and IL-33
can serve as a potential marker for follow-up monitoring,
providing a reference for early disease tracking. Additionally,
although IL-1B and IL-17 are not directly used as early
their
inflammation by disrupting the intestinal tight junction (TJ)

diagnostic  indicators, mechanism of promoting
barrier (IL-1p increases luminal antigen penetration, while IL-17
directly damages intestinal cell junctions) is closely associated
with the key pathogenesis of NEC (T] barrier defects). Their
abnormal expression can indirectly reflect the early intestinal
injury status, providing potential mechanistic references for early
diagnosis (47-49). Meanwhile, changes in the levels of multiple
IL subtypes are closely related to the staging and severity of
NEC. A retrospective study indicated that IL-6 levels showed a
clear positive correlation with the severity of NEC, specifically
presenting as a gradient in NEC infants: stage III> stage
II > stage I (50). Moreover, abnormal IL-6 levels can also act as
a marker for intestinal ischemic injury, further linking to disease
severity. IL-33 exhibits a sustained upward trend in NEC stage
III, and this dynamic elevation feature can indicate that the
disease has progressed to a more severe stage (46). Furthermore,
certain IL subtypes have predictive value for determining the
surgical indications of NEC, among which the role of IL-8 is
particularly clear. A study involving the collection of intestinal
samples found that IL-8 has predictive value for the surgical needs
of very low birth weight (VLBW) infants; changes in its levels can
assist clinicians in judging whether this specific population
requires surgical intervention (51). Although IL-10 does not
directly indicate surgical needs, it has predictive value for the
disease progression of VLBW infants (52). Since the degree of
disease progression is one of the important factors determining
the need for surgery, IL-10 can indirectly provide references for
the assessment of surgical indications by predicting disease
progression, helping clinicians make a more comprehensive
judgment on the necessity of surgery. Prognostic assessment is
crucial for the long-term quality of life of surviving infants, and
certain IL subtypes also play important roles in this aspect.
Persistently high expression of IL-8 during the post-treatment
recovery period may be associated with persistent intestinal
inflammation and recurrence risk, which directly affect the long-
term recovery quality of infants; changes in IL-8 levels can
indirectly indicate the possibility of poor long-term prognosis (51).
A study by Jiankang et al. (53) found that by combining serum
IL-6 levels (>6.25 ng/ml) with abdominal ultrasound indicators,
the 1-year survival rate of infants in the high-risk group
(Subgroup A, 55.6%) was significantly lower than that in the low-
risk group (Subgroup B, 88.0%). This strongly confirms that IL-6
combined with imaging examinations can effectively identify high-
risk infants, exhibiting good predictive value for prognosis, thereby
guiding more active intervention and follow-up.
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4.2.2 Tumor necrosis factor-alpha

As a key pro-inflammatory mediator, Tumor Necrosis Factor-
o (TNF-a) causes intestinal injury by activating inflammatory cells
and increasing vascular permeability (54). A study involving 92
infants with NEC revealed that the serum TNF-a levels of NEC
infants were significantly higher than those of healthy neonates
(55). Moreover, the combination of TNF-o and serum Resistin
exhibited higher specificity for NEC diagnosis compared with
single-marker detection (AUC=0.952, specificity =97.7% vs.
AUC=0.819, specificity =65.1%). This indicates that serum
TNF-a detection can assist in NEC diagnosis, and the combined
diagnostic efficacy is superior. The aforementioned study also
found that serum TNF-a levels were higher in infants with NEC
stage III than in those with stage II (55). A similar conclusion
was drawn from another study on preterm infants, where TNF-
a levels showed a positive correlation with NEC staging
(r=0.51, P<0.01) (56). Furthermore, a study including 124
NEC infants further confirmed that as the disease progressed
from stage I to stage III, the TNF-a concentration in infants
increased progressively with each stage (57). These findings
collectively indicate that TNF-a levels can serve as an objective
indicator for evaluating the severity of NEC. Certainly, TNF-a is
also associated with the prognosis of NEC. The aforementioned
study showed that the serum TNF-a levels in the poor prognosis
group were significantly higher than those in the good prognosis
group (P<0.05) (55). In addition, a study by Gou (58) found
that when TNF-o >38 ng/dl was combined with blood lactic
acid >9.0 mmol/L, the risk of poor prognosis in infants
increased significantly, suggesting that this combination can be
used as an auxiliary indicator for prognosis assessment. As a
core pro-inflammatory factor, TNF-a plays a key role in the
occurrence and development of NEC. Clinically, combining it
with other biomarkers may help establish more reliable
prediction models.

4.2.3 Immune cells

Regulatory T cells (Treg) exert functions of eliminating
autoreactive T cells, inducing self-tolerance, and suppressing
inflammation (59); they play a protective role in NEC by
suppressing  inflammation and  maintaining  immune
homeostasis. A study by Pacella et al. (60) found that a reduced
frequency of Tregs at birth is an independent risk factor for
NEC development (=298, P=0.039), suggesting that Treg
levels may be used for early auxiliary diagnosis of NEC.
Research has shown that Th17/Treg imbalance is involved in
NEC progression: melatonin can reduce Th17 cells and increase
Tregs by activating the AMPK/SIRT1 signaling pathway, thereby
improving intestinal immune imbalance (61). Clinical evidence
indicates that Treg expression in monocytes of NEC infants is
decreased, while exogenous TGF- and IL-10 can upregulate
Tregs (62), implying its potential as a therapeutic target.
Although Treg-based therapy shows promising prospects for
clinical application, future treatment strategies may require
combined interventions (e.g., simultaneous blockade of IL-6

signaling) to achieve more precise immune regulation (63).
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As key participants in intestinal mucosal immunity, yd T cells
regulate local inflammatory responses by rapidly secreting
cytokines (64). A study comparing cytokine expression in yd
T cells isolated from intestinal epithelial lymphocytes (IELs)
between necrotic intestinal segments of NEC infants and those
with intestinal atresia found that the proportion of ¥ T cells in
the necrotic intestinal segments of NEC infants was significantly
reduced, while the expression of pro-inflammatory cytokines
(e.g., IL-6, TNF-q, IL-17) mediated by these cells was increased.
This suggests that yd T cell dysfunction may exacerbate
intestinal immune imbalance (65). Mechanistically, a study by
Weitkamp et al. (66) revealed that the
intraepithelial y§ T cells (yd IELs) impairs intestinal barrier
NEC development.
experiments demonstrated that Bifidobacterium can alleviate

deficiency of

function and promotes Intervention
NEC-related intestinal injury by increasing the number of
intestinal epithelial y§ T cells, confirming its feasibility as a
therapeutic target (67). Therefore, maintaining or restoring yd
T cell homeostasis may serve as a novel strategy for NEC

prevention and treatment.

4.2.4 Toll-like receptor 4

Toll-like receptor 4 (TLR4) is a core molecule in the
pathogenesis of NEC; it drives intestinal inflammation and
immune dysregulation by inducing intestinal epithelial cell
death, recruiting pro-inflammatory leukocytes, and causing
intestinal hypoperfusion (48, 68-70). In recent years, studies on
TLR4-targeted strategies
therapeutic potential. A study by Zhang et al. (65) found that -
glucan can improve intestinal barrier function by inhibiting the
TLR4/NF-kB pathway, thereby reducing the risk of NEC in
newborn mice. A study by Kovler et al. (71) demonstrated that

several intervention have shown

enteric glial cell deficiency may promote NEC through TLR4
activation and intestinal motility disorders, suggesting that the
repair of enteric glial cells could be a potential therapeutic
approach. Additionally, a study by Liu et al. (72) revealed that
the expression levels of both TLR4 and necroptosis-related
proteins are upregulated in NEC patients and animal models;
moreover, inhibiting necroptosis can significantly alleviate
intestinal inflammatory injury, indicating that anti-necroptosis

therapy is a potential direction for relieving NEC symptoms.

4.2.5 The complement

Complement 5a (C5a), a complement activation product, is
identified as a key pathogenic factor in NEC by mediating
mesenteric ischemia/reperfusion injury. A study by Lian et al.
(73) showed that urinary C5a is abnormally elevated in the early
stage of intestinal injury, suggesting its potential as an early
diagnostic biomarker for NEC. Furthermore, a study by Tayman
et al. (74) found that serum and urinary Cb5a levels were
significantly elevated in infants with NEC; among these, serum
C5a could effectively predict the risk of death and surgical
intervention (P <0.05), indicating that serum Cb5a can be used
to assess disease prognosis. Additionally, complement C3
expression is upregulated in mesenteric ischemia models and
shows a positive correlation with the degree of intestinal tissue
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damage. This further supports that excessive activation of the
complement system may collectively drive the occurrence and
development of NEC (75).

4.3 Gut-related markers

4.3.1 Intestinal fatty acid-binding protein

Intestinal Fatty Acid-Binding Protein (I-FABP) is specifically
expressed in the epithelial cells of small intestinal mucosal villi
and is rapidly released into the bloodstream upon intestinal
ischemia or inflammatory injury (76, 77); studies have confirmed
it as a sensitive biomarker for the early diagnosis of NEC.
A mouse model study showed that serum I-FABP levels could be
detected to increase as early as 15 min after intestinal ischemia
onset, and the levels continued to rise with prolonged ischemia
duration (78). This enables the capture of early intestinal injury
signals before the appearance of typical NEC symptoms,
providing a basis for early disease identification. Meanwhile,
urinary I-FABP also exhibits potential for early diagnosis. A study
by Coufal et al. (21) found that urinary I-FABP can be used to
distinguish NEC from sepsis: urinary I-FABP levels in the NEC
group were significantly higher than those in the sepsis group,
which can help rule out interference from other infectious
diseases and improve the accuracy of early diagnosis.
Additionally, a study by Saran et al. (79) pointed out that the
urinary I-FABP/creatinine ratio (urinary I-FABP/Cr) further
optimizes diagnostic efficacy—when this ratio is 3.6 pg/mmol, the
sensitivity and specificity for diagnosing NEC stage II/IIl reach
96% and 99.5%,
quantitative indicator for the early accurate diagnosis of NEC.

respectively—providing a more reliable

Changes in I-FABP levels (in both serum and urine forms) are
also closely associated with the staging and severity of NEC,
serving as important references for assessing disease conditions.
Regarding serum I-FABP, multiple studies have shown that
serum I-FABP levels in infants with NEC stage III are
significantly higher than those in the healthy control group and
infants with stage I/II (P<0.05) (80-82). This trend has been
verified in both animal models of NEC (rat ileal tissue models)
and clinical prospective studies involving neonates with a
gestational age < 32 weeks (83, 84). In terms of urinary I-FABP,
a study by Shaaban et al. (85) found that urinary I-FABP levels
were positively correlated with NEC severity, specifically
presenting as a gradient in infants: stage IIT > stage II>stage I
(P <0.05). Furthermore, a study by Evennett et al. (86) noted
that elevated urinary I-FABP is associated with the extent of
urinary [-FABP
observed when the intestine is extensively involved—further

intestinal involvement—higher levels are
confirming that it can reflect the severity of intestinal injury
through level differences. Although a meta-analysis showed that
the overall diagnostic value of urinary I-FABP and its ratio
(AUC=0.81) is slightly lower than that of serum I-FABP
(AUC=0.84), both have clear clinical significance in the
assessment of NEC staging and severity (87).

Meanwhile, I-FABP (especially in wurinary form) holds
important predictive value for

determining the surgical
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indications of NEC. The results of a study by El-Abd et al. (88)
showed that there is a clear diagnostic threshold for urinary
I-FABP (4.13 ng/g). When this threshold is used to assist in
predicting the surgical needs of NEC infants, the sensitivity and
specificity reach 100% and 76.19%, respectively—providing a
clear quantitative reference for clinically judging the need for
surgical intervention. Additionally, the aforementioned study by
Evennett et al. (86) also found that urinary I-FABP levels are
significantly correlated with the length of intestinal resection
(RHO=0.92, P=0.001), i.e., higher urinary I-FABP levels
indicate more severe intestinal injury and potentially longer
intestinal segments requiring resection. This further provides a
basis for formulating surgical plans (e.g., assessment of intestinal
resection range) and helps clinicians grasp surgical indications
more accurately.

Although ultra-long-term studies directly demonstrating the
relationship between I-FABP and the growth and development
of NEC infants in the years following diagnosis are currently
lacking, several studies have confirmed that its high levels in the
acute phase are associated with more severe disease and a higher
risk of complications. A retrospective study involving 105
infants with suspected NEC found that serum I-FABP levels in
the survival group were significantly lower than those in the
death group (P<0.05), indicating a direct association with the
risk of death (89). High I-FABP levels suggest more severe full-
thickness intestinal injury, which is the main pathological basis
for intestinal stenosis (90). A study pointed out that high
urinary I-FABP levels in NEC infants on the first day of
refeeding indicate a higher risk of subsequent intestinal stenosis
complications (91).

4.3.2 Liver fatty acid-binding protein

Although Liver Fatty Acid-Binding Protein (L-FABP) is widely
expressed in tissues such as the liver, intestine, and kidney, it is
also released into the bloodstream upon intestinal injury, thus
holding of NEC.
A prospective study showed that when symptoms of NEC

certain value in the early diagnosis
appear during the disease course, L-FABP levels in infants with
NEC (at any stage) are significantly higher than those in healthy
controls (81). Another prospective cohort study involving
preterm infants with a gestational age <32 weeks and/or birth
weight <1,500 g found that L-FABP levels are positively
correlated with the risk of NEC, supporting its role as an early
warning indicator for NEC (92). Meanwhile, similar to Intestinal
Fatty Acid-Binding Protein (I-FABP), L-FABP can also assist in
distinguishing NEC from sepsis (21), reducing the interference
of infectious diseases on the early diagnosis of NEC and further
improving the accuracy of early identification. Furthermore, a
study by Pelsers et al. (93) revealed that preoperative L-FABP
levels are significantly elevated in patients with intestinal injury;
notably, L-FABP content is the highest in the ileum (40-fold
higher than that of I-FABP in each intestinal segment),
exhibiting high sensitivity to intestinal injury. This allows
L-FABP to capture injury signals in the early stage of the
disease, providing support for the early diagnosis of NEC.
Additionally, the study] also indicated that preoperative L-FABP
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levels are significantly elevated in patients with intestinal injury,
while they decrease rapidly after surgery (93). This dynamic
change can reflect the repair of intestinal injury and the efficacy
of surgical intervention. Based on this, monitoring changes in
L-FABP levels can assist in determining the timing of surgery.
Currently, research on L-FABP in NEC remains limited, and
further studies are needed to verify its clinical efficacy in disease
staging and prognostic assessment.

4.3.3 Fecal calprotectin

Fecal Calprotectin (FC), a member of the S100 protein family,
is a 36kDa calcium-binding protein primarily derived from
neutrophils (accounting for 60% of cytoplasmic proteins), and
its concentration is positively correlated with the degree of
inflammation (94). Since FC exhibits high stability in feces
(stable for 7 days at room temperature) and its concentration in
healthy individuals is approximately 6 times that in plasma, it is
widely used in clinical practice for monitoring intestinal
inflammation (94, 95). A study on exclusively breastfed infants
with suspected NEC found that FC levels in the NEC group
were higher than those in the healthy group (96). A meta-
analysis by Yangiu et al. (97) indicated that FC has high value
for the early diagnosis of NEC (sensitivity =0.86,
specificity = 0.80, AUC =0.913).A multicenter prospective study
showed that the combined detection of FC and Lipocalin-2
(LCN2) can improve the sensitivity of early prediction for NEC;
notably, changes in these indicators can be observed as early as
10 days before symptom onset, providing advance warning for
identification of NEC (98, 99). Additionally,
monitoring FC levels can also assess the severity and staging of
NEC. A study by Hu et al. (100) demonstrated that FC levels in
the NEC group increased progressively with disease staging

the early

(stage III>stage II>stage I) (P<0.05), suggesting a positive
correlation between FC levels and disease severity. Thus,
differences in FC levels can assist in evaluating the severity of
NEC in infants. However, there is currently controversy
regarding the association between FC and NEC staging. The
core point of contention lies in the association between FC
levels and postnatal days: a study by Yoon et al. (101) suggested
that FC levels are affected by gestational age—FC levels increase
with postnatal age in infants with a gestational age <26 weeks,
while the opposite trend is observed in those with a gestational
age >26 weeks. In contrast, a study by Farghaly et al. (96) found
no correlation between FC and postnatal days. It is hypothesized
that the conflicting conclusions may stem from differences in
sample size; this controversy requires larger-scale studies to
clarify, thereby enabling FC to play a more accurate role in the
staging assessment of NEC. FC also holds certain value in the
evaluation of long-term prognosis of NEC. A study by Chen
et al. (102) found that the median FC level in infants who
developed intestinal stenosis (a common long-term complication
of NEC) was significantly higher than that in the non-stenosis
group (P<0.001), suggesting that FC levels can serve as a
reference indicator for predicting the risk of post-surgical
intestinal stenosis in NEC infants.
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4.3.4VOCs

Fecal volatile organic compounds (VOCs) are components of
fecal odor and metabolic products of the intestinal microbiota. As
the preclinical stage of NEC is associated with alterations in
intestinal microbiota composition, VOCs represent potential
biomarkers for non-invasive prediction of NEC. A prospective
study found that the absence of four specific esters (including
2-ethylhexyl acetate) was detected 4 days before the onset of
NEC, which may have marker significance for the early
diagnosis of NEC (103).Meanwhile, a study by de et al. (104)
revealed that the fecal VOC profiles of infants with NEC could
be distinguished from those of the healthy group and the sepsis
group 2-3 days before the appearance of clinical symptoms
(with a sensitivity of 83.3% and a specificity of 75.0%). This
suggests that VOC analysis via eNose may serve as a non-
tool for the early prediction of NEC. Using
gas chromatography-mass spectrometry (GC-MS), Probert
et al. (105) detected a specific set of VOCs in NEC infants
their
development

invasive

before disease onset, and levels were positively

of NEC. This VOC
panel includes 3-(methylthio)propionaldehyde, benzaldehyde,

correlated with the

2-phenylacetaldehyde, 2-methylpropanal, 3-methylbutanol, and
2-methylbutanol. The aforementioned studies confirm that
changes in VOCs precede the clinical onset of NEC, and this
finding holds important significance for the early prediction
of NEC.

5 Emerging biomarkers
5.1 Genomics

Genomics, the study of all genes in an organism, has made
significant progress in understanding the pathogenesis, risk

of NEC. Genetic
polymorphism refers to one or more variations in gene

assessment, and therapeutic strategies
sequences, which may affect an individual’s susceptibility to
certain diseases. The following studies have identified multiple
genetic susceptibility factors associated with NEC, all confirming
that genetic polymorphisms involved in immune response,
inflammatory regulation, and intestinal development are closely
linked to NEC. Through gene resequencing, a study by Zhou
et al. (106) found that the rs2075783 polymorphism in exon 1
of the GM2A gene and the rs1048719 polymorphism in the
intronic region of this gene are associated with the development
of NEC, while the rs11465996 polymorphism in the promoter
region of the MD-2 gene is associated with the severity of NEC.
A prospective multicenter cohort study showed that variations
in NFKBI1 (g.-24519delATTG) and NFKBIA (g.-1004A>G) are
associated with NEC development (P <0.05) (107). A study by
Zhang et al. (108) indicated that the TC+ CC genotypes and
C allele of IL-17F rs763780 are associated with both
susceptibility to NEC and the severity of NEC. The first
domestic study on vitamin D and its receptor demonstrated that
the VDR Fokl C/T genetic polymorphism plays a role in the
development of NEC (109). Furthermore, associations between
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genetic polymorphisms and NEC-related surgery have also been
identified. A cohort study of very low birth weight (VLBW)
infants found that carriers of >2 variant alleles of NOD2 had
an increased risk of developing NEC requiring surgery
(OR=3.57; 95% CI: 1.27-10.04; P=0.03) (110). A study by
Yasuhara et al. (111) reported a novel familial pathogenic
variant of GATA6 associated with NEC complicated by
intestinal perforation.

Additionally, progress has been made in studies on genetic
polymorphisms and short-term outcomes of NEC. A study by
Ya et al. (112) found that the CXCL5-156 C allele is a risk
factor for death in NEC infants (P <0.05). Notably, some
studies have also identified genetic polymorphisms that are
not merely associated with increased NEC risk. A study by
Strauss et al. (113) found that the HIF1A rs11549465T allele
independently reduces the risk of NEC, providing a new
research direction for NEC prevention. A study by Cao et al.
(114) identified a gene with dual effects: HMGBI1 rs1360485
increases susceptibility to NEC but predicts better survival
outcomes. Moreover, research on gene epigenetics has
enhanced understanding of NEC pathogenesis. Serial studies
by Good et al. (115, 116) showed that NEC tissues exhibit
genome-wide hypermethylation, which is associated with
transcriptional abnormalities and has potential for non-
invasive detection—this provides new opportunities for
developing novel diagnostic methods for NEC. Currently, a
research gap exists: large-scale long-term follow-up studies
that directly link these genetic and epigenetic markers to
endpoints such as long-term growth and development,
neurodevelopment, and long-term intestinal function recovery
in NEC infants are lacking. Future research could integrate
these markers to identify infants at risk of adverse long-term
prognosis in the early stages of the disease, thereby enabling

more targeted interventions and follow-up.

5.2 Transcriptomics

Transcriptomics, which investigates gene transcription and its
regulatory mechanisms at the global level, studies gene expression
from the RNA perspective. As a key subfield of gene expression
research, it provides in-depth insights into gene regulation and
cellular activities. By exploring signaling pathways critical to the
development of NEC, the following studies have identified novel
therapeutic approaches. Previous research has confirmed that
melatonin treats NEC by correcting Treg/Th17 imbalance (61);
similarly, researchers have found via transcriptomic analysis of
intestinal tissues that melatonin reduces bile acid toxicity and
alleviates intestinal injury through the SIRT1/FXR pathway
(117). A study by Gao et al. (118) demonstrated through
that
inflammation by inhibiting phosphorylation of the PI3K-Akt

transcriptomic  analysis butyrate mitigates intestinal
pathway and enhancing the expression of tight junction (T])
proteins. A study by Chen et al. (119) showed that Bacillus
fragilis regulates the microbiota-bile acid metabolism axis via the

FXR-NLRP3 pathway, restores intestinal dysbiosis and abnormal
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bile acid metabolism, and thereby alleviates intestinal injury.
Using methods including immunofluorescence staining, Western
blotting, and reverse transcription-quantitative PCR (RT-qPCR),
a study by Zhang et al. (120) found that Saccharomyces
boulardii (SB) exerts a protective effect against NEC through the
SIRT1/NF-kB pathway. Integrated studies of transcriptomics and
microbiomics have also revealed microbiota-host interactions,
where changes in the abundance of specific microbes may affect
intestinal immune responses and barrier function. Hosfield et al.
(121) performed fecal microbiome analysis via 16S rRNA
sequencing and showed that both microbial diversity and the
relative abundance of Lactobacillus were significantly higher in
the control group than in the NEC group, while the relative
abundance of E. coli was lower in the control group. This
indicates that NEC development is associated with intestinal
dysbiosis. A study by Zhai et al. (122) found that NEC infants
are often accompanied by changes in the intestinal bacterial
genome, and variations in microbiota composition are related to
the severity of the disease. Another study confirmed intestinal
inflammation in the small intestine and colon using
quantitative reverse transcription-polymerase chain reaction
(qQRT-PCR), evaluated the intestinal microbiome via 16S rRNA
sequencing, and analyzed the intestinal microbiome of NEC
piglets. The results showed that the changes in the intestinal
microbiome of NEC piglets were consistent with those of
preterm infants with NEC, characterized by reduced microbial
diversity and increased abundances of Gammaproteobacteria
(123). of the

aforementioned studies found that the protective effect of SB

and Enterobacteriaceae Additionally, one
against NEC is associated with the regulation of the intestinal
microbiome: compared with the normal group, the control
group showed a significant reduction in the richness of
the NEC group
exhibited a further decrease in intestinal microbial richness

intestinal microbiota composition, and

(120). However, intervention with the probiotic Saccharomyces
boulardii significantly improved the enrichment of intestinal
microbiota in neonatal mice with NEC.

Transcriptomic studies have also identified gene expression
signatures in the intestinal tissues of NEC infants, providing
potential targets for the development of NEC interventions. Han
et al. (124) performed whole-transcriptome RNA sequencing on
NEC samples and found that HK2, a pathogenic hypoxia-related
gene, was upregulated. Egozi et al. (125) combined single-cell
sequencing and bulk transcriptomics and showed that epithelial
cells in NEC tissues abnormally activate pro-inflammatory
genes. A retrospective study by Pan et al. (126) conducted
whole-blood transcriptomic analysis and indicated that colonic
(e.g, AOAH, STAT3) are
associated with the degree of pathological lesions. These gene

differentially expressed genes
targets may thus enable early intervention for NEC. Notably,
transcriptomic data are large in scale and complex to analyze,
and it remains challenging to fully decipher genetic-
environmental interactions. Future research should integrate
multi-omics technologies, artificial intelligence (AI), and clinical
cohorts to overcome these challenges and better leverage

transcriptomics to improve neonatal health.
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5.3 Proteomics

Proteomics  primarily  investigates the  expression,
modification, interaction, and function of proteins in organisms.
In the research on neonatal necrotizing NEC, the application of
proteomics focuses on the following aspects. First, through
proteomic analysis, researchers can identify NEC-associated
changes in protein expression and signaling pathways, thereby
unraveling the molecular mechanisms of the disease. Zhong
et al. (127) performed proteomic and ubiquitin-proteomic
analyses on intestinal macrophages and showed that
RNF31-mediated ubiquitination and degradation of IKKa
activates NF-«xB/M1 macrophage polarization; inhibiting this
pathway can alleviate intestinal inflammation. A study
establishing in vivo and in vitro models found that butyrate
upregulates Fut2 expression via the MEK4-JNK pathway, thereby
enhancing the intestinal barrier (128). A study by Nguyen et al.
(129) revealed that TGF-B2 exerts a protective effect in NEC by
regulating oxidative stress and the TLR4 signaling pathway.
Second, proteomic technologies enable comprehensive
analysis of protein expression profiles in intestinal tissues and
blood samples from NEC patients, uncovering disease-associated
biomarkers. A multicenter prospective study reported that liquid
(LC-MS/MS)

analysis of samples—using SWATH/DIA acquisition and cross-

chromatography-tandem mass  spectrometry
compatible proteomic software—identified a panel of 36 fecal
proteins that can predict the development of NEC one week in
advance (130). Wang et al. (131) compared the necrotic
segments of intestinal tissue with adjacent normal intestinal
segments (in a control setting) and found that TRAF6 and
CXCLS8/IL-8 were significantly upregulated in both NEC
intestinal tissues and serum, suggesting their potential as
important predictive factors for the early diagnosis of NEC.
Mackay et al. (132) analyzed serum protein levels in neonates
with and without NEC and showed that alpha-fetoprotein
(AUC=0.926), glucagon (AUC=0.860), and IGHA1/IGHA2
(AUC=0.826) could effectively distinguish NEC cases from
non-NEC Additionally, a
inflammation-related proteins using a high-throughput OLINK

cases. study evaluating 92
proteomic platform found that 11 biomarkers (with upregulated
expression, including IL-8, IL-24, CCL20, OPG, TSLP, TRAIL,
MMP-10, CXCL1, MCP-4, TNFSF14, and LIF) hold high value
in identifying NEC and determining its severity (133). Among
these, the combination of IL-8, IL-24, and CCL20 exhibited the
optimal predictive value for distinguishing NEC from the
healthy group, NEC from sepsis, and different degrees of disease
inflammation (AUC=0.909 vs. 0.782 vs. 0.919). The
combination of IL-8, OPG, MCP-4, IL-24, LIF, and CCL20
could distinguish NEC stage II from stage III (AUC=0.977)
(133). Similarly, several studies have also found abnormally high
expression of CCL20, TSLP, and CXCL1 in NEC (134-136).
Notably, proteomic technologies are still evolving. Significant
differences may exist between laboratories in terms of sample
processing, data acquisition, and data analysis, which may lead
to reduced comparability of research results.
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5.4 Metabolomics

Metabolomics delves into the metabolic profiling of patients
with NEC using high-precision technical approaches such as
mass spectrometry (MS) and nuclear magnetic resonance
(NMR), uncovering the metabolic dysregulation underlying
the disease. Patients with NEC exhibit abnormal changes in a
variety of metabolites; these changes not only involve basic
physiological processes such as energy metabolism and amino
acid metabolism but also are closely associated with complex
mechanisms including intestinal microecology and oxidative
119),
integrated with metabolomics. By

stress. In two previously mentioned studies (118,
transcriptomics  was
analyzing the metabolism of hesperidin, bile acids, and
intestinal metabolites in NEC, these studies further deepened
the understanding of how butyrate and Bacteroides fragilis
alleviate intestinal inflammation in NEC. Multiple studies
have utilized metabolomics to analyze differences in serum/
urine metabolites, and combined with ROC curve analysis,
these studies suggest that such metabolites hold diagnostic
value for NEC and are promising potential biomarkers.
A study focusing on preterm infants with abdominal
symptoms and gestational age <34 weeks employed MRM-

based targeted metabolomics to measure TCA cycle
metabolites. It found that reduced levels of certain TCA
metabolites  (including succinic acid, L-malate, and

oxaloacetic acid) as well as decreased species diversity have
(137).
A prospective case-control study by Thomaidou et al. (138)

potential value for the early diagnosis of NEC

identified that certain phospholipids and their derivatives
(e.g., L-carnitine) could be used as biomarkers for the early
detection of late-onset sepsis (LOS) and NEC. Additionally, a
multicenter prospective case-control study using targeted
high-performance liquid chromatography (HPLC) analysis
showed alterations in several specific amino acids in samples
collected 1-3 days before NEC onset (139), suggesting that
early diagnostic biomarkers for NEC may be identified among
these altered amino acids. Several other studies also integrated
metabolomics techniques and, through analyzing intestinal
microbial diversity, consistently found significant differences
in the composition and distribution of microbiota between
the NEC group and the control group. At the phylum level,
studies have reported contradictory patterns of microbial
abundance in the NEC group: some studies showed a
decrease in Actinobacteria and Proteobacteria (137) and an
(140),
increase in Proteobacteria (140, 141) and a decrease in
Firmicutes (141). At the genus level, the NEC group exhibited
a significant reduction in Bifidobacterium and Lactobacillus,

increase in Firmicutes while others observed an

an enrichment of Streptococcus, and contradictory results
regarding the abundance of Propionibacterium (137, 140,
142-145). At the species level, the direction of changes in
Staphylococcus and Enterococcus varied across studies, but
Bacillus was consistently enriched before the onset of NEC/
sepsis (142, 143, 145).
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5.5 Machine learning

Machine Learning (ML) technology is reshaping the clinical
research paradigm for NEC, particularly demonstrating significant
potential in early diagnosis, severity stratification, and prognostic
assessment. Multiple studies have validated the application value
of ML in this field. For instance, one study constructed
classification models using XGBoost, decision trees, and artificial
neural networks (ANNSs). Results showed that XGBoost exhibited
the optimal performance in the differential diagnosis of NEC,
with a sensitivity of 80.48%, a specificity of 100%, and an AUC of
0.902 (146). Another study based on the decision tree algorithm
identified nine key diagnostic criteria [including apnea, lethargy,
occult blood in stool, abdominal distension, gestational age,
postnatal age at onset, feeding volume, disseminated intravascular
coagulation (DIC), and occult rectal bleeding]. This model
outperformed the traditional modified Bell staging criteria in
identifying NEC (147). Furthermore, a multimodal AI system
integrated feature engineering, machine learning, and deep
learning technologies. By leveraging clinical data from 379 NEC
patients in the week prior to surgery, the system achieved
effective prediction of surgical needs (148). The study further
analyzed 4,535 abdominal x-rays and clinical parameters from
1,823 infants with suspected NEC, highlighting the importance of
multi-source  information fusion in  enhancing model
performance. In addition, a single-center retrospective study
involving 536 infants demonstrated that the predictive model
constructed by combining feature selection algorithms with
Support Vector Machines (SVM) could efficiently distinguish
between NEC and non-NEC cases (AUROC =0.932), as well as
between medical NEC and surgical NEC (AUC=0.835) (149).
This further validates the clinical application prospects of ML in
NEC-assisted diagnosis and risk stratification. However, machine
learning (ML) also has limitations. The performance of ML
models is highly dependent on the scale, completeness, and
representativeness of training data. For necrotizing enterocolitis
(NEC), the limited sample size, uneven case distribution, and
potential selection bias in retrospective studies pose challenges to
model training. Additionally, the “uninterpretability” of ML
models leads to low trust among clinicians in their results.
Especially in high-stakes decision-making (e.g., determining the
timing of surgery), clinicians tend to rely on traditional indicators
rather than ML predictions. Moreover, the clinical translation of
ML models faces certain difficulties. In the future, prospective,
multi-center studies are needed to improve model interpretability
and promote the clinical translation of ML in NEC management.

Beyond the traditional and emerging biomarkers mentioned
above, several clinical manifestations and comprehensive
assessment indicators also hold significant value in evaluating
the condition of NEC. Early NEC often presents with abdominal
distension, gastric residuals, or hematochezia. While these
symptoms serve as warning signs, their diagnostic specificity is
limited. Abdominal distension is common in preterm infants
and can also be caused by non-NEC factors such as feeding
incidence of

intolerance and constipation; moreover, the

hematochezia in fulminant NEC (fNEC) is significantly lower
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than that in typical NEC (12.9% vs. 49.0%), indicating that

hematochezia is not a reliable single-indicator basis for
diagnosis (7). In terms of feeding assessment, gastric residual
volume has traditionally been monitored to evaluate NEC risk.
However, recent studies have suggested that such monitoring
may be more reasonable only when accompanied by other
gastrointestinal symptoms—this avoids gastric enzyme loss or
mucosal irritation caused by frequent manipulations (150).
Based on clinical symptoms, integrating objective indicators of
internal environment disturbance can significantly improve the
accuracy of assessment. For instance, metabolic acidosis
indicated by blood gas analysis is a key marker reflecting the
deterioration of systemic conditions. The MD7 scoring system,
constructed based on multiple metabolic indicators, quantifies
the metabolic status of infants. Studies have shown that an MD7
score >3 is significantly associated with an increased risk of
requiring surgical intervention (151). A systematic review and
meta-analysis further demonstrated that the MD7 score has a
sensitivity of 0.77 and a specificity of 0.73 for identifying NEC
cases requiring surgery (152). Another study revealed that serum
Relmf can be combined with the MD7 score to further improve
the accuracy of predicting surgical timing (153). In recent years,
near-infrared spectroscopy (NIRS) technology has provided a
new approach for the early warning of NEC. This technology
enables non-invasive, continuous monitoring of abdominal
regional oxygen saturation (A-rSO,), directly reflecting intestinal
microcirculatory perfusion and oxygenation status. A study by
Yangbo and Dan (154) showed that a decrease in intestinal rSO,
is significantly associated with an increased risk of NEC
development, and the AUC for diagnosing NEC using rSO,
combined with CRP reaches 0.870 (95% CI: 0.791-0.950).
Another retrospective study also confirmed that rSO, combined
with PCT and mean platelet volume (MPV) has good predictive
value for NEC severity (155). Additionally, intestinal ultrasound
can accurately assess intestinal injury and diagnose NEC. Studies
have identified several specific ultrasound findings of NEC—
such as pneumatosis intestinalis, portal venous gas, changes in
intestinal wall morphology and perfusion, intestinal motility
status, and peritoneal effusion—and ultrasound has shown
superior imaging performance compared to x-ray for detecting
these features (156). Therefore, in clinical practice, for infants
with high-risk factors (e.g., prematurity), once suspicious
symptoms appear, clinicians should promptly integrate imaging
findings, laboratory indicators, and novel monitoring
technologies for comprehensive judgment, and implement
dynamic monitoring. This approach aims to improve the

capacity for early diagnosis and intervention of NEC.

6 Discussion

6.1 Comparison of diagnostic efficacy of
biomarkers

To systematically evaluate the diagnostic value of various
biomarkers for NEC, this study summarizes the key indicators
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of their diagnostic efficacy based on existing literature, including
sensitivity (Sens), specificity (Spec), and AUC. Additionally, an
integrated perspective has been developed, as shown in Table 1
and Figure 1.

Based on the table above, Intestinal Fatty Acid-Binding
Protein (I-FABP) demonstrates promising clinical application
prospects due to its relatively high area under the receiver
operating characteristic curve (AUROC) values and consistent
performance in NEC diagnosis, severity grading, and surgical
prediction. This biomarker can be detected in both blood and
urine; notably, the urinary I-FABP-to-creatinine ratio (I-FABP:
Cr) further simplifies the detection workflow, enhancing its
feasibility and applicability in clinical practice. Thus, I-FABP is
expected to serve as either a standalone indicator or a core
component of combined diagnostic panels, emerging as a
preferred tool for NEC screening and disease monitoring. Fecal
Calprotectin (FC), a fully non-invasive detection indicator, is
particularly suitable for neonates and preterm infants. It exhibits
excellent efficacy in early diagnosis and intestinal stenosis
prediction (AUROC can reach >0.913), making it well-suited
for promotion in primary healthcare facilities or long-term
follow-up settings. However, FC is associated with inter-
individual variability, and fulminant calprotectin levels are
relatively high in healthy preterm infants during the first
postnatal week (157, 158). For clinical application, unified cut-
off values and time windows remain necessary to improve
(PCT) holds
distinguishing NEC from sepsis; nevertheless, its diagnostic

standardization.  Procalcitonin value in
stability is limited when used alone. It is more appropriately
incorporated into combined assessment systems as an auxiliary
inflammatory indicator. As a non-invasive, real-time bedside
functional monitoring tool, regional tissue oxygen saturation
(rSO,) has a standalone AUROC of 0.894, with further
improved efficacy when combined with C-reactive protein
(CRP). Although equipment costs may limit its popularization,
rSO, is expected to become a routine monitoring modality in
neonatal intensive care units (NICUs) with adequate resources.
Additionally, several combined strategies exhibit significant
advantages. For example, the panel of Serum Amyloid A
(SAA) + C-reactive protein (CRP) + Platelet Distribution Width
(PDW) + Neutrophil-to-Lymphocyte Ratio (NLR) achieves an
AUROC as high as 0.974. This suggests that multi-marker
integrated models have substantial potential to improve
diagnostic accuracy, making them suitable for early warning in
high-risk infants and clinical decision support.

It should be noted that in neonates with congenital heart
disease (CHD) complicated by necrotizing enterocolitis (NEC),
intestinal hypoperfusion and ischemic injury are caused by
(159).
biomarkers such as Intestinal Fatty Acid-Binding Protein (I-
FABP) and Fecal Calprotectin (FC), which are less affected by

cardiogenic systemic inflammation, attention should be paid to

insufficient cardiac output For intestinal injury

their dynamic change trends rather than single absolute values.
This is because CHD neonates may have relatively high baseline
levels due to chronic intestinal ischemia, and a significant
increase after feeding may be more diagnostically valuable.
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Similarly, for inflammatory indicators such as C-reactive protein
(CRP) and procalcitonin (PCT), which have low specificity,
caution is needed to determine whether their elevation is caused
by CHD-related
infectious inflammation after cardiac surgery (160). For CHD

chronic systemic inflammation or non-
neonates, dynamic monitoring is also the focus of regional
tissue oxygen saturation (rSO,) monitoring. During feeding or
hemodynamic fluctuations, a sharp decrease in rSO, or an
extremely high “intestinal-cerebral oxygenation difference” may
be more indicative of an intestinal ischemic crisis than absolute

values (161).

6.2 Comparison between current
guidelines and emerging biomarkers

Currently, there are authoritative guidelines available for the
diagnosis and management of neonatal necrotizing enterocolitis
(NEC) (12). These guidelines primarily base diagnosis on
clinical manifestations and radiological features; however, these
indicators typically manifest only after intestinal injury has
already occurred, even progressing to the middle or advanced
stages. In contrast, the molecular biomarkers discussed in this
article—such as Intestinal Fatty Acid-Binding Protein (I-FABP)
and Serum Amyloid A (SAA)—are released into the blood or
urine at the very early stage of intestinal mucosal injury,
providing a critical “time window” for the early identification of
NEC. Although the
inflammatory markers such as C-reactive protein (CRP) and

guidelines recommend monitoring
procalcitonin (PCT), which align with the biomarker focus of
this article, their insufficient specificity in NEC diagnosis
constitutes a significant limitation. This review suggests that the
suboptimal diagnostic efficacy or inconsistent results of CRP
and PCT observed in many studies may stem from the following
factors: First, the early systemic inflammatory response in NEC
overlaps considerably with that of infectious diseases such as
neonatal sepsis; the confounding effect of infection makes it
difficult to accurately distinguish NEC from other infectious
conditions using PCT or CRP alone. Second, differences in
detection methods, reagent brands, and detection time windows
across studies directly compromise the comparability of results.
Finally, and most critically, for the special population of preterm
infants, there is a lack of unified and reliable cut-off values to
define abnormal levels; the use of varying cut-off values in
different studies inevitably leads to significant variability in
diagnostic sensitivity and specificity. Therefore, while CRP and
PCT are excellent inflammatory indicators, their standalone utility
is limited. Instead, they need to be combined with other
biomarkers with higher intestinal tissue specificity (e.g., [-FABP)
or integrated with routine blood parameters such as Platelet-to-
Lymphocyte Ratio (PLR), Neutrophil-to-Lymphocyte Ratio
(NLR), Platelet Width (PDW) for
comprehensive assessment, thereby improving diagnostic accuracy.

and Distribution

Furthermore, the guidelines recommend using near-infrared

spectroscopy (NIRS) to monitor local intestinal oxygenation,
which is consistent with the findings of this article: whether

frontiersin.org



10.3389/fped.2025.1661371

Liu et al.

(panunuo))
(1%) stsouderp Ajxea | 668°0 06°0/8L°0 IP/3u £5°8 08°0 poolg 10d + AdIN SL Apmys sanoadsonay
POO[q + dAISRAUL
(z¢) swsouderp Apreg | 6160 T'LLI6°06 - -uoN JID +70ST LS Apmis aanoadsoiq
(72) A198ms PIpa1d | ¥L6°0 1L'S8/%1°L6 - poolg YIN + Mdd +dd0 + VVS 0L Apmys aanoadsorq
(17) se8 are reyrod jo uondIpaid | £2L0 - - auun VVS +dava-1+davia-l L€ Apmys aanoadsorq
(17) se8 [rem [eunsaur Jo1pa1d | 618°0 - - auun VVS +ddVd-I+ €-1iL L€ Apmys aapoadsorg
%S°L8 A3arens
(81) stsouderp Al1ea | 9580 2adg ‘96¢ 8 suag - poorg 10d +¥1d + VVS 0L1 Apmys aanpadsonay uonedtidde jutof
Surrojruow
(z¢) sisouSerp Ajrea $68°0 £'68/8°T8 9%S2°0S JAISBAUI-UON 7081 /S Apmys aanoadsorg uoneuddLxo aziuedi
(151) A1281ms aandIpaIg - €L°0/LL°0 €2 wayshs Jurioog LAN [ Apmis aandadsonay | wa)sAs 1095 dI[OqeIdIA
(#01) stsdas SurysmSunsiq 0660 68/68 - FERERY 871 Apmys aanoadsorg
(v01) stsouerp Aprea | 0££0 SL/€8 - 89099 SDOA 8T1 Apmys aanadsorg
(20T) 21MI2L1S [RUNSAUL PAPIPAI] | 1160 L916/1L°S8 3/8nz'p99 $9301 0s Apmys aanpadsorg
(001) 3119495 Jo 19p10 | 965°0 S'LSIEL9 8/8n66¢£95T $930,1 74! Apmis aanpadsonay
(£6) ssouderp Al1ed | €160 08°0/98°0 - $9091 Od ST 1§ &eem
128°0
(88) suonoafoxd [ea1dmg | /1880 61°SL001/001 ‘SL [w/3u €19 ‘Tw/3u 569 auLI()/poofg 8L Apmys aanpadsorg
%98°0
(88) Buidess pue £1112adg | /892°0 76 06/TL 06 [w/3u €677 Tw/3u pTe auLIn/poofg 8L Apms aanpadsorq
0180 sisA[eue eJo]A pue
(£8) wonorpaid reordins pue sisoudelq | /0v80 €L°079°0/16'0%9°0 - auL)/poorg vl uonen[eAd dJeWalsAg
0180
(58) £ytranas ‘stsouderq 1026°0 - - auLIn /pooig davi-1 00T Apmys 2anadsoig SIaXIeW Paje[aI-Iny
9480
(¥£) Apeyzouwr pue suonesrpuy /€€8°0 - - QuLIN ®5) [54 Apmys aanpadsorg
(s5) ssoudoxd pue sisouerq | 618°0 %658 ‘%1°S9 IP/3u9sT 1T poorg D-INL 6 Apmys aampdadsonay SIMTeW duntw]
(z¥) uonuaAIajul [ed13ing - - Tu/Su 1 poorg €9 Apnys aamdadsonay
(1%)
Ayuraads Jo Judwssasse pue sisouSerp Alred | 90L°0 %88°0 %950 [w/3u 60°8 poolg Sz Apmys aandadsonoy
(6€) stsouderp Aprea | 0£60 %S6 ‘%06 w/3u 5¢°6 poorg 10d ov Apmys aamdadsorg
(¢) A128ms | 0g8°0 %¥98 T/3W 6°TH/9YT oY
j0 Surwm oy jorpaxd ‘sisouSerp Apreq /818°0 LTLI%O'SL ‘%S L8 pue 210J3q JudUIRIAL], poorg wl Apmys aanadsorg
(7€) poaseasdur
uoneuIquIod 3y} Jo £5edyya dusouserp oYL, | L0 %BEVL UV TL /8w 5071 poorg o) LS Apmys aanpadsorq
(z7) £198ms jo Jutum dyy PIPa1d | $8L0 %LS"88 ‘%98'T9 /8w sz61 poorg 0L Apms aanpdadsorq
(12)
sNI[0d [amoq [rews Suiznorau [esdins
PueR [RIIPIUW UIIMIIQ deNUIII 6LL°0 - - Eliteie] L€ Apmys aanoadsoig
(61) s1sdas asouBerp pue fnuapy | 5790 %T01S ‘%TTL 18w zer poolg 79 Apmis aanoadsoig
(81) Airranas
ﬁﬂm wﬂ_wmuw Mwmww_@ .w_mcﬁmm_ﬁ Nﬁumm £08°0 &wwn .\gﬂ.mw A\ME 9IC¥E ﬁccﬁm <<m 0LT %ﬁﬂum u>ﬁuwﬁmw0uuvm mu@&hds bOuNEENGEH

oneoldde jeaiund

Ayoyioads

‘RIARISUSS

anjeaA §joynd

sJayJew oyidads

salpnis

JO JaquinN

'siax4ewolq jo Aoeoyys osnsoubelp jo uospedwo) T J19VL

Apnis jo adA|

sJayJewolq
JO KiobayeH

frontiersin.org

12

Frontiers in Pediatrics



10.3389/fped.2025.1661371

Liu et al.

(6¥1) Amr2a9s pue sisouderq S€8°0 - - - WAS 9¢s Apmys aanoadsonay
(£¥1) sisouSerp A[1es - 696°0 ‘978°0 - - 391} UOISIP 61C Apmis aamdadsonay
(971) stsouerp Alea | 706°0 001/5°08 - - 1s00gHX 87T Apmys aanoadsonay N
(6€T) DAN PVRUTWIISIP | 0£9°0 - - 309, proe ourure <] Apmys aamdadsorg
9920
(£¢1) sisouSerp Ajxea | —$99°0 - - FEREE] urjoqelauw vy, 43 Apmys aandadsorg SOTWOUOQEIIN
0ZTOD +4IT+¥T
(€€T) II/I1 d¥enUaIIQ CL6°0 - - poorg T+ ¥%-dOW +DdO + 811 88 Apmys aandadsorq
6160
(e€1) Lyraass | /280
/s1sdas/qi[eay U2IMIdQ AEBUGIPIA | /606°0 - - poorg 07100 + $¢-11 +8-1I 88 Apms aandadso1g
980
/098°0
(2€1) DAN dIeUTWLIdSIP /9260 - - pooig TVHOI/TVHOI ‘uodeonid ‘qiv 8TI Apmys aanoadsoig
088°0
(0g1) sisouderp Ajxea | 0020 - - FERER] surajoid Jo spuny 9¢ (438 Apmys aanoadsoiq $OIWO03}01
sisA[eue eo]y pue
(zs1) 198108 2AMIIPAIT | 6680 %F8 “%L16 < pooig Jured + LA 06 uonEN[EAd JNRIISAS
sisA[eue elo]y pue
(£8) uonorpaxd [ear8ms pue sisouSerq | 0180 S0 8L°0 - aumip [949] 1D :dgV4-1 duun iat uonen[eAd deaIsAS
(6£) TI/11 stsouserq - %5°66/96 Toww/3d9 ¢ uLn [PAS] 1D :dg V-1 Ui} VL Apmys aanoadsoig
(85) stsouoid 1o00d e sayesrpur - - /0w 6 “[p/Su 8¢ poorg 28T + 0-INL $9 Apms aanpadsorg
(s5) stsoudoxd pue sisouSerp DAN | 2S6°0 €8LILL6 - poorg unsIsay + -ANL 6 Apms aandadsonay
(¢5) stsoudoid jo uonorparg - - Tw/Su 579 AyderSouoort + poojg punosenn [eurwopqy + 9-TI €0T Apmys aanoadsonay

uoneondde jeaiund

Aydyioads
‘Auniisuas

anjeaA joynd

uibuo

sJ9yJew oyidads

saipns
JO JaquinN

Apnis jo adA|

siayJewolq
JO KiobayeH

panunuo) T 379VL

frontiersin.org

13

Frontiers in Pediatrics



Liu et al. 10.3389/fped.2025.1661371
Genomics: GM2A, MD-2,
|-FABP/F- EOF;IBLI(CNFKBIA‘ IL-17F, VDR
| FABP, VOCs e —
Prematurity
Intestinal Immune cells
barrier neutrophil Early risk
disruption infiltration and e prediction
release: FC Transcriptomics: PI3K-Akt |
Dysbiosis S'l R T1 /EXR. PI3K-Akt Multi-omics Data
immune signaling pathway, etc. Integration
I activation, and ||| rec;ﬁt:rs: HK2, AOAH, ARG2" Feature Selection
|nf|asrtn°r:1;tory S— gﬂoqe'l Tr?mngs?lk'& | Precise disease ;I In;ir:::r\:‘z::ted
hypoxia/ EClsiongirec: ) staging ‘
! G — strategy
ischemia - complement
— (g ) activation Proteomics: IKKa,, Fut2, TGF-
) B2, TRAF6, etc.
systemic > | Ly Prognostic
reactions: SAA, assessment
CRP, SAA
inflammatory Metabolomics: Hesperetin,
) cytokine bile acids, succinic acid, L-
/) ) storm: IL, L—» malic acid, oxaloacetic acid, |
J/ TNFa etc.
b/
FIGURE 1
An integrated perspective

used alone or in combination with CRP, regional tissue oxygen
saturation (rSO,) exhibits favorable diagnostic efficacy. In terms
of imaging, the guidelines suggest using ultrasound for dynamic
monitoring of changes in abdominal signs; however, this review
finds that ultrasound outperforms x-ray in identifying certain
NEC-specific findings. Regarding Fecal Calprotectin (FC), the
guidelines currently do not recommend it as a routine test;
nonetheless, this article proposes that if unified cut-off values
and clear detection time windows are established, this indicator
still holds potential for clinical translation. In terms of
determining surgical timing, the guidelines primarily rely on
evidence of deterioration in systemic condition and radiological
signs of perforation. In contrast, studies reviewed in this article
demonstrate that urinary Complement 5a (C5a), I-FABP, the
MD7 scoring system, and multi-marker combined models are
significantly more accurate than traditional indicators in
predicting the progression of intestinal necrosis, surgical
necessity, and infant mortality.

6.3 Advantages and challenges of multi-
omics integration
Multi-omics

integration provides a powerful tool for

deciphering the core driver pathways underlying the
development and progression of necrotizing enterocolitis (NEC)
by systematically uncovering interaction networks across distinct
molecular layers, including the genome, transcriptome,
proteome, and metabolome (162). For instance, two studies
integrating transcriptomics and metabolomics revealed the
synergistic mechanism of butyrate and Bacteroides fragilis in
alleviating intestinal inflammation in NEC, laying a theoretical

foundation for the development of novel therapeutic strategies

Frontiers in Pediatrics

(118, 119). Another study, by fusing DNA methylome and
transcriptome data, identified widespread hypermethylation in
NEC and characterized multiple key genes (e.g, ADAPI,
GUCA2A) with
methylation levels.

suppressed expression due to increased
these

associated with intestinal inflammation and barrier integrity.

Functionally, genes are closely
This finding not only deepens the understanding of epigenetic
regulatory mechanisms in NEC but also provides potential novel
biomarkers for early diagnosis and risk prediction (163).
Additionally, machine learning classification models constructed
based on single-cell transcriptome and bulk transcriptome data
have demonstrated excellent performance in cancer subtyping
(164); such approaches are equally applicable to NEC research
and are expected to enable precise patient stratification and
prognostic assessment by integrating multi-omics information.
Despite the broad prospects of multi-omics integration in
NEC research, it still faces numerous challenges in practical
application. First, the complexity of data integration cannot be
overlooked: the fusion of heterogeneous data (e.g., genome,
epigenome, transcriptome, proteome) is itself a major challenge
in computational biology (165). Data generated from different
laboratories or platforms often exhibit batch effects; effectively
eliminating technical variations while retaining meaningful
biological signals constitutes a core challenge in data
preprocessing. Notably, the “Fountain” deep learning framework
based on regularized centroid mapping, proposed by Zhu et al.
(166), has achieved significant progress in addressing this issue.
Second, the high technical barriers of analytical methods and
poor model interpretability limit clinicians’ trust in and
understanding of model results. Furthermore, the translation of
omics signals into clinically applicable biomarkers is a lengthy
process, validation in multicenter

requiring large-scale,

prospective cohorts to confirm that these biomarkers indeed
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improve clinical outcomes. Finally, simplifying complex multi-
omics analysis workflows and integrating them into existing
clinical workflows imposes extremely high demands on cost,
efficiency, and operability.

7 Conclusion

With the advancement of research and technological
innovation, significant progress has been made in studies on
biomarkers associated with neonatal necrotizing enterocolitis
(NEC). These
potential in early diagnosis, disease staging, severity assessment,

biomarkers have demonstrated substantial

treatment strategy selection, and prognostic evaluation, while
the of the
pathophysiological mechanisms underlying NEC. However, an

also  deepening clinical ~ understanding
ideal biomarker capable of independently and accurately
predicting the occurrence and progression of NEC is yet to be
identified. Even though

application value, they still have limitations in sensitivity and

some biomarkers show certain
specificity. Moreover, most studies have small sample sizes, and
their results need to be further validated through large-scale
clinical research. Based on existing evidence, Intestinal Fatty
Acid-Binding Protein (I-FABP) and Fecal Calprotectin (FC) can
be regarded as key biomarkers prioritized for clinical application
advancement at this stage, owing to their excellent diagnostic
accuracy (with AUC values mostly above 0.9) and intestinal
specificity. Furthermore, simple combined models constructed
by integrating inflammatory indicators such as Serum Amyloid
A (SAA), C-reactive protein (CRP), and procalcitonin (PCT)
with platelet parameters or tissue oxygenation monitoring
(rSO;) have also shown high diagnostic efficacy. These models
can be integrated into clinical pathways to assist clinicians in
early warning and surgical decision-making. To fundamentally
improve the diagnostic capability for NEC, future research
should focus on developing predictive and diagnostic models
incorporating multi-omics integration and Al-integrated
analysis, while promoting the implementation of large-scale,
multicenter, prospective cohort studies to facilitate their clinical
translation. Through these efforts, it is expected to provide more
support the

intervention of NEC, thereby making substantial contributions

robust for early identification and precise

to reducing its morbidity and mortality rates.
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