

OPEN ACCESS

EDITED BY Lenycia De Cassya Lopes Neri, University of Pavia, Italy

REVIEWED BY
Burcu Uslu,
Yuksek Ihtisas University, Türkiye
Larissa Mattar,
Instituto do Coração (InCor) – Hospital das
Clínicas da Faculdade de Medicina da
Universidade de São Paulo, Brazil

*correspondence
Meixian Zhang

☑ zhangmx5935@enzemed.com
Lizhen Wang

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 27 June 2025 ACCEPTED 11 August 2025 PUBLISHED 21 August 2025

CITATION

Yang J, Huang Y, Wu H, Wu Y, Wang Y, Fan H, Chen M, Wang L and Zhang M (2025)
Association between order of eating and thinness among preschool children in Taizhou, China: a cross-sectional study.
Front. Pediatr. 13:1654992.
doi: 10.3389/fped.2025.1654992

COPYRIGHT

© 2025 Yang, Huang, Wu, Wu, Wang, Fan, Chen, Wang and Zhang. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Association between order of eating and thinness among preschool children in Taizhou, China: a cross-sectional study

Jingyun Yang^{1†}, Yao Huang^{1†}, Huilan Wu¹, Yixin Wu¹, Yun Wang¹, Hailing Fan¹, Mengjia Chen², Lizhen Wang^{1,3*} and Meixian Zhang^{1,4*}

¹Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China, ²Department of Pediatrics, The Second People's Hospital, Luqiao, Zhejiang, China, ³Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, Zhejiang, China, ⁴Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China

Background: Order of eating is reportedly associated with childhood obesity. However, few studies have examined the relationship between the order of consumption of vegetables and meat/fish and childhood thinness. We aimed to investigate the effect of the order of consumption of meat/fish and vegetables on the risk of thinness in preschool children.

Methods: From December 1, 2021, to January 31, 2022, 419 thinness and 1,204 normal-weight preschool children were selected from kindergartens in Taizhou, China. We used a questionnaire to determine whether the children ate vegetables or meat/fish first at mealtimes and analyzed the association between the first food consumed and children's thinness status.

Results: Overall, 53.4% and 46.6% of the children ate vegetables and meat/fish first, respectively. The percentage of eating vegetables first was higher in children with thinness than that in normal weight (58.95% vs. 51.41%, P = 0.008). After adjusting for sex, parental education and parental BMI category, the odds ratio for being thin was 1.280 for children who ate vegetables first (95% confidence interval: 1.016–1.612, P = 0.036) compared with those who ate meat/fish first.

Conclusions: Our study revealed that order of eating was associated with childhood thinness among preschool children. For children with thinness, we do not recommend that they eat vegetables first, but rather encourage them to eat meat/fish first.

KEYWORDS

order of eating, child, preschool, thinness, vegetables

1 Introduction

Undernutrition adversely affects the growth and development of children and the severity of underdevelopment is determined by the degree of undernutrition. Furthermore, undernutrition in childhood, especially in the early years, is a major risk factor for impaired growth and weakened immunity (1, 2). Weight status is an effective indicator of undernutrition (3). Excessively low and high body weights, both, have an adverse effect human health. At present, there are many studies on the prevalence of

childhood obesity; however, studies regarding childhood thinness are limited. According to the 2020 global data, 45 million children aged <5 years were affected by thinness (4). The prevalence of thinness among boys and girls aged 3–12 years in Shanghai, China was 13.92% and 18.45%, respectively (5). thinness markedly affects children's growth, development, and health, and its effect can persist into adulthood (6). In children, inhibited growth and development can lead to a weakened or impaired immune system and predisposition to infection (7). Additionally, poor nutrition can lead to weak bones and a relative lack of strength during exercise (7).

Furthermore, being thin is closely related to genetics and the external environment. An unbalanced diet and poor eating habits are the most common causes of childhood thinness. Previous studies have found that eating order is associated with the risk of obesity (8, 9), suggesting that eating order may affect weight through multiple pathways. Order of eating may affect weight through a variety of mechanisms. Vegetables are rich in dietary fibre and water, and have a low energy density, which can increase satiety more quickly and reduce subsequent intake of high-energy foods. This may lead to a reduction in overall calorie intake, thereby controlling body weight. In addition, eating vegetables first may slow down the absorption of carbohydrates, stabilise blood sugar levels, and reduce insulin fluctuations, thereby maintaining a more stable metabolic state (10–12).

The order of food consumption at the beginning of a meal varies across people. In China, a hot meals include vegetables, meat, fish, or soup. Chinese families often eat hot food together. The order of food consumption may affect children's weight status due to changes in their metabolic rate and the digestibility of any food consumed postprandially. Previous studies have found that the order of eating is associated with childhood obesity (13). However, only a few studies have examined the relationship between the order of consumption of vegetables and meat/fish and childhood thinness.

There are concerns about growth and physical development during the early stages of childhood. A nutritious and balanced diet is key to healthy development in children. Studies have found that the majority of a child's eating habits are formed during the preschool years (14), and early education at this age helps develop healthy eating patterns. Given this context, this study aimed at exploring the association between the order of consumption of vegetables and meat/fish and childhood thinness.

2 Methods

2.1 Study design and population

The study was conducted in Taizhou, which is a coastal city in east mainland China. From December 1, 2021, to January 31, 2022, 419 thinness and 1,204 normal-weight preschool children from local kindergartens were selected to participate in the study. An online survey was conducted using the Wen-Juan-Xing platform, which allowed the distribution of the questionnaire via WeChat (9, 15). The use of this platform allowed respondents to complete

the questionnaire online and ensured wide accessibility to a large population in China. The parents of the preschool children included in the study completed the questionnaire. Voluntary participation in the survey was considered as the receipt of informed consent from both the children and their parents. This study was approved by the Ethics Committee of Taizhou Hospital, Zhejiang Province (approval number: K20220123). All the procedures were performed according to the guidelines of the institutional ethics committee. The participants' information was anonymized and maintained.

2.2 Weight statuses of the children and parents

Children's parents reported their own height and weight as well as that of their children. Body mass index (BMI) was calculated based on height (in meters) and weight (in kilograms). In accordance with the recommendations of the International Obesity Task Force, each child's BMI was adjusted for age and sex and converted to a standardized z-score (16). The children were categorized as thinness or normal weight, accordingly. Furthermore, the parents were divided into the following groups based on international weight cut-off values: thinness (BMI < 18.5 kg/m^2), normal weight ($18.5 \text{ kg/m}^2 \le \text{BMI} < 25 \text{ kg/m}^2$), and overweight/obesity (BMI $\ge 30 \text{ kg/m}^2$) (17).

2.3 Order of eating and other variables

To understand the children's order of eating, the following question was asked: "Does your child usually eat vegetables or meat/fish first at the beginning of a meal?" The two answer options provided were "vegetables before meat/fish" or "meat/fish before vegetables." The information collected using the questionnaire included the child's sex, date of birth, residential area (urban or rural), parents' education level (junior or below, senior, university or above), occupation (brain work, physical work, or other), and annual family income (<120,000, 120,000–500,000, or >500,000 Chinese Yuan). The parents were also asked the following question: "How many brothers and sisters does your child have?" The responses available to them were 0, 1, and ≥2.

2.4 Statistical analysis

Categorical variables, including the children's demographic, parental, and family characteristics, were expressed as counts and percentages. Chi-square tests were used to assess the relationship between the order of vegetable and meat/fish consumption and the children's body weight status. Continuous variables, including the parents' ages, were expressed as mean \pm standard deviation (SD) values. A t-test was used to evaluate the difference between children's body weight status and continuous variables. Logistic regression analysis was used to evaluate the association between the food consumed first at mealtimes and the thinness status of

TABLE 1 Comparison of basic characteristics between thinness and normal weight children.

Variables	iables Total Body weight status P						
variables	Total (n = 1,623)	Body Wei	P				
	(11 - 1,023)	Thinness	Normal				
		(n = 419,	weight				
		25.8%)	(n = 1,204,				
			74.2%)				
Child-related ch	aracteristics						
Sex				0.387			
Boy	870 (53.6)	217 (51.8)	653 (54.2)				
Girl	753 (46.4)	202 (48.2)	551 (45.8)				
Age (years)				0.470			
3	404 (24.9)	111 (26.5)	293 (24.3)				
4	548 (33.8)	148 (35.3)	400 (33.2)				
5	516 (31.8)	121 (28.9)	395 (32.8)				
6	155 (9.5)	39 (9.3)	116 (9.6)				
Parental-related			I				
Father's age	36.926 ± 9.545	37.549 ± 15.735	36.709 ± 6.051	0.121			
(years)	25 006 + 6 670	24.026 + 5.651	35.155 ± 7.002	0.545			
Mother's age (years)	35.096 ± 6.678	34.926 ± 5.651	35.155 ± 7.002	0.545			
Father's				0.104			
				0.104			
education level	226 (14.5)	74 (177)	162 (12.5)				
Junior or below Senior	236 (14.5) 445 (27.4)	74 (17.7) 113 (27.0)	162 (13.5)				
University or	942 (58.1)	232 (55.4)	332 (27.6) 710 (59.0)				
above	942 (36.1)	232 (33.4)	710 (39.0)				
Mother's				0.002			
education level				0.002			
Junior or below	205 (12.6)	63 (15.0)	142 (11.8)				
Senior	357 (22.0)	112 (26.7)	245 (20.3)				
University or	1,061 (65.4)	244 (58.2)	817 (67.9)				
above	,,,,	(,,,,	,				
Father's				0.444			
occupations							
Brain work	1,349 (83.1)	340 (81.1)	1,009 (83.8)				
Physical work	100 (6.2)	28 (6.7)	72 (6.0)				
Other occupation	174 (10.7)	51 (12.2)	123 (10.2)				
Mother's				0.511			
occupations							
Brain work	1,244 (76.7)	317 (75.7)	927 (77.0)				
Physical work	80 (4.9)	18 (4.3)	62 (5.1)				
Other occupation	299 (18.4)	84 (20.0)	215 (17.9)				
Father's BMI				0.057			
category							
Thinness	36 (2.2)	14 (3.3)	22 (1.8)				
Normal weight	919 (56.6)	248 (59.2)	671 (55.7)				
Overweight/	668 (41.2)	157 (37.5)	511 (42.4)				
Obesity							
Mother's BMI				0.002			
category							
Thinness	175 (10.8)	63 (15.0)	112 (9.3)				
Normal weight	1,213 (74.7)	290 (69.2)	923 (76.7)				
Overweight/	235 (14.5)	66 (15.8)	169 (14.0)				
Obesity							
Family-related characteristics							
Residence				0.066			
Urban	1,063 (65.5)	259 (61.8)	804 (66.8)				

TABLE 1 Continued

Variables	Total (n = 1,623)	Body wei	P	
		Thinness (n = 419, 25.8%)	Normal weight (n = 1,204, 74.2%)	
Rural	560 (34.5)	160 (38.2)	400 (33.2)	
One-child				0.063
family				
Yes	702 (43.3)	165 (39.4)	537 (44.6)	
No	921 (56.7)	254 (60.6)	667 (55.4)	
Annual				0.474
household				
income (CNY)				
<120,000	320 (19.7)	89 (21.2)	231 (19.2)	
120,000-500,000	1,054(64.9)	272(64.9)	782(65.0)	
>500,000	249(15.4)	58(13.8)	191(15.9)	

Bold values indicate P < 0.05

the children, in order to calculate the 95% adjusted odds ratio (OR) and confidence interval (CI). The following model sequence was constructed: Model 1 was adjusted for children's sex; Model 2 was additionally adjusted for mother's and father's educational levels; and Model 3 was additionally adjusted for the BMI categories of mothers and fathers. All the data were statistically analyzed using IBM SPSS software (version 26.0, SPSS Inc.). P < 0.05 was considered statistically different.

3 Results

3.1 Headings

Table 1 presents the basic characteristics of the participants. We analyzed 1,623 children aged 3–6 years, including 870 boys and 753 girls. The proportion of mothers who graduated from university or achieved higher academic degrees was lower for children with thinness than that for normal-weight (58.2% vs. 67.9%, P = 0.002). A higher proportion of mothers were thinness among the thinness children group as compared to the normal-weight children group (15.0% vs. 9.3%, P = 0.002).

Overall, 53.4% and 46.6% of the children, respectively, ate vegetables and meat/fish first during meals. Figure 1 shows the differences in order of eating between thinness and normal-weight preschoolers. A higher proportion of children with thinness ate vegetables at the start of a meal as compared children with normal weight (58.95% vs. 51.41%, P = 0.008).

After adjusting for sex, children who ate vegetables first were 1.356 times as likely (95% CI: 1.083–1.698, P=0.008) to be thin as compared to children who ate meat/fish first (Model 1, Table 2). After adjusting for mother and father's educational level, the effect of eating vegetables first during a meal on thinness in preschool children remained significant (OR: 1.295, 95% CI: 1.030–1.629, P=0.027) (Model 2, Table 2). Subsequent adjustments to the BMI categories of the mothers and fathers did

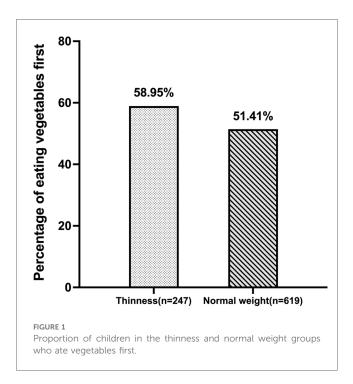


TABLE 2 The effect of eating vegetables first on risk of thinness in preschoolers.

Model	В	Wald <i>x</i> 2	P	OR	95%CI
Model 1	0.305	7.029	0.008	1.356	1.083-1.698
Model 2	0.259	4.891	0.027	1.295	1.030-1.629
Model 3	0.247	4.382	0.036	1.280	1.016-1.612

Eating meat/fish as reference.

Model 1: Adjust for children's sex.

Model 2: Model 1 + adjust for father's and mother's educational levels.

Model 3: Model 2 + adjust for father's and mother's BMI category.

not completely weaken this association (OR: 1.280, 95% CI: 1.016–1.612, P = 0.036) (Model 3, Table 2).

4 Discussion

Currently, much attention is focused on childhood obesity. However, thinness is an important issue that remains to be addressed. The factors associated with childhood thinness are complex and include community, family, socioeconomic, and cultural influences as well as children's feeding practices. Eating habits and food choices affect nutrition and energy expenditure. High consumption of unhealthy foods as well as unhealthy eating habits are risk factors for child mortality, whereas good eating habits are essential for lifelong health (7). Children affected by thinness may consume fewer dietary nutrients, such as vitamins and minerals, which are necessary for growth and development (18).

Some studies have found that childhood thinness is associated with a familial predisposition to low body weight, with an intergenerational transmission of thinness (19). This is consistent with our research, which found that children of mothers with thinness were more likely to be thin. This emphasizes the important role of family in influencing childhood thinness.

4.1 Association of order of eating with thinness

Our study found that children who habitually ate vegetables first at meals were more likely to be thin compared with those who ate meat/fish first. To the best of our knowledge, few studies have examined the effects of order of eating on thinness in preschool children. There are several possible explanations for these findings. First, starting a meal by eating low-energy-density foods (vegetables) may better promote satiation and reduce energy intake during the meal compared with eating high-energy-density foods (meat/fish) first (20, 21). Dietary studies on children found that reducing the energy density of food over a 2 day period reduced the cumulative energy intake (22). As the body's accumulated energy decreases, children tend to become leaner.

Vegetables are rich in vitamins, dietary fiber, and trace elements. Dietary fiber has been associated with several potential weight control mechanisms, including reducing dietary energy density, promoting satiation and fullness, reducing intestinal metabolic energy absorption, and regulating the growth of intestinal flora to promote a thinness body weight status (10, 11). Most vegetables are considered to have low energy density, glycemic load, and dietary fat. All these properties promote a negative balance of energy formation and reduce the chances of weight gain in the long-term (12, 23). In addition, vegetables are rich in phytochemicals that may play an important role in lipid energy metabolism, adipose tissue growth and differentiation, and adipocyte apoptosis (24, 25).

4.2 Reasonable eating habits and diet education

This study showed that the order in which food is eaten at a meal affects the risk of thinness in children. Strong evidence suggests that children's eating behaviors are overwhelmingly formed during the preschool years (26). Early interventions to develop healthy eating habits at this age can continue into adulthood. As children grow, their energy requirements also increase and they require adequate food intake to maintain an age-appropriate weight. Therefore, it is vital that they obtain their energy from a varied, healthy, and balanced diet. The inability of children to meet their increasing energy and nutritional needs leads to childhood thinness. In our study, children who consumed vegetables first had a significantly increased risk of being affected by thinness. Therefore, eating meat/fish first at mealtimes may be a better choice for children affected by thinness. We believe the findings of our study can serve as dietary references for families and schools.

4.3 Public health implications

The study revealed a 28% higher risk of children with thinness who initiated meals with vegetables compared to those who consumed meat/fish first (adjusted OR=1.280, 95% CI: 1.016–1.612). The findings carry important public health implications.

First, it identifies a low-cost, easily implementable target for nutritional intervention. Adjusting consumption sequence (prioritizing meat/fish vs. vegetables) serves as a feasible microhabit modification that requires no changes to food types or additional economic burden, making it suitable for implementation in households and childcare settings. Second, it provides evidence-based guidance for precision nutrition in children with thinness. The study is the first to reveal that "eating vegetables first" may increase thinness risk, suggesting that children with thinness should prioritize energy-dense foods (meat/fish). This challenges the conventional one-sizefits-all recommendation of "vegetables first". Third, it advances the theoretical framework for child nutrition interventions by advocating for the integration of "dietary behavior dynamics"(e.g., food consumption sequence) into pediatric nutritional assessment systems. This addresses a critical gap in current guidelines that primarily focus on food types and portions. In conclusion, this research introduces a novel behavioral fine-tuning approach to childhood malnutrition prevention, shifting public health strategies from "what to eat" to "how to eat". It holds promise as a cost-effective strategy for improving child nutrition in resource-limited regions.

4.4 Strengths and limitations

Few studies have examined the correlation between order of eating and health in children. This study provides new evidence on the relationship between order of eating and body weight in Chinese children. However, this study had several limitations. First, it was conducted in a city in coastal China; hence, the study population is not representative of the entire population of the country. Second, as a cross-sectional study, this analysis is limited to associations rather than causation. Third, data on weight and height were self-reported by the children's parents; thus, recall bias may have affected the accuracy of the data. However, there is evidence that self-reported height and weight are highly correlated with measurements that can be used to estimate BMI status in population epidemiological surveys (27). Fourth, unmeasured confounders (e.g., total energy intake, physical activity, sleep patterns, and dietary habits) create potential residual confounding. Fifth, we did not examine the relationship between distinct growth indicators: thinness (low BMI-for-age), stunting (low height-for-age), underweight (low weight-for-age), and wasting (low weight-for-height), which should be further explored in the future. Sixth, we were unable to provide consistency and stability regarding the order of eating each meal. Seventh, we used only one question to measure eating vegetables or meat/fish first at the start of a meal, which may introduce misclassification and lacks granularity and lead to recall and social desirability bias. We did not use food frequency or dietary recall instrument in this study. We did not examine the effects of food quantity and eating other foods first, such as dessert, rice, or soup. In addition, cultural variations in meal composition and portion sizes and unaccounted macronutrient intake may affect measurement accuracy.

5 Conclusion

Our findings revealed that the food consumed first during meals was related to the children's weight status. For children with thinness, we do not recommend that they eat vegetables first, but rather encourage them to eat meat/fish first.

Data availability statement

The data analyzed in this study is subject to the following licenses/restrictions: The date that support the findings of this study are not publicly available due to their containing information that could compromise the privacy of research participants but are available from the corresponding author. Requests to access these datasets should be directed to Meixian Zhang, zhangmx5935@enzemed.com.

Ethics statement

The studies involving humans were approved by This study was approved by the Ethics Committee of Taizhou Hospital, Zhejiang Province (approval number: K20220123). The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation was not required from the participants or the participants' legal guardians/next of kin in accordance with the national legislation and institutional requirements.

Author contributions

JY: Writing – original draft. YH: Writing – original draft. HW: Data curation, Writing – original draft, Investigation. YiW: Data curation, Investigation, Writing – original draft. YuW: Data curation, Investigation, Writing – original draft. HF: Resources, Writing – original draft. MC: Resources, Writing – original draft. LW: Writing – review & editing. MZ: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by Medical Science and Technology Project of Zhejiang Province (2025KY1833) and National Natural Science Foundation of Zhejiang Province (LGF21H040006).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. McGuire S. World health organization. Comprehensive implementation plan on maternal, infant, and young child nutrition. Geneva, Switzerland, 2014. *Adv Nutr.* (2015) 6(1):134–5. doi: 10.3945/an.114.007781
- 2. Itoh H, Kanayama N. Nutritional conditions in early life and risk of non-communicable diseases (NCDs) from the perspective of preemptive medicine in perinatal care. *Hypertens Res. Pregnancy.* (2015) 3:1–12. doi: 10.14390/jsshp.3.1
- 3. Devindran D, Ulaganathan V, Oeh ZY, Tan LX, Kuralneethi S, Eng ZYE, et al. Association between dietary diversity and weight status of aboriginal primary school children in Negeri Sembilan, Malaysia. *Malays J Med Sci.* (2022) 29(1):101–12. doi: 10.21315/mjms2022.29.1.10
- 4. World Health Organization. Fact sheets: Malnutrition. Available online at: https://www.who.int/news-room/fact-sheets/detail/malnutrition (Accessed November 17, 2021).
- 5. Chen C, Jin Z, Yang Y, Jiang F, Jin X, Huang H, et al. Prevalence of grade 1, 2 and 3 thinness is associated with lower socio-economic status in children in Shanghai, China. *Public Health Nutr.* (2016) 19:2002–10. doi: 10.1017/S1368980016000045
- 6. Tambalis KD, Panagiotakos DB, Psarra G, Sidossis LS. Prevalence, trends and risk factors of thinness among Greek children and adolescents. *J Prev Med Hyg.* (2019) 60(4):E386–93. doi: 10.15167/2421-4248/jpmh2019.60.4.1374
- 7. Uzogara S. Thinness, the less discussed type of unhealthy weight and its implications: a review. *Am J Food Sci Nutr Res.* (2016) 3:126–42. Available online at: https://www.researchgate.net/publication/306275675Underweight_the_Less_Discussed_Type_of_Unhealthy_Weight_and_Its_Implications_A_Review (Accessed June 12, 2023).
- 8. Yang J, Tani Y, Tobias DK, Ochi M, Fujiwara T. Eating vegetables first at start of meal and food intake among preschool children in Japan. *Nutrients*. (2020) 12(6):1762. doi: 10.3390/nu12061762
- 9. Dai J, Yang J, Fan H, Wu Y, Wu H, Wang Y, et al. Eating order and childhood obesity among preschoolers in China: a cross-sectional study. *Front Pediatr.* (2023) 11:1139743. doi: 10.3389/fped.2023.1139743
- 10. Saffari M, Pakpour AH, Mohammadi-Zeidi I, Samadi M, Chen H. Long-term effect of motivational interviewing on dietary intake and weight loss in Iranian obese/overweight women. *Health Promot Perspect.* (2014) 4(2):206–13. doi: 10.5681/hpp.2014.027
- 11. Buscemi J, Pugach O, Springfield S, Jang J, Tussing-Humphreys L, Schiffer L, et al. Associations between fiber intake and body mass Index (BMI) among African-American women participating in a randomized weight loss and maintenance trial. *Eat Behav.* (2018) 29:48–53. doi: 10.1016/j.eatbeh.2018.02.005
- 12. US Department of Health and Human Services and U.S. Department of Agriculture 2015–2020 Dietary Guidelines for Americans. 8 Edition. 2015. Available online: Available online at: https://health.gov/dietaryguidelines/2015/guidelines/ (Accessed June 12, 2023).
- 13. Tani Y, Fujiwara T, Ochi M, Isumi A, Kato T. Does eating vegetables at start of meal prevent childhood overweight in Japan? A-CHILD study. *Front Pediatr.* (2018) 6:134. doi: 10.3389/fped.2018.00134

- 14. Lioret S, Campbell KJ, McNaughton SA, Cameron AJ, Salmon J, Abbott G, et al. Lifestyle patterns begin in early childhood, persist and are socioeconomically patterned, confirming the importance of early life interventions. *Nutrients*. (2020) 12(3):724. doi: 10.3390/nu12030724
- 15. Wu YX, Fan HL, Dai J, Wu HL, Yang JY, Wang Y, et al. Analysis of association between eating behaviours and childhood obesity among pre-school children: a cross-sectional study. *Front Pediatr.* (2023) 10:1073711. doi: 10.3389/fped.2022.1073711
- 16. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. $Pediatr\ Obes.\ (2012)\ 7(4):284-94.\ doi:\ 10.1111/j.\ 2047-6310.2012.00064.x$
- 17. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. (2000) 894:i–xii. 1-253.
- 18. Borowitz KC, Borowitz SM. Feeding problems in infants and children: assessment and etiology. *Pediatr Clin North Am.* (2018) 65(1):59–72. doi: 10.1016/j.pcl.2017.08.021
- 19. Whitaker KL, Jarvis MJ, Boniface D, Wardle J. The intergenerational transmission of thinness. *Arch Pediatr Adolesc Med.* (2011) 165(10):900–5. doi: 10.1001/archpediatrics.2011.147
- 20. National Center for Chronic Disease Prevention and Health Promotion Can Eating Fruits and Vegetables Help People to Manage Their Weight? Research to Practice Series; No.1. Available online: Available online at: https://www.cdc.gov/nccdphp/dnpa/nutrition/pdf/rtp_practitioner_10_07 (Accessed June 12, 2023).
- 21. Rolls BJ. Dietary energy density: applying behavioural science to weight management. *Nutr Bull.* (2017) 42(3):246–53. doi: 10.1111/nbu.12280
- 22. Leahy KE, Birch LL, Rolls BJ. Reducing the energy density of multiple meals decreases the energy intake of preschool-age children. *Am J Clin Nutr.* (2008) 88:1459–68. doi: 10.3945/ajcn.2008.26522
- 23. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. *Eur J Nutr.* (2012) 51(6):637–63. doi: 10.1007/s00394-012-0380-y
- 24. Bertoia ML, Rimm EB, Mukamal KJ, Hu FB, Willett WC, Cassidy A. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. *Br Med J.* (2016) 352:i17. doi: 10. 1136/bmj.i17
- 25. González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: a review. *Pharmacol Res.* (2011) 64(5):438–55. doi: 10.1016/j.phrs.2011.07.004
- 26. Shloim N, Edelson LR, Martin N, Hetherington MM. Parenting styles, feeding styles, feeding practices, and weight Status in 4–12 year-old children: a systematic review of the literature. *Front Psychol.* (2015) 6:1849. doi: 10.3389/fpsyg.2015.01849
- 27. Rios-Leyvraz M, Ortega N, Chiolero A. Reliability of self-reported height and weight in children: a school-based cross-sectional study and a review. *Nutrients*. (2022) 15(1):75. doi: 10.3390/nu15010075