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Background: Congenital disorders of glycosylation (CDG) are a group of multi- 

systemic genetic disorders. Over 100 monogenic human diseases were known 

related with defects in glycosylation process. Defects of SSR4 gene lead to a 

rare X linked pattern of CDG which has been rarely reported.

Method: We reported a Chinese boy with developmental delay, microcephaly, 

and epileptic seizures. Whole exome sequencing and Sanger sequencing were 

performed in the family.

Result: A novel maternal splice variant c.351+1del in SSR4 gene was identified 

by trio-exome sequencing, and confirmed by Sanger sequencing. The 

functional effect of the variant was further investigated by minigene. The 

minigene results showed three abnormal splice forms: (1) 1 bp deletion in 3′ 
end of exon 4; (2) 42 bp deletion in 3′ end of exon 4; (3) skipping of exon 

4. All three forms resulted in truncated proteins. c.351+1del in SSR4 gene 

causes congenital disorder of glycosylation, type Iy, consisted with the 

proband’s phenotype. Up to date, all of the pathogenic SSR4 gene variants 

were null variants. The most variants were reported in exon 4. Patients 

(within or between families) carrying the same variants exhibited 

phenotypic heterogeneity.

Conclusion: The current study expanded the pathogenic variant spectrum of 

SSR4 gene and revealed the impact of c.351+1del on SSR4 splicing. 

Standardizing the transcript and naming conventions of variants were crucial 

for the study of SSR4 genotypes and phenotypes.
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1 Introduction

N-linked glycosylation is a post-translational modification essential for the folding, 

stability, and other cellular functions of membrane proteins (1, 2). In recent years, 

literatures had reported alterations in the N-glycans of membrane proteins are associated 

with various pathological conditions (3, 4). Signal sequence receptor protein 4 (SSR4, 

OMIM 300090) on chromosome Xq28, encodes a subunit of a transmembrane protein 

complex involved in the transport of proteins across the endoplasmic reticulum 

membrane, enhancing the efficiency of N-linked glycosylation (5). Hemizygous variants 

in the SSR4 gene cause congenital disorder of glycosylation, type Iy (CDG1Y, OMIM 

300934), also called SSR4-CDG. SSR4-CDG is characterized by developmental delay, 

speech delay, impaired intellectual development, muscular hypotonia, microcephaly, 

seizures and distinctive facial features (5). Extended phenotype has cardiomyopathy (6) 
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and connective tissue disorder (redundant skin, joint laxity, blue 

sclerae, and vascular tortuosity) (7). Up to date, more than 20 

patients with loss-of-function variants were reported with 

CDG1Y, including total gene deletions (6 patients), nonsense 

(5 patients), frameshift (7 patients) and splice variants (5 patients) 

(5–13). However, the relationship between SSR4 genotype and 

phenotype was not yet clear.

We reported a Chinese boy with a maternal splice variant of 

SSR4 gene and verified the impact on mRNA coding. To conduct 

accurate analysis of genotypes, we summarized the characteristics 

of the SSR4 genotypes and provided theoretical foundation for the 

study of the genotype and phenotype of the SSR4.

2 Materials and methods

2.1 Clinical course

The proband, a 4-year-old boy (G1P1), was delivered naturally 

with a birth weight of 2.7 kg. He underwent developmental delay, 

microcephaly, and epileptic seizures twice before. He was admitted 

to the Pediatric of the People’s Hospital of Liuyang due to epileptic 

seizure accompanied by high fever one day ago. He had a high 

fever with unknown reason (up to 39°C) before seizure. The 

seizure type was tonic-clonic seizure, characterized by 

unresponsiveness, eyes rolling up, dark complexion, trembling 

limbs, and lasting for about 2 min. Further examination after 

admission revealed swollen tonsils (I°) and coarse breath sounds 

in both lungs. Routine electrolyte test results suggest 

hypokalemia (potassium, 3.14 mmol/L). No obvious brain 

structural abnormalities were found on cranial MRI. Urine 

organic acid test results were normal. Blood amino acid and 

acylcarnitine profile analysis showed a slight decrease in 

glutamine (Gln) level (0.89, normal range from 1.00 to 55.00). 

Facial features included deep set eyes, large ears and mouth. The 

child’s general developmental level was equivalent to 30-month- 

old according to the Gesell Developmental Diagnostic Scale, 

with a Developmental Quotient (DQ) of 54, indicating moderate 

developmental delay. His parents were healthy, non- 

consanguineous, and had no family history of genetic diseases. 

After adequate genetic counseling, we performed trios whole 

exome sequencing (WES) on the proband and his parents.

2.2 Whole exome sequencing

Genomic DNA were extracted from peripheral blood samples 

using Qiagen DNA Blood Midi/Mini kit (Qiagen GmbH, Hilden, 

Germany). 50 ng genomic DNA was interrupted to approximately 

250 bp around by fragmentation enzymes. The DNA fragments 

were then end repaired, and the 3′end was added one A base. 

The DNA fragments were ligated with barcoded sequencing 

adaptors and collected by XP beads. The DNA fragments were 

hybridized and captured by probe named Nano WES V2 (Berry 

Genomics, Beijing, China). The products were eluted and 

collected, and subjected to PCR amplification and the 

purification. The libraries were quantified by qPCR and 

sequenced by Novaseq6000 platform (Illumina, San Diego, USA) 

with 150 bp pair-end sequencing mode.

The raw sequencing reads were aligned to the human reference 

genome (GRCh38) using Burrows Wheeler Aligner (14) tool and 

PCR duplicates were removed by using Picard v1.57 (http:// 

picard.sourceforge.net/). Verita Trekker® Variants Detection 

System by Berry Genomics and GATK (https://software. 

broadinstitute.org/gatk/) were employed for variant calling. 

Variant annotation and interpretation were conducted by 

ANNOVAR (15) and the Enliven® Variants Annotation 

Interpretation System authorized by Berry Genomics. Annotation 

databases mainly included gnomAD (http://gnomad. 

broadinstitute.org/), EXAC database (https://gnomad. 

broadinstitute.org/), the 1,000 Genome Project (http://browser. 

1000genomes.org), Berry inhouse population database, dbSNP 

(http://www.ncbi.nlm.nih.gov/snp), SIFT (http://sift.jcvi.org), 

FATHMM (http://fathmm.biocompute.org.uk), MutationAssessor 

(http://mutationassessor.org), CADD (http://cadd.gs.washington. 

edu), SPIDEX (16), spliceAI (17), FF (https://www.fruitIy.org/ 

seq_tools/splice.html), OMIM (http://www.omim.org), ClinVar 

(http://www.ncbi.nlm.nih.gov/clinvar), HGMD (http://www.hgmd. 

org), HPO (https://hpo.jax.org/app/) etc. The variants were 

classified to five categories (pathogenic, likely pathogenic, 

uncertain significance, likely benign and benign) according to the 

American College of Medical Genetics and Genomics (ACMG) 

guidelines for interpretation of genetic variants (18).

2.3 Sanger sequencing

The candidate variant was verified by Sanger sequencing. The 

primers (Forward: CAGAAGGTGACCCTGCCTTT; Reverse: 

AAACAGAGGCGGGATGATGG) were designed by Primer 5 

software. DNA fragment containing the candidate variant was 

amplified by polymerase chain reaction: initial denaturation at 

95°C for 5 min, followed by 34 cycles at 95°C for 30 s, 58°C for 

30 s and 72°C for 20 s and hold at 72°C for 10 min. PCR 

product was purified and sequenced using an ABI 3730XL DNA 

Analyzer with the BigDyeTM Terminator Cycle Sequencing Kit 

(Applied Biosystems, Foster, CA, USA). The results of Sanger 

sequencing were analyzed by Chromas software according to 

NM_006280.

2.4 In vitro minigene assays

We conducted in vitro minigene assays to verify the impact of 

candidate variant. To enhance the reliability of the experimental 

results, we transfected two types of recombinant plasmids into 

two types of tool cells respectively.

Using normal human gDNA as a template, nested PCRs were 

carried out by Nested primer 1 and 2. Then using nested PCR 

products as template to generate the wide and mutant SSR4 

fragments of pcDNA3.1 and pcMINI-C. Pair of 

pcDNA3.1-SSR4-KpnI-F and pcDNA3.1-SSR4-EcoRI-R were 

Li and Chen                                                                                                                                                             10.3389/fped.2025.1651524 

Frontiers in Pediatrics 02 frontiersin.org

http://picard.sourceforge.net/
http://picard.sourceforge.net/
https://software.broadinstitute.org/gatk/
https://software.broadinstitute.org/gatk/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
http://browser.1000genomes.org
http://browser.1000genomes.org
http://www.ncbi.nlm.nih.gov/snp
http://sift.jcvi.org
http://fathmm.biocompute.org.uk
http://mutationassessor.org
http://cadd.gs.washington.edu
http://cadd.gs.washington.edu
https://www.fruitfly.org/seq_tools/splice.html
https://www.fruitfly.org/seq_tools/splice.html
http://www.omim.org
http://www.ncbi.nlm.nih.gov/clinvar
http://www.hgmd.org
http://www.hgmd.org
https://hpo.jax.org/app/


used to generate fragment of pcDNA3.1-SSR4-wt. Using the 

mixture of PCR reaction products (pcDNA3.1-SSR4-KpnI-F and 

SSR4-mut-R, SSR4-mut-F and pcDNA3.1-SSR4-EcoRI-R) as 

template to generate fragment of pcDNA3.1-SSR4-mut by pair 

of pcDNA3.1-SSR4-KpnI-F and pcDNA3.1-SSR4-EcoRI-R. Pair 

of pcMINI-C-SSR4-KpnI-F and pcMINI-C-SSR4-EcoRI-R were 

used to generate fragment of pcMINI-C-SSR4-wt. Using the 

mixture of PCR reaction products (pcMINI-C-SSR4-KpnI-F and 

SSR4-mut-R, SSR4-mut-F and pcMINI-C-SSR4-EcoRI-R) as 

template to generate fragment of pcMINI-C-SSR4-mut by pair 

of pcMINI-C-SSR4-KpnI-F and pcMINI-C-SSR4-EcoRI-R. All of 

primers (Table 1) were designed by Primer5 software.

The wild and mutant fragments were constructed in 

pcDNA3.1 and pcMINI-C plasmids (Figures 2A,B) and 

confirmed by Sanger sequencing. The vector constructions were 

supplied in the Supplementary Figure. The primers sequences 

used in vector constructions were show in Table 1. The 

recombinant plasmids were transfected into HEK293T and HeLa 

cells separately using Hieff TransTM Liposomal Transfection 

Reagent (YEASEN, Shanghai, China). Total RNA was extracted 

from cells cultured for 48 h with Trizol Reagent (TaKaRa, 

Kusatsu, Japan) and reverse-transcribed with the Superscript III 

reverse transcriptase (HifairTM 1st Strand cDNA Synthesis 

SuperMix for qPCR) (YEASEN, Shanghai, China). PCRs were 

performed by primers (pcDNA3.1-F and pcDNA3.1-R; pcMINI- 

C-F and pcMINI-C-R) in the target region of cDNA. The PCR 

products were analyzed on 1% agarose gel electrophoresis and 

using an ABI 3730XL DNA Analyzer with the BigDyeTM 

Terminator Cycle Sequencing Kit (Applied Biosystems, Foster, 

CA, USA). Compare the sequencing results of wild and mutant- 

type in the cells and analysis the splice form of the mutant type.

2.5 The three-dimensional (3D) structure

The three-dimensional (3D) structure of SSR4 was analyzed by 

PyMOL (The PyMOL Molecular Graphics System, Version 2.0 

Schrödinger, LLC), using AF-P51571-F1-model_v4 as 

the template.

2.6 Analysis of the SSR4 genotype

Using “SSR4 gene”, “SSR4-CDG” and “congenital disorder of 

glycosylation, type Iy” as the key words, conduct a search in the 

PUBMED database. Using “SSR4” as the key word to search the 

transcripts (Homo sapiens) in NCBI database. According to 

Human Genome Variation Society (HGVS) nomenclature rules 

(https://hgvs-nomenclature.org/), we checked and corrected the 

variants reported. We drew the gene structure of SSR4 based on 

the transcript structure provided by ProteinPaint (https:// 

proteinpaint.stjude.org/) and performed localization and analysis 

of the SSR4 SNVs and indels.

3 Results

3.1 Results of WES

A novel hemizygous splice variant NM_006280: c.351+1del in 

SSR4 gene (OMIM 300090) was identified in the proband by WES. 

Both of WES and sanger sequencing confirmed it inherited from 

the mother (Figure 1). c.351+1del was in the intron 4 of SSR4 

gene. It was a splice donor variant, predicted to undergo 

nonsense-mediated mRNA decay (NMD)(PVS1) (19). Multiple 

software programs predict the variant impact the splicing of 

SSR4 (spliceAI: donor loss 1.00, donor gain 0.98; FF: donor loss 

0.99). It wasn’t reported in HGMD (https://www.hgmd.cf.ac.uk/ 

ac/index.php) and ClinVar (https://www.ncbi.nlm.nih.gov/ 

clinvar/) databases previously. The frequency of the variant was 

not found in gnomAD, EXAC, 1000G and Berry inhouse 

database (PM2_Supporting). c.351+1del was classified as “likely 

pathogenic” (PVS1+PM2_Supporting) according to ACMG 

guidelines. SSR4 gene was related with Congenital disorder of 

TABLE 1 Sequences and purposes of the primers used in minigene assay.

Purpose Primer name Primer sequence (5′-3′)
Generate nested PCR products Nested primer 1-F GGTTCAAGCGATTCTCCTCT

Nested primer 2-F AGTCAACAGGGTTCCTATGC

Nested primer 2-R CAGCTCAGGGGAGTACAGGT

Nested primer 1-R TCAGGCCTGGATGTGGCTCT

Generate pcDNA3.1-SSR4-wt and mutant fragments pcDNA3.1-SSR4-KpnI-F GCTTGGTACCATGAACATGGCTCTCTATGCTGA

pcDNA3.1-SSR4-EcoRI-R TGCAGAATTCCCGATGGTCCACGCTGACTG

SSR4-mut-F AGCCTCCTCAGGAAGTGAGGACTCCTGTAG

SSR4-mut-R CTACAGGAGTCCTCACTTCCTGAGGAGGCT

Generate pcMINI-C-SSR4-wt and mutant fragments pcMINI-C-SSR4-KpnI-F GGTAGGTACCTGAGGGGCCAATGGTTCCCT

pcMINI-C-SSR4-EcoRI-R TGCAGAATTCCCGATGGTCCACGCTGACTG

SSR4-mut-F AGCCTCCTCAGGAAGTGAGGACTCCTGTAG

SSR4-mut-R CTACAGGAGTCCTCACTTCCTGAGGAGGCT

Get cDNA fragments of pcDNA3.1 pcDNA3.1-F CTAGAGAACCCACTGCTTAC

pcDNA3.1-R TAGAAGGCACAGTCGAGG

Get cDNA fragments of pcMINI pcMINI-C-F ACTTAAGCTTATGAGTGGGCTTTGGGGTGGCCGGTT

pcMINI-C-R TAGAAGGCACAGTCGAGG
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glycosylation, type Iy (CDG1Y, OMIM 300934). Developmental 

delay, microcephaly, and epileptic seizures were consisted with 

the clinical phenotype of CDG1Y. The normal mother carried 

the heterozygote variant c.351+1del, while the proband carried 

the hemizygous variant. The co-segregation pattern of the family 

was consistent with X-linked recessive inheritance.

3.2 Results of minigene splicing assay (SSR4 

gene c.351+1del)

The functional effect of the variant was investigated by in vitro 

minigene assay. The minigene results of two systems were 

consisten. There were three abnormal splice forms: (1) 1 bp 

deletion in 3′ end of exon 4 (c.351del, p.Ala118Leufs*42); (2) 

42 bp deletion in 3′ end of exon 5 (c.310_351del, 

p.Val104_Lys117del); (3) skipping of exon 4 (c.262_351del, 

p.Val88_Lys117del) (Figures 2, 3). All three forms resulted in 

the production of truncated proteins.

3.3 Genotype of SSR4

There were three transcripts of SSR4 gene in the NCBI 

database: NM_006280 (MANE select), NM_001204526 and 

NM_001204527 (Figure 4). According to the MANE transcript 

and the HGVS Nomenclature, we standardized the variants of 

16 previously reported SSR4-CDG patients and patient in this 

work (see Supplementary Table). The distribution of variants on 

the SSR4 gene (MANE transcript) was summarized in Figure 4. 

All of the variants distributed in the coding exons and canonical 

splice sites of NM_006280. The most cases and variants were 

reported in exon 4 (3 variants in 4 patients), including the 

recurrent variant NM_006280: c.269G>A (p.Trp90Ter) reported 

FIGURE 1 

Pedigree and SSR4 gene sequencing results. (A) The pedigree of the family; (B) Sanger sequence chromatogram of SSR4 gene. The results showed 

that c.351+1del in SSR4 was hemizygous in the proband (II1) and heterozygote in the mother (I2).
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in 2 unrelated patients [NM_006280: c.269G>A (p.Trp90Ter) 

equivalent to NM_001204527:c.302G>A (p.Trp101Ter)]. While 

no variant reported in exon 1 of NM_001204526 or 

NM_001204527.

3.4 Follow-up

After six months of language rehabilitation training at our 

hospital, the child underwent the Gesell Developmental Schedules 

assessment at the age of four years and ten months. The results 

indicated that his general developmental level was equivalent to 

35-month-old, with a DQ of 56, falling within the range of mild 

developmental delay. The child later received acupuncture and 

massage rehabilitation treatment at another hospital. At the age 

of five years and three months, he was assessed again using the 

Gesell Developmental Schedules, which showed his general 

developmental level to be equivalent to 39-month-old, with a DQ 

of 57, still indicating mild developmental delay.

4 Discussion and conclusions

Glycosylation can regulate enzyme activity or its interaction 

with other proteins to play roles in various cellular processes, 

including cell recognition, cell signaling, resistance to proteases, 

FIGURE 2 

The in vitro minigene assay of pcDNA3.1 and pcMINI-C. (A) Strategies for plasmid pcDNA3.1 construction; (B) Strategies for plasmid pcMINI-C 

construction; (C,D) The Gel electrophoresis of RT-PCR products displayed a single band (a) from the wild type (wt) and three different bands 

(b–d) in the mutant type (mut).
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FIGURE 3 

The results of minigene assay of SSR4 gene c.351+1del. (A) The cDNA Sanger sequencing of RT-PCR products in pcDNA3.1 was consistent in pcMINI- 

C. Band a led to a shorter transcript with 1 bp deletion of exon 4; Band b led to a shorter transcript with 42 bp deletion of exon 4; Band c led to a 

shorter transcript with skipping of exon 4; (B) Schematic diagram of three types of protein length. (C) The positions of three different variants on the 

three-dimensional protein structure diagram.
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adhesion, migration, and host defense mechanisms (20). An 

important process required for N-glycosylation is the co- 

translational translocation of proteins from the cytoplasm to the 

endoplasmic reticulum, which is facilitated by the translocon- 

associated protein (TRAP) complex. The transmembrane 

subunit SSR4 is a member of the signal sequence receptor (SSR) 

family in the structure of the translocon complex (5, 21). When 

SSR4 is defective, the addition of glycan precursors to proteins 

in the endoplasmic reticulum is impaired, potentially leading to 

disordered N-linked glycosylation of many proteins and the 

complete loss of glycans (7, 9, 22).

SSR4-CDG is a multisystem disorder characterized by 

neurological phenotypes (9, 23). Unlike most autosomal recessive 

CDG disorders, SSR4 is located on the X chromosome and the 

pathogenic variants maybe de novo or maternal inheritance (5). In 

our work, the mother was a heterozygote of SSR4 gene c.351+1del 

without typical clinical symptoms. Carbohydrate-deficient 

transferrin (CDT) is a reliable and cost-effective screening method 

for identifying CDG cases (24). However, it cannot pinpoint 

specific genetic defects. Previously reported cases of SSR4-CDG 

had mostly shown Type I transferrin (Tf) patterns (5, 9, 10). Due 

to the lack of specific clinical features associated with CDG- 

related disorders, the initial presentation is often global 

developmental delay (GDD). Most CDG cases were identified 

through genetic testing and subsequently confirmed CDT. As seen 

in our work, patients often refuse CDT testing after receiving the 

positive genetic results. This highlights the importance of 

considering SSR4-CDG as a potential diagnosis in multisystem 

disorders with predominant neurological manifestations and 

conducting genetic testing.

Regarding the clinical phenotype of SSR4-CDG patients, three 

previous publications have organized and presented cohort 

samples (5, 9, 10). Our study referenced previously reported 

cases and standardized the nomenclature of SNVs and indels. 

After standardizing the variants, we found that two variants 

were recurrent in two unrelated families: c.269G>A, 

(p.Trp90Ter) in exon 4 and c.417+1G>A in intron 5. The study 

by Johnsen C et al (5) showed that P14 and P22 were found to 

carry c.269G>A, p.(Trp90Ter), exhibiting the same core 

phenotypes (developmental delay, intellectual disability, 

muscular hypotonia and abnormal facial features), different the 

other phenotypes (feeding difficulties, connective tissue, 

gastrointestinal Symptoms, skeletal abnormalities, behavioral 

issues). The study by Wang et al (10) showed that c.269G>A 

leaded to mRNA expression of the SSR4 gene approaching zero. 

The study by Johnsen C et al (5) that P6 and P19 carry c.417 

+1G>A, presenting with a consistent core phenotype but 

differing in other phenotypic features. c.417+1G>A were 

predicted might result in the skipping of exon 5. Similar to 

many other types of CDG, clinical phenotyping revealed 

heterogeneity among different individuals (25).

Our study conducted minigene to clarify the impact of splice 

variants on mRNA encoding. The shortest transcript products, as 

shown in Figures 2C,D, result from the skipping of exon 4, leading 

to the deletion of amino acids within the reading frame. In the 

agarose gel electrophoresis results (Figures 2C,D), this product 

was found to have the highest expression level. All indications 

suggest that the integrity of the protein encoded by the SSR4 

gene is crucial for its function. Current, the structure of the 

protein encoded by SSR4 and the function of the region 

encoded by exon 4 are not well understood and require further 

investigation. No variations have been reported in the last exon, 

and its pathogenicity requires further observation.

In conclusion, the current study expanded the pathogenic 

variant spectrum of SSR4 gene and revealed the impact of c.351 

+1del on SSR4 splicing. Standardizing the transcript and naming 

conventions of variants were crucial for the correct study of 

SSR4 genotypes and phenotypes.
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