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Objectives: Non-syndromic cleft lip only (NSCLO) is a common subtype of cleft 
lip with/without cleft palate (CL/P). Previously, we found that SLC23A2 is closely 
related to the occurrence of cleft palate through gene–environment interaction 
studies, but whether SLC23A2 is related to the occurrence of cleft lip has not 
been reported.
Design: First, the genotyping data of single-nucleotide polymorphisms (SNPs) 
at SLC23A2 in 1,047 patients with NSCLO and 2,255 normal controls were 
extracted from two previous genome-wide association studies (GWASs) for an 
association analysis. Then, the interaction effect of SLC23A2, reactive oxygen 
species (ROS), and ascorbic acid (AA) on oxidative stress and apoptosis levels 
in the human oral epithelial-derived cell line (GMSM-K) and zebrafish was 
verified in vitro and in vivo. Finally, the mechanism of how SLC23A2 is 
involved in the occurrence of cleft lip was initially explored using 
RNA sequencing.
Results: The association analysis showed that 10 SNPs located at SLC23A2 were 
significantly correlated with NSCLO. In vitro experiments have shown that 
knockdown of SLC23A2 in GMSM-K inhibits the expression of COL9A3 in the 
PI3K-Akt signaling pathway, promoting an increase in ROS and triggering 
increased apoptosis. The interaction results showed that the ROS and 
apoptosis levels increased in GMSM-K cells with normal SLC23A2 gene 
function when stimulated by Sin-1 (exogenous ROS mimics) and ROS and 
apoptosis levels can be reduced by AA supplementation. GMSM-K cells 
became more sensitive to Sin-1, and AA supplementation was ineffective after 
SLC23A2 knockdown. In addition, increased ROS and apoptosis levels were 
also observed in slc23a2-MO zebrafish, and could not be rescued by 
AA supplementation.
Conclusion: SLC23A2 was significantly associated with NSCLO. The SLC23A2/ 
exogenous ROS/AA interaction is involved in lip and craniofacial development 
by influencing the levels of ROS and apoptosis.
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1 Introduction

Non-syndromic cleft lip only (NSCLO) is a common subtype 
of cleft lip with/without cleft palate (CL/P). According to statistical 
data from 15,094,978 perinatal infants in China, the incidence of 
NSCLO is 0.56 per 1,000. Compared with cleft palate, the 
treatment of NSCLO still faces challenges, including a long 
treatment cycle, complex procedures, and high costs. Despite 
advances in surgical techniques, the fundamental repair methods 
have not significantly improved (1, 2). In addition, scarring and 
postoperative nasolabial deformities remain unavoidable, and 
patients often require multiple surgeries at different 
developmental stages to gradually correct facial morphology (1).

The etiology of NSCLO is complex, involving genetic factors, 
environmental factors, and their interactions, all of which play 
important roles in disease occurrence (3). In recent years, 
increasing attention has been paid to genetic research on 
NSCLO. Studies have reported that the rs642961 variant in the 
IRF6 gene is associated with NSCLO in European (4) and 
Brazilian populations (5).

The rs12107 and rs2269529 variants in MYH9 (6) and rs17563 
and rs10130587 in BMP4 (7) are linked to NSCLO in the Chinese 
Han population.

Current investigations into environmental factors primarily 
rely on epidemiological questionnaires. Factors such as smoking, 
alcohol consumption, hypoxia during pregnancy, and vitamin/ 
folic acid supplementation have been implicated in cleft lip 
development (8, 9). Notably, Nakatomi et al. demonstrated that 
Msx1-deficient embryos develop a cleft lip following transient 
maternal hypoxia (10), providing direct evidence for gene– 
environment interactions in lip formation. However, few studies 
have explored gene–environment interactions in NSCLO. Our 
previous research screened genes associated with four 
environmental factors [smoking, alcohol consumption, hypoxia, 
and vitamin intake—including vitamins A, B9 (folic acid), C 
(ascorbic acid), D, and E] using genome-wide association study 
(GWAS) data. We identified that the vitamin C transporter gene 
SLC23A2 is significantly linked to non-syndromic cleft palate 
only (NSCPO), with further experiments revealing its role in 
oxidative stress-mediated apoptosis. However, its potential 
influence on the occurrence of cleft lip remains unknown.

SLC23A2 is critical for maintaining ascorbic acid (AA) levels 
in fetal and placental tissues. In Slc23a2−/− mice, low AA levels 
resulted in fetal death, and increased oxidative stress and 
massive apoptosis were detected in the embryonic tissues of 
Slc23a2−/− mice that survived the gestation period (11). 
SLC23A2 is a novel receptor-like transporter of AA, exhibiting 
dual functions: mediating AA uptake and activating the Janus 
kinase 2 (JAK2)/signal transducer and activator of transcription 
2 (STAT2) signaling pathway. JAK2 activation synergistically 
promotes AA regulation in reactive oxygen species (ROS) 
scavenging (12). This suggests that the SLC23A2 gene can 
influence oxidative stress by modulating cellular AA levels. 
Sustained oxidative stress may impair craniofacial development 
by increasing neural crest cell apoptosis (13). In addition, 
several studies have demonstrated that dysregulated redox 

homeostasis due to abnormal SLC23A2 function can disrupt 
various cellular biological processes. Downregulation of 
SLC23A2 reduced bone marrow stromal cell (BMSC) attachment 
and spreading, whereas AA supplementation significantly 
rescued BMSCs from oxidative stress and enhanced wound 
closure (14). Impaired SLC23A2 activity leads to decreased AA 
uptake and ROS elimination, thereby affecting myoblast 
differentiation (15). SLC23A2 also plays a crucial role in 
postnatal neuronal differentiation and neurite formation. 
Hippocampal neurons isolated from Slc23a2-knockout mice 
exhibited shorter neurites and reduced clustering of glutamate 
receptors (16).

In the present study, we aimed to validate SLC23A2 gene 
expression and construct an in vitro knockdown model to 
observe the phenotypic effects, preliminarily exploring its 
interaction with environmental factors in the development of 
NSCLO (Figure 1).

2 Materials and methods

2.1 Subject characterization and ethics 
statement

In this study, the genotyping data of single-nucleotide 
polymorphisms (SNPs) at SLC23A2 in 1,047 patients with 
NSCLO and 2,255 normal controls were used from two previous 
GWASs (17, 18). The human subject study protocols were 
reviewed and approved by the institutional review board (IRB) 
of West China Hospital of Stomatology, Sichuan University, in 
2016 (WCHSIRB-D-2016-012R1) and conformed to the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines. Written informed consent 
was obtained from recruited individuals of consenting age and 
from parents on behalf of their participating children.

2.2 Cell culture and transient knockdown

Considering the important role of oral epithelium in facial 
morphogenesis and its known association with NSCL/P, a 
human oral epithelial-derived cell line (GMSM-K, kindly gifted 
by Dr. Zhang from Peking University) was selected for 
functional analysis in our study (19). GMSM-K was cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS; Gibco, United States) and 1% 
penicillin-streptomycin solution (Gibco, United States). Small 
interfering RNA (siRNA) targeting SLC23A2 (NM_005116.6) 
and negative control siRNA were both designed and synthesized 
by GenePharma (Shanghai, China). Information related to the 
siRNA can be found in the Supplementary Materials. Following 
the manufacturer’s instructions, GMSM-K cells were seeded in a 
6-well culture dish at a density of 1 × 105 per well. When the 
cells reached a confluence of 70%–90%, siRNA was transfected 
into the GMSM-K cells using Lipofectamine 3000 (Thermo 
Scientific, United States). After 6 h, we replaced the 
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Lipofectamine 3000-containing media with fresh complete media 
for further culturing. Following 48 or 72 h of transfection, the 
cells were collected to perform further examinations. The 
effective duration of siRNA-mediated gene silencing is 5–7 days.

2.3 Cell immunofluorescence

GMSM-K cells were seeded on a 6-well plate, rinsed with 
phosphate-buffered saline (PBS), and fixed with ice-cold methyl 
alcohol for 5 min. Next, the cells were permeabilized with 0.25% 
Triton X-100 for 5 min, washed with PBS twice, and blocked 
with 2.5% bovine serum albumin in PBS for 1 h. Antibodies 
against SLC23A2 (Novus, NBP2-13319) were diluted 150-fold 
with PBS and incubated at 4°C overnight.

2.4 ROS, superoxide dismutase activity, and 
glutathione/glutathione disulfide detection 
in cells

Cytosolic ROS were detected by staining the GMSM-K cells 
with 10 μM 2’,7’-dichlorodihydrofluorescein diacetate (DCFH- 
DA) (Sigama,Germany) in serum-free medium for 30 min at 
37°C. The cells were washed twice with PBS. Under a 
fluorescence microscope, a fluorescein isothiocyanate (FITC) 
filter was used to observe fluorescence. Superoxide dismutase 
(SOD) activity and glutathione/glutathione disulfide (GSH/ 
GSSG) were detected via a specific kit (Beyotime Biotechnology, 
China) following the manufacturer’s instructions.

2.5 Proliferation assay

GMSM-K cells were seeded into 96-well plates at a density of 
2 × 104 cells/100 μL. At 21, 45, and 69 h after transfection, a 

mixture of 10 μL of Cell Counting Kit-8 (CCK-8) (APExBIO, 
United States) and 90μL DMEM was added to each well after 
removing the original medium and the cells were further 
incubated at 37°C for 3 h. The optical density (OD) of the 
mixture was measured at a wavelength of 450 nm. The 
experiments were repeated three times and five parallel holes 
were set in each experiment.

2.6 Wound healing assay

GMSM-K cells were seeded into 6-well plates at a density of 
2 × 105 cells/2 mL. After transfection, five horizontal lines were 
scored on the bottom of the plates and the cells were scratched 
perpendicularly to the horizontal line using a sterile 20-µL 
pipette. The cells were then washed three times with PBS, placed 
under a microscope, and the medium was changed to 0.1% FBS 
experimental medium. The scratches were observed after 
incubation at 37°C for 0, 24, and 48 h.

2.7 Apoptosis assay

The apoptosis rate was evaluated using the Annexin V-PE/ 
7-amino-actinomycin D (7-AAD) Apoptosis Detection Kit 
(Vazyme, China) according to the instructions from the 
manufacturer. The cells were seeded into 6-well tissue culture 
plates (2 × 105 cells/well). Following treatment, the cells were 
collected, washed with PBS, and resuspended in 500 μL binding 
buffer. Then, 5 μL Annexin V-PE and 5 μL Annexin V-PE were 
added to the buffer and incubated at room temperature for 
10 min in the dark. Cells were analyzed using flow cytometry 
(Thermo Fisher, United States) within 1 h. Flow Cytometry 
Standard (FCS) files were downloaded and analyzed using 
FlowJo software (version 10.4).

FIGURE 1 

The interaction between SLC23A2 and ascorbic acid plays a role in the occurrence of cleft lip by altering oxidative stress-mediated apoptosis. 
Flowchart of this study.
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2.8 RNA sequencing, differential expression 
analysis, and Gene Ontology analysis

GMSM-K cells were transfected with a siRNA-negative control 
or siRNAs-SLC23A2 for 48 h. Then, RNA was extracted from the 
cells and RNA sequencing (RNA-seq) was performed using the 
BGISEQ-500 platform (BGI, China). Three biological replicates 
were included within each group. Differential gene expression 
analysis was performed using the DESeq2 method (|log2| ≥ 0.8, 
q-value ≤ 0.05), and Gene Ontology (GO)/Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis was 
performed using ChiPlot (https://www.chiplot.online/).

2.9 RNA extraction, cDNA synthesis, and 
quantitative real-time PCR analysis

RNA was extracted 48 h after transfection using RNA-easyTM 
Isolation Reagent (Vazyme, China), and was then reverse- 
transcribed to cDNA using a PrimeScriptTM RT reagent Kit 
(Takara Biotechnology, China). Real-time quantitative PCR (RT- 
qPCR) was performed using TB Green® Premix Ex TaqTM 

(Takara Biotechnology, China) on a LightCycler 480 System 
(Roche, Switzerland). All the experiments were performed in 
triplicate, each with three technical replicates. The results were 
calculated using the 2−ΔΔCt equation, normalizing values to 
GAPDH within each sample. The primers used are shown in 
Supplementary Table 1.

2.10 Effects of the SLC23A2/exogenous 
ROS/AA interaction on cellular oxidative 
stress and apoptosis levels

A gene-environment interaction model in the GMSM-K cell 
line was established by knocking down SLC23A2 and adding 
Sin-1 (20) and AA simultaneously. There were the following six 
groups: Negative control (NC), NC + Sin-1 (Aladdin, China), 
NC + Sin-1 + AA (Sigama, Germany), siRNA (si), si + Sin-1, and 
si + Sin-1 + AA. The detection methods of oxidative stress and 
apoptosis are the same as above.

2.11 Effects of the slc23a2/exogenous 
ROS/AA interaction on oxidative stress 
and apoptosis levels in zebrafish

All the animal experiments performed were approved by the 
Animal Ethical and Welfare Committee of Nanjing University 
with ID IACUC-D2310004 (2023.10.8). First, we used the 
previously verified morpholino (MO) technology to construct 
the slc23a2-knockdown zebrafish model. MO targeting at slc23a2 
(slc23a2-MO) (5’-GCACTGAATATGAAAAGATTGTACT-3’) 
was designed and produced by Gene Tools (United States). 
According to the preliminary experiment, the final 
concentration of slc23a2-MO was 2 ng/μL. Injections were 

carried out at the single cell stage, and after 8 h, unfertilized 
eggs and dead eggs were removed and replaced with fresh 
medium. At 48 h postfertilization (pf), the zebrafish embryos 
were collected, incubated with different concentrations of 
3-Morpholinosydnonimine(Sin-1)(exogenous ROS mimics) and 
AA, treated with a 20.5 μM DCFH-DA probe (a chemically 
reduced form of fluorescein used as an indicator for ROS) and 
5 μg/mL acridine orange (AO; an indicator for apoptosis) and 
then incubated in the dark at 28.5°C for 1 h. The embryos were 
then drenched with water three times, anaesthetized with 0.02% 
tricaine, and photographed under a fluorescence microscope 
with FITC filters.

2.12 Statistical analysis

The chi-square test and 95% confidence interval (95% CI) for 
the odds ratios were used to compare the allele frequency 
between the cases and controls. Each SNP was assessed using 
the Hardy–Weinberg equilibrium (HWE) and the minor allele 
frequency (MAF) was calculated. Moreover, the difference in 
allelic and genotypic frequencies of each SNP between the 
cases and normal controls was calculated using PLINK 
software (21). Pairwise linkage disequilibrium (LD), which 
shows both D′ and R2, was computed for all the SNPs using 
the Haploview program (http://www.broad.mit.edu/haploview/ 
haploview). The results are shown as mean ± SD. A statistical 
analysis of the in vivo and in vitro experiments was 
performed using an unpaired two-tailed t-test in GraphPad 
Prism 8 software.

3 Results

3.1 SNPs within SLC23A2 were significantly 
associated with NSCLO

A total of 306 common SNPs (MAF ≥0.01, with call rates 
>95%) that passed the HWE threshold (p > 0.05) were used in 
the association analysis (Supplementary Table 2). Both the allelic 
(Supplementary Table 3) and genotypic (Supplementary 
Table 4) association analyses indicated that 10 SNPs located at 
SLC23A2 were significantly correlated with NSCLO, and were 
both adjusted for multiple corrections (p = 0.05/306). The 
pairwise LD results showed that rs6053029 was tightly linked to 
other SNPs and had the lowest p-value (9.44E-17) in NSCLO 
(Figure 2). Our previous RNA-seq results revealed that the 
expression of SLC23A2 in the lip tissues was higher than that in 
the palate tissues (22) (Supplementary Figure 1).

3.2 SLC23A2 knockdown altered ROS and 
cell biology in the GMSM-K cells

We first detected the expression of SLC23A2 in GMSM-K cells 
and found that SLC23A2 was expressed in the cell membrane 
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(Figure 3A). Then, siRNA was used to construct an SLC23A2- 
knockdown GMSM-K cell model. The siRNA sequence 
information is as follows: F:GAGCCAUCCUGUCUUUAGATT, 
R:UCUAAAGACAGGAUGGCUCTT. The qPCR results showed 
that si-SLC23A2 effectively reduced the transcription level of the 
SLC23A2 gene (Figures 3B,C). Studies have shown that 
knockout of Slc23a2 can increase the level of oxidative stress in 
the embryonic tissues of mice, so we first examined the effect of 
SLC23A2 knockdown on ROS levels. The data showed that the 

intracellular ROS levels in the GMSM-K cells significantly 
increased after SLC23A2 gene knockdown (Figures 4A,B).

The CCK-8 assay showed that there was no significant change 
in the proliferation level of the GMSM-K cells after knocking 
down the SLC23A2 gene (Figures 4C,D). The flow cytometry 
results showed that the early apoptosis levels of the GMSM-K 
cells increased significantly when the SLC23A2 gene was 
knocked down (Figures 4E,F). However, cell migration was not 
significantly affected (Figures 4G,H).

FIGURE 2 

Association analysis and pairwise LD block of the SNPs at chromosome 20. (A) Association analysis and linkage disequilibrium in the Chr20 region. (B, 
C) Pairwise LD block of the SNPs at chromosome 20 in the cases and controls with NSCLO represented by D’ and R2, respectively.
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3.3 SLC23A2 influences biological 
processes in the etiology of lip and 
craniofacial abnormalities

To investigate the potential role of SLC23A2 in the etiology of 
NSCLO, we performed RNA sequencing of GMSM-K cells with or 
without SLC23A2 knockdown. Three biological replicates were set 
up in each group. The differential gene expression analysis 
identified 342 differentially expressed genes (DEGs) in total, 
including 64 upregulated genes and 278 downregulated genes 
(Figure 4I). KEGG analysis showed that a series of biological 
processes were enriched, including the PI3K-Akt signaling 
pathway, regulation of the cell cycle, cell senescence, and the 
Wnt signaling pathway (Figure 4J).

In order to further clarify the relationship between the DEGs 
enriched in GMSM-K cells and NSOC, we extracted the genotype 
data of differential genes from two previously published GWASs 
and conducted an association analysis with each NSOC subtype. 
The results showed that IGFBP2 (rs9341191), ITGB4 (rs820392, 
rs820390, rs820389, rs820387, rs866581, rs820388, and 
rs1008177), LAMC3 (rs3780275), LFNG (rs10261289 and 

rs375386359), NRARP (rs34679617), COL9A3 (rs2294995), 18 
SNPs at TLE2, and 23 SNPs at FLT4 were statistically significant 
(Supplementary Table 5). The genes that were statistically 
significant in the association analysis were verified by real-time 
fluorescent quantitative PCR, and the results showed that the 
expression of COL9A3 in the PI3K-Akt signaling pathway was 
statistically different between the control group and the 
knockdown group (Figure 4L).

3.4 Effects of the SLC23A2/exogenous 
ROS/AA interaction on cellular oxidative 
stress levels and cellular biology in 
GMSM-K cells

This is the first time Sin-1 has been used in GMSM-K cells as 
an ROS mimicry drug. Therefore, we set the gradient according to 
the concentration of other cells in other studies, and determined 
the concentration by taking ROS detection and cell survival rate 
into account. The results from the DCFH-DA fluorescent probe 
showed that the effect of Sin-1 on the ROS levels in GMSM-K 

FIGURE 3 

Construction of the SLC23A2-knockdown model in GMSM-K cells. (A) Immunofluorescence detection of the SLC23A2 protein in GMSM-K cells. 
(B) Transfected siRNA into GMSM-K cells. (C) Transfection efficiency was measured by qPCR. Error bars represent SD. n = 3; *, P < 0.05. Scale bar, 
100 μm.
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FIGURE 4 

Changes in cell biology and ROS level in GMSM-K cells after SLC23A2 knockdown. (A,B) ROS levels after knockdown of SLC23A2. (C,D) Cell 
proliferation after knockdown of SLC23A2. (E,F) Cell apoptosis after knockdown of SLC23A2. (G,H) Change in cell migration after SLC23A2 
knockdown. (I) Volcano plot for differential gene expression. (J) KEGG enrichment analysis of DEGs. (K). The heat map of all DEGs, with genes 
related to cell proliferation, cell apoptosis, and cell cycle regulation given particular attention. (L) RT-qPCR verification result for the DEGs. Error 
bars represent SD. n = 3; ns, P > 0.05; **, P < 0.01; ***, P < 0.001.
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cells was dose-dependent. When the Sin-1 concentration was 400 , 
600 , 800 , or 1,000 μM, there was no significant change in cell 
survival rate. Therefore, the intermediate concentration of Sin-1 
of 800 μM was selected for the following experiments 
(Supplementary Figure 2A).

The concentration of AA changes its antioxidant effect. 
Therefore, we added different concentrations of AA to cells 
stimulated with 800 μM of Sin-1 and observed the altered ROS 
levels. The data showed that the antioxidant effect of AA was 
dose-dependent before 250 μM, with no significant increase in 
antioxidant activity over 250 μM. Thus, an AA concentration of 
250 μMwas selected (Supplementary Figure 2B).

In order to explore the effect of AA antagonism on ROS levels 
in cells with normal and impaired SLC23A2 gene function, we set 
up six groups for verification. The results showed that the normal 
SLC23A2 gene function group (NC) had significantly increased 
ROS levels after Sin-1 stimulation (NC + 800 μM Sin-1). After 
incubation with AA (NC + 800 μM Sin-1 + 250 μM AA), the 
ROS level was lower than that after stimulation with Sin-1 
alone, and there was no significant difference between the NC 
and NC + 800 μM Sin-1 + 250 μM AA groups. In the SLC23A2 
gene impaired group (si), the ROS level increased significantly 
after Sin-1 stimulation (si + 800 μM Sin-1), and the ROS level 
decreased slightly after coincubation with AA (si + 800 μMSin- 

1 + 250 μM AA) compared with that after pure Sin-1 stimulation 
(Figures 5A,B). The GSH/GSSG results showed that GSH/GSSG 
decreased significantly after Sin-1 stimulation in both the NC 
and si groups, while GSH/GSSG increased significantly after AA 
supplementation in the NC + 800 μM Sin-1 group and GSH/ 
GSSG did not change significantly after AA supplementation in 
the si + 800 μM Sin-1 group (Figure 5C). The SOD activity 
detection results showed that the SOD activity of the NC and si 
groups significantly decreased after Sin-1 stimulation, while the 
SOD activity of the NC + 800 μM Sin-1 group significantly 
increased after AA supplementation and the SOD activity of the 
si + 800 μM Sin-1 group was not significantly changed after AA 
supplementation (Figure 5D).

After Sin-1 stimulation, apoptosis increased in both the NC 
and si groups. Apoptosis was significantly decreased after AA 
supplementation in the NC + 800 μM Sin-1 group, while there 
was no significant change in the si + 800 μM Sin-1 group 
(Figure 5E).

To validate our findings in vivo, we detected the ROS and 
apoptosis levels in slc23a2-MO zebrafish via DCFH-DA and an 
AO fluorescent probe. Compared with the wild type (WT) 
group, the craniofacial ROS and apoptosis levels of the slc23a2- 
MO group were significantly increased. We consistently 
observed that 227 μM AA supplementation significantly 

FIGURE 5 

Effect of the SLC23A2/exogenous ROS/AA interaction on cellular oxidative stress level and cellular biology in GMSM-K cells. (A,B). Effect of the 
SLC23A2/exogenous ROS/AA interaction on ROS levels. (C) Effect of the SLC23A2/exogenous ROS/AA interaction on GSH/GSSG. (D) Effect of 
the SLC23A2/exogenous ROS/AA interaction on SOD activity. (E) Effect of the SLC23A2/exogenous ROS/AA interaction on cell apoptosis. Error 
bars represent SD. n = 3; ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Scale bar, 100 μm.
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decreased the ROS level and inhibited apoptosis induced by 
400 μM Sin-1 stimulation in the WT group; however, there was 
no significant change in ROS and apoptosis levels after 227 μM 
AA supplementation in the slc23a2-MO group (Figures 6A,B).

4 Discussion

Gene–environment interactions as a mechanism for the 
occurrence of cleft lip and palate have been less extensively 
studied. In our previous study, we screened the correlation 
between four environmental factors, namely, maternal smoking, 
alcohol consumption, hypoxia, and vitamin intake [including 
vitamins A, B9 (folic acid), C (ascorbic acid), D, and E], and 
NSCPO. Among these, only the vitamin C transporter gene 
SLC23A2 was significantly associated with NSCPO occurrence. 
In the present study, we further investigated the role of 
SLC23A2 in NSCLO. The association analysis revealed that 10 
SNPs within SLC23A2 (rs36107804, rs4813726, rs1105838, 
rs4076098, rs2326576, rs13044890, rs111733047, rs2203908, 
rs62200399, and rs6053029) were significantly associated with 
NSCLO. Furthermore, our in vitro experiments demonstrated 
that GMSM-K cells exhibited elevated ROS levels and increased 
apoptosis upon SLC23A2 knockdown, consistent with findings 
from mouse knockout models (11, 23).

Sustained oxidative stress can impair neural crest cell 
development through mechanisms such as DNA damage, p53 
activation, and autophagy, ultimately contributing to craniofacial 
malformations (13). For example, Treacher Collins syndrome 
(TCS), a syndromic form of cleft lip and palate, is characterized 
by elevated oxidative stress in vivo. Tcof1 haploinsufficiency 
leads to oxidative stress-induced DNA damage and 
neuroepithelial cell death; however, maternal antioxidant 
treatment mitigates cell death and substantially prevents 
craniofacial anomalies (24). SLC23A2 facilitates AA transport to 
protect tissues from oxidative damage. Furthermore, AA is 
essential for recycling other antioxidants, such as α-tocopherol 
(vitamin E) (25). Antioxidant supplementation (e.g., vitamin 
C or E) may reduce the incidence of developmental defects 
caused by excessive oxidative stress (26).

In this study, we used the triple interaction of SLC23A2/ 
exogenous ROS/AA to simulate gene–environment interaction. 
Based on the literature review, we hypothesized that exogenous 
ROS stimulation in individuals with normal SLC23A2 gene 
function would result in a mild disease phenotype, which could 
be alleviated by supplementation with the antioxidant AA, 
whereas exogenous ROS stimulation in individuals with 
abnormal SLC23A2 function would further exacerbate the 
disease phenotype, and no significant improvement would be 
observed after supplementation with AA, as the efficiency of AA 
uptake would be reduced due to the dysfunction of SLC23A2. 

FIGURE 6 

Effect of the slc23a2/exogenous ROS/AA interaction on oxidative stress and apoptosis in zebrafish cells. (A) Effect of the slc23a2/exogenous ROS/AA 
interaction on ROS levels. (B) Effect of the slc23a2/exogenous ROS/AA interaction on apoptosis. slc23a2-MO, slc23a2-knockdown zebrafish cells. 
Error bars represent SD. n = 3; ns, P > 0.05; ****, P < 0.0001.
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To test this hypothesis, we screened the optimal concentrations of 
Sin-1 and AA in GMSM-K cells, which were 800 and 250 μM, 
respectively. The interaction study revealed that cells with 
normal SLC23A2 function were able to reduce the high ROS 
levels generated by Sin-1 stimulation after AA supplementation, 
while cells with abnormal SLC23A2 function did not show any 
significant reduction in ROS levels after AA supplementation, 
which indicated that SLC23A2 dysfunction led to the cells not 
being able to effectively utilize AA to counteract ROS. GSH/ 
GSSG and SOD, the other two oxidative stress indexes, showed 
a consistent trend with ROS. We also detected apoptosis 
changes in the interaction study. The results showed that the 
apoptosis in both the wild-type cells and the SLC23A2- 
knockdown cells was increased by the Sin-1 stimulation and the 
degree of apoptosis in the SLC23A2-knockdown group was 
more significant. In addition, apoptosis in the wild-type cells 
was reduced by AA supplementation, whereas apoptosis in the 
cells in the SLC23A2 knockdown group was not significantly 
improved by AA supplementation. Zebrafish are a common and 
useful scientific model organism for studying vertebrate 
development and gene function. Its genome has been completely 
sequenced. Compared with the human reference genome, 
approximately 70% of human genes have at least one obvious 
zebrafish homolog. Zebrafish currently provide a powerful 
animal model for studying craniomaxillofacial development (27). 
Increased ROS and apoptosis levels were also observed in the 
slc23a2-MO zebrafish cells and could not be rescued by AA 
supplementation. The results of the in vitro and in vivo 
experiments are consistent with our previous speculation that the 
triple interaction of SLC23A2/exogenous ROS/AA plays a role in 
lip and craniofacial development by modulating apoptotic 
alterations generated by oxidative stress. This part of the 
experiment will also provide a theoretical basis for pregnant 
mothers to supplement with antioxidants, such as AA, to prevent 
craniofacial deformities in their children. However, unfortunately, 
due to current technical limitations, we were unable to conduct 
further microscopic dissections and electron microscopy to 
observe the development of the lip. We plan to verify the 
craniofacial phenotype through subsequent experiments in mice.

To further explore the biological processes in which SLC23A2 
may be involved, we knocked down SLC23A2 in GMSM-K cells 
and performed RNA-seq and GO and KEGG enrichment 
analyses, which showed that a number of DEGs were involved 
in a variety of biological processes, including the PI3K-Akt 
signaling pathway, regulation of the cell cycle, cell senescence, 
and the Wnt signaling pathway. In order to clarify the 
relationship between the above-mentioned DEGs enriched in 
GMSM-K cells and NSCLO, we extracted genotypic data of the 
DEGs from two previously published GWASs and performed an 
association analysis with various NSOC subtypes, and validated 
the genes that were statistically significantly different in the 
association analysis using RT-qPCR. The results showed that the 
expression of COL9A3, located in the PI3K-Akt signaling 
pathway, was statistically different between the control group and 
the knockdown group. The COL9A3 gene is the pathogenic gene 
for Stickler syndrome with a cleft lip and palate phenotype (28).

In summary, this study revealed the role of oxidative stress- 
mediated apoptosis in the development of cleft lip through an 
association analysis, exploration of the signaling pathway 
mechanism involved in SLC23A2, and an analysis of the 
SLC23A2/ exogenous reactive oxygen species/AA interaction, 
providing a new theoretical basis for further improving the 
understanding of the etiology of NSCLO. Given this, our future 
research will focus on exploring whether it is necessary for 
pregnant women to supplement with antioxidants, such as 
vitamin C, in early pregnancy to reduce oxidative stress levels 
and prevent the occurrence of NSCLO. Furthermore, the 
interaction between autophagy, ROS, and apoptosis was not 
fully elucidated. Further research could utilize mouse knockout 
models to validate this mechanism.
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