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Background: Pediatric primary cardiomyopathies (PCMs) are rare diseases with 

complex causes and nonspecific treatment. The influence of electrolytes and 

amino acids (AAs) on cardiomyopathies has not been extensively studied. This 

study aimed to explore clinical characteristics and the usage of electrolytes 

and AAs in children with PCMs.

Methods: Children diagnosed with PCMs who had genetic test reports were 

included. Relevant information was collected and processed, and clinical 

characteristics and mutated genes were clarified. Gene databases were 

searched to explore related electrolytes and AAs in the treatment of PCMs. 

The effect of calcium was explored in children with DCM. Paired samples 

T tests and nonparametric Wilcoxon signed-rank tests were performed for 

comparison between before and after using calcium.

Results: In this study, 27 children with gene test results were enrolled to 

perform gene-related analysis. The median age was 2.5 years old. Mutated 

genes were collected, including pathogenic, likely pathogenic, uncertain 

significance, and other mutations. The most frequently mutated genes related 

to dilated cardiomyopathy (DCM) were TTN, MYH7, NEXN, TNNI3, and 

SCN5A. In hypertrophic cardiomyopathy (HCM), MYBPC3, MYH7, PRKAG2, 

RAF1, and RBM20 were prevalent. Calcium and AAs (serine, cysteine, arginine, 

tyrosine, and alanine) were related to the mutated genes detected in children 

with PCMs. In addition, 17 children treated with calcium showed significant 

improvement in heart function.

Conclusions: For children with DCM, calcium supplements may be beneficial. 

AAs, including serine, cysteine, and arginine, could be used for supplementary 

treatment in children with DCM and HCM.
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1 Introduction

In the statement of the American Heart Association, cardiomyopathies (CMs) are 

rare in children, with high mortality (1). Causes are heterogeneous in pediatric CMs, 

ranging from genetic mutations to systemic diseases. The classifications of CMs are 

complicated and varied. According to the World Health Organization, CMs are 
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classified into primary and secondary. Primary cardiomyopathies 

(PCMs) are heart muscle diseases in the absence of secondary 

pathogenic causes. Based on morphologic abnormalities and 

pathophysiology, PCMs were grouped into dilated 

cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), 

restrictive cardiomyopathy (RCM), and arrhythmogenic right 

ventricular cardiomyopathy (ARVC) (2). According to the 

European Society of Cardiology in 2023, left ventricular 

noncompaction cardiomyopathy (LVNC) was also categorized as 

a type of CMs characterized by unique changes in morphology 

and function of the left ventricle (3).

DCM is defined as left ventricular (LV) dilatation and systolic 

dysfunction in the absence of abnormal loading conditions and 

coronary artery disease (4). In DCM, common direct causes are 

gene mutations, infections, and autoimmunity (5). Many genes are 

associated with pediatric DCM, such as TTN, MYH7, RBM20, 

TNNT2, and DSP (6). HCM is a primary inherited cardiac disease 

characterized by LV hypertrophy without the existence of abnormal 

loading factors (e.g., congenital heart diseases, hypertension) (8, 9). 

TTN, MYH7, MYH6, PRKAG2, and MYBPC3 are related to 

pediatric HCM (6). RCM, ARVC, and LVNC are rare in CMs. 

RCM is described as a myocardial disorder characterized by 

structural and functional abnormalities, with the characteristics of 

restrictive ventricular filling (9, 10). LVNC, also called LV 

noncompaction, is characterized by excessive trabeculation in the 

left ventricle (11, 12). ARVC is a right ventricular (RV) inherited 

CM. Mutations of the gene encoding sarcomeric or cytoskeletal 

proteins are the common causes of RCM and LVNC (9, 11). 

Mutations of genes encoding desmosome proteins play a key role 

in the pathogenesis of ARVC (13).

Due to the rarity and high mortality, the research related to PCMs 

in children was limited. In addition, clinical manifestations, disease 

progression, and drug reactions between children and adults are 

different. Therefore, it is essential to focus on the research of PCMs 

in children. At present, the treatment of pediatric CMs is empirical 

and symptomatic. For instance, medicines used for DCM are 

diuretics, cardiotonic drugs, vasodilators, and cardiovascular 

protective drugs (6). Despite the reliance on empirical approaches, 

little attention has been paid to investigating nutrients, such as 

electrolytes and amino acids (AAs). A few articles described the 

effect of electrolytes or AAs on pediatric CMs. For instance, 

children with hypocalcemic dilated cardiomyopathy could benefit 

from calcium supplementation (14). It was reported that serine and 

cysteine could exert cardioprotective effects (15, 16). This study 

aimed to explore the clinical characteristics of PCMs in children 

and the in;uence of appropriate supplementation of electrolytes and 

AAs to provide more references in the treatment of pediatric PCMs 

in clinical practice.

2 Methods

2.1 Study population

Children who had been diagnosed with PCMs and had gene 

test results in Tianjin Children’s Hospital from 2019 to 2023 

were enrolled. The detailed inclusion and exclusion criteria were 

provided in Supplementary Material S1.

The inclusion criteria were as follows: DCM was described as 

age and body surface area corrected left ventricular end-diastolic 

diameter (LVDD) higher than 112%, left ventricular ejection 

fraction (LVEF) lower than 45%, and/or left ventricular 

fractional shortening (LVFS) lower than 25% (1, 17). HCM was 

described as an increased LV wall thickness, represented by a 

higher mean ± two standard deviations (SD) (18). RCM was 

described as biatrial enlargement, normal ventricular diameter, 

and LV diastolic dysfunction (1). ARVC was mainly diagnosed 

by the revised task force criteria (19). LVNC was described as 

the ratio of non-compaction to compaction higher than two in 

the end-diastolic stage (20).

In addition, some secondary pathogenic characteristics were 

excluded. Cardiovascular factors, including hypertension, 

congenital heart disease, arrhythmia, and aortic stenosis, were 

excluded. Extracardiac factors such as thyroid or parathyroid 

diseases, infections, and maternal diabetes during pregnancy 

were also excluded (1, 17).

2.2 Data collection and statistical analysis

Demographic and PCMs characteristics such as age, gender, 

height, weight, type of PCMs, gene test results, laboratory 

examination, and imaging examination were collected. 

Normality tests were used for continuous variables. Normal 

continuous variables were presented by mean ± SD, and non- 

normal data were presented by the median and interquartile 

range (IQR).

2.3 Gene test, data processing and analysis

Peripheral blood genomic DNA was extracted using the 

QIAamp DNA Blood Mini Kit (Qiagen, Hidden, Germany). 

DNA quantification and purity testing were performed by Qubit 

DNA Assay Kit in the NanoDrop 2000 spectrophotometer 

(Thermo Scientific, USA). Genomic DNA was fragmented by 

Tagment DNA Enzyme 1 and then subjected to PCR 

amplification to construct a sequencing library. The Qubit 3.0 

Fluorometer was used to detect library concentration. High- 

throughput sequencing was performed on the Illumina Novaseq 

6000 sequencing platform, and the target for average sequencing 

depth was 200×. All data were compared to the reference 

sequence using the BWA algorithm. The ANNOVAR tool was 

used to annotate data. The Genome Analysis Toolkit was used 

to analyze gene variations. The 1,000genomes, ESP6500, 

HGMD, and other databases were used for screening and 

annotation. Tools such as SIFT and Polyphen-2 were used for 

bioinformatics analysis of missense mutations. Based on the 

frequency, function, and inheritance mode of various gene 

variations, literature, and other relevant information, the 

classification of mutated genes was conducted in accordance 
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with the guidelines established by the American College of 

Medical Genetics.

Genecards and Drugbank are large public databases that 

integrate information from various databases and literature, 

which could list genes and their related electrolytes and AAs. 

PubMed and Web of Science were used to search for articles to 

explore the in;uence of calcium and AAs on CMs. The search 

keywords were “cardiomyopathy, dilated cardiomyopathy, 

hypertrophic cardiomyopathy, restrictive cardiomyopathy, 

arrhythmogenic right ventricular cardiomyopathy, left 

ventricular noncompaction cardiomyopathy, calcium, amino 

acids, serine, cysteine, arginine, alanine, and tyrosine”.

2.4 Preliminary exploration of calcium 
supplements

To evaluate the therapeutic effects of calcium, children with 

primary DCM admitted from 2019 to 2023 were included. All 

participants received calcium, and underwent echocardiography 

both before and after treatment. Three patients used oral 

calcium carbonate D3 (150–300 mg once a day), and 14 patients 

used oral calcium lactate (250 mg twice or three times a day, or 

500 mg once or twice a day). Normality tests were performed to 

assess the distribution of data. Paired samples T tests and 

nonparametric Wilcoxon signed-rank tests were performed for 

comparison between before and after medication.

3 Results

3.1 Demographic and clinical 
characteristics

A total of 27 children were enrolled in this study. The 

demographic and clinical characteristics of children with PCMs 

were summarized in Tables 1, 2. The demographic and clinical 

details of each child were provided in Supplementary Table S1. 

Supplementary Table S2 was involved in the echocardiography 

indicators of DCM, HCM, and LVNC. Sixteen children were 

diagnosed with DCM, seven with HCM, and another four with 

RCM, ARVC, or LVNC.

The medians and IQRs of age were 2.5 (0.6, 10.0) years old. 

There were 17 males (63.0%) and 10 females (37.0%). Body 

mass index values were lower in these children, with a median 

and IQR of 15.94 (15.00, 17.84). Among the electrolytes, the 

median of Na+ (133.0 mmol/L) and the mean of Cl− 

(96.1 mmol/L) were lower than the normal ranges. Compared 

with the normal range of 0–132 pg/mL, the pro-brain natriuretic 

peptide in these children was significantly elevated, with a value 

of 1,666.5 (351.1, 4,072.0) pg/mL. In children with DCM, the 

values of LVDD and left ventricular end-systolic dimension 

(LVDS) increased to 41.2 ± 13.9 mm and 32.0 (22.8, 41.0) mm, 

respectively. The LVEF was lower than the normal range, with a 

value of 41.6% ± 13.9%. In children with HCM, the 

interventricular septum and LV posterior wall exceeded the 

normal ranges, with values of 16.9 ± 4.1 mm and 

11.2 ± 4.5 mm, respectively.

3.2 Mutated gene characteristics

In this study, mutated genes were collected and classified into 

four categories: pathogenic, likely pathogenic, uncertain 

significance, and other mutations. The mutated genes found in 

DCM, HCM, and LVNC are available in Supplementary 

Table S3. Among them, 28 types of genes were related to 

calcium and AAs.

In children with DCM, seven genes were identified as 

pathogenic, such as TTN, MYH7, and TNNT2 (Figure 1a). 

Sixteen genes were defined as likely pathogenic and of uncertain 

TABLE 1 Demographic and clinical characteristics of patients with PCMs.

Variables Patients with PCMs Reference range

Age (year) 2.5 (0.6, 10.0) 0–18

Sex None

Male, n (%) 17 (63.0%)

Female, n (%) 10 (37.0%)

Height (cm) 99.0 (72.0, 143.0) None

Weight (kg) 13.70 (7.48, 35.90) None

BMI (kg/m2) 15.94 (15.00, 17.84) None

K (mmol/L) 4.53 ± 0.77 3.5–5.3

Na (mmol/L) 133.0 (128.0, 137.0) 137–147

Ca (mmol/L) 2.38 ± 0.18 2.25–2.75

Mg (mmol/L) 0.84 (0.76, 0.90) 0.70–0.91

Cl (mmol/L) 96.1 ± 6.2 99–110

CKMB (U/L) 13 (7, 21) 0–24

LDH (U/L) 276 (244, 348) 120–300

TnT (ng/mL) 0.030 (0.010, 0.061) 0–0.0223

Mb (ng/mL) 28–72

<28, n (%) 26 (61.9%)

28–72, n (%) 9 (21.4%)

≥72, n (%) 7 (16.7%)

pro-BNP (pg/mL) 1,666.5 (351.1, 4,072.0) 0–132

PCMs, Primary cardiomyopathies; IQR, Interquartile range; SD, Standard deviation; BMI, 

Body mass index; CKMB, Creatine kinase isoenzyme; LDH, Lactic dehydrogenase; TnT, 

Troponin T; Mb, Myoglobin; pro-BNP, pro-Brain Natriuretic.

TABLE 2 The characteristics of echocardiogram indicators for patients 
with DCM, HCM, and LVNC.

Echocardiogram 
indicators

DCM HCM LVNC

IVS (mm) 4.8 ± 1.4 16.9 ± 4.1 4.0 (4.0, 4.0)

LVPW (mm) 5.7 ± 1.3 11.2 ± 4.5 3.8 ± 0.7

LVDD (mm) 41.2 ± 13.9 33.8 ± 5.5 36.4 ± 12.3

LVDS (mm) 32.0 (22.8, 

41.0)

19.5 ± 2.7 27.0 (23.0, 

35.0)

LVEF (%) 41.6 ± 13.9 72.8 ± 6.1 54.2 ± 9.0

LVFS (%) 20.0 (15.0, 

24.0)

41.0 (40.0, 

46.0)

27.0 ± 6.1

DCM, Dilated cardiomyopathy; HCM, Hypertrophic cardiomyopathy; LVNC, Left 

ventricular non-compaction; IVS, Interventricular septum; LVPW, Left ventricular 

posterior wall; LVDD, Left ventricular end-diastolic dimension; LVDS, Left ventricular 

end-systolic dimension; LVEF, Left ventricular ejection fraction; LVFS, Left ventricular 

fractional shortening.
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significance, such as NEXN, SCN5A, TNNI3, MYH6, DSP, and 

VCL (Figure 1b). There were also some other mutated genes, 

such as TTN and JPH2.

In children with HCM, three pathogenic mutated genes were 

detected, such as MYH7, PRKAG2, and RAF1. Fourteen likely 

pathogenic and uncertain significance mutated genes were 

identified, such as MYBPC3, RBM20, MYH6, and SLC22A5. 

TTN was also found as other mutated gene in HCM.

In children with RCM, DES was detected as a 

pathogenic mutated gene. In the likely pathogenic and/or 

uncertain significance mutated genes, two genes were found 

in children with ARVC, and 10 genes were found in children 

with LVNC.

3.3 Relationship between calcium and AAs 
and PCMs

Based on gene databases, calcium and 13 types of AAs were 

found to be associated with mutated genes in this study. 

Detailed information was provided in Table 3. A total of 21 

genes were related to calcium. Among them, eight mutated 

genes (e.g., TNNI3, TNNT2) were found in DCM, whereas three 

mutated genes were found in HCM. MYH7 and MYH6 were 

found in both DCM and HCM. Additionally, DES was 

associated with RCM. Thirteen types of AAs were found, related 

to 22 genes. In genes related to DCM, the most frequent AAs 

were serine (e.g., SCN5A, MYH7), alanine (e.g., SCN5A, 

TNNT2), tyrosine (e.g., DSP, VCL), arginine (e.g., SCN5A, 

MYH7), and cysteine (e.g., MYH7, VCL). In genes related to 

HCM, arginine (e.g., MYBPC3, MYH7), tyrosine (e.g., RAF1, 

SLC22A5), serine (e.g., MYH7, RAF1), cysteine (e.g., MYH7, 

RAF1), and alanine (RAF1) were also found. Serine, cysteine, 

and tyrosine were found to be related to mutated genes in 

RCM, ARVC, and LVNC. TTN, a gene found in DCM, HCM, 

RCM, ARVC, and LVNC, was also related to serine and cysteine.

3.4 Influence of calcium on DCM

The details of children treated with calcium were listed in 

Supplementary Table S4. The comparison of echocardiographic 

parameters of DCM before and after using calcium was listed in 

Table 4. There were significant improvements in LVDD 

FIGURE 1 

The number of patients related to mutated genes found in dilated cardiomyopathy. (a) The number of patients with pathogenic mutated genes; (b) 

The number of patients with likely pathogenic and uncertain significance mutated genes.

TABLE 3 Calcium, amino acids, and their related genes.

Calcium  
and AAs

Related genes

Calcium RYR1, RYR2, TNNI3, TNNT2, TPO, CDH2, HOMER2, TTN, 

MYH7, MYH6, SCN5A, DES, DSP, VCL, BMP2, KCNJ2, PLD1, 

GUSB, LAMB2, MYPN, JPH2

Serine TTN, MYH7, RYR1, MYH6, SCN5A, DES, RAF1, ELAC2, DSP, 

VCL, BMP2, PLD1, APOB, CDH2

Cystine TTN, MYH7, RYR1, DES, RAF1, VCL, BMP2, PLD1, APOB, 

CDH2, TPO

Threonine TTN, MYH7, SCN5A, DES, RAF1, ELAC2, VCL, BMP2, PLD1

Tyrosine GUSB, TPO, DES, RAF1, DSP, VCL, BMP2, KCNJ2, PLD1, 

SLC22A5, CDH2

L-arginine SLC22A5, MYH7, RYR1, MYBPC3, MYH6, SCN5A, BMP2, 

KCNJ2, TPO

Alanine RYR1, SCN5A, RAF1, TNNT2, BMP2, PLD1, APOB

Glutamine MYH7, RYR1, SCN5A, RAF1, VCL, APOB

Lysine TTN, SCN5A, BMP2, CDH2, TPO

Proline TTN, RYR1, DES, VCL, ATP6

Valine TTN, MYH7, SCN5A, RAF1

Leucine MYH7, SCN5A, AKAP9

L-glutamine RAF1, APOB, MYH7

Asparagine MYH7, SCN5A, TPO

AAs, amino acids.

The Genecards and Drugbank were screened for calcium and amino acids associated with 

mutated genes.
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(P = 0.013), LVDS (P = 0.028), LVEF (P = 0.004), and LVFS 

(P = 0.013) after using calcium. The level of LVDD and LVDS 

decreased from 39.7 to 33.5 and from 33.5 to 29.0, respectively. 

The concentration level of LVEF and LVFS increased from 32.7 

to 39.6 and from 15.3 to 18.5, respectively.

4 Discussion

The low incidence and poor progression of CMs result in 

challenging treatment. Although the medication used for pediatric 

CMs is similar to adults, such as beta-blockers and calcium 

channel blockers, the differences in causes, complications, and 

outcomes are significant between adults and children with CMs 

(6). In addition, due to the small sample size of pediatric PCMs 

and limited medication experience, reliable medication for 

pediatric PCMs is more difficult. Thus, it is significant to explore 

clinical manifestations and appropriate treatment methods for 

pediatric PCMs. This is the first study exploring the in;uence of 

electrolytes and AAs on pediatric PCMs.

In this study, most of the mutated genes were sarcomere 

protein genes. Some mutated genes were only found in one 

phenotype. For example, TNNI3 and TNNT2 were only found in 

DCM. MYBPC3 and RAF1 were only found in HCM. In 

addition, one mutated gene could also be associated with 

distinct phenotypes. For instance, MYH7 and PRKAG2 were 

found in DCM and HCM. NEXN was found in DCM and 

LVNC. TTN was found in DCM, HCM, RCM, ARVC, and LVNC.

The mechanisms of CMs induced by various gene mutations 

are as follows. TTN encodes titin, a giant sarcomere protein that 

functions as a significant component of the Z-disk (21, 22). In 

HCM, functional changes in myosin resulting from TTN 

mutation could increase the binding to α-actinin, whereas there 

is a decrease in DCM (21). Regarding Z-disk element mutations, 

several hypotheses indicated that HCM is characterized by a 

“stiff sarcomere”, whereas DCM is characterized by a “loose 

sarcomere”. Therefore, the binding among Z-disk elements in 

HCM and DCM will be tight and loose, respectively (21). 

MYH7 encodes β-myosin heavy chain, which is an essential part 

of the sarcomere. In HCM, MYH7 mutations are critical 

pathogenic causes. A hypothesis indicated that HCM is a 

sarcomere disease. It arises as a compensatory mechanism for 

reduced power generation caused by MYH7 mutations (21). In 

two cases with DCM linked to MYH7 mutations, damaged 

sarcomere functions were observed (21, 23). Mutations of 

TNNI3, TNNT2, RAF1, and NEXN could be found in both 

DCM and HCM. TNNI3 and TNNT2 are common genes 

encoding sarcomere components, playing a critical role in Ca2+ 

regulation of muscle contraction and relaxation (24). RAF1 

encodes the component of the RAS-mitogen-activated protein 

kinases pathway, which plays crucial roles in myocardial biology 

(25). NEXN encodes nexilin, which is a protein of the Z-disk 

and contributes to its stability (26).

Most of our patients were detected with more than one 

mutation. It was reported that genetic causes of DCM could be 

divided into monogenic, polygenic, and multifactorial (e.g., 

environmental exposures) (5). There is an increasing recognition 

of polygenic mutations as the cause of HCM rather than 

monogenic.

Based on previous studies, calcium and some AAs were related 

to CMs (27–30). This study also detected that calcium and some 

types of AAs were associated with several genes of enrolled 

children. Therefore, supplements of calcium and these AAs may 

be potential therapeutic strategies for pediatric PCMs.

Calcium plays a key role in cardiac contraction coupling and 

electrophysiological signal conducting. Thus, defective 

intracellular calcium handling could result in contractile 

dysfunction, arrhythmia, and cellular hypertrophy (31). Mutated 

genes associated with sarcomere components (e.g., MYH7, 

TNNT2, and TNNI3) and Z-disk components (e.g., TTN) in 

HCM may result in increased Ca2+ sensitivity. Whereas, the 

situation may be contrary in DCM (21, 32). The mutations of 

TNNI3 and TNNT2 in DCM could reduce Ca2+ sensitivity and 

prolong reuptake time, resulting in lower Ca2+ concentration in 

the systolic stage and reduced myocardial contractility (32). 

Therefore, for children with DCM, calcium-based agents may 

serve as a potential therapeutic option. In our study, children 

given calcium expressed significant improvements in heart 

function. The average age of these children was one and a half 

years old. Older children treated with calcium showed relatively 

poor therapeutic effects from our limited information. Calcium 

supplements were suitable for younger children (less than or 

equal to one year old) with DCM. Of course, the effects of the 

base therapeutics regimen could not be ignored.

Additionally, the binding of Ca2+ to troponin C triggers 

actomyosin complex activation, contributing to sarcomere 

shortening and myocardium contraction (33). Increased Ca2+ 

sensitivity in HCM could increase sarcomere tension and 

excessive myocardial contraction (21). As a first-in-class selective 

cardiac myosin inhibitor for HCM, mavacamten reversibly 

combines with myosin ATPase and decreases activated myosin 

heads to increase actomyosin dissociation and make myocardium 

relaxation (34). Aficamten, a next-generation cardiac myosin 

inhibitor characterized by its shorter half-life and reduced drug- 

drug interaction, is currently undergoing clinical trials to 

investigate its potential role in HCM treatment (35).

This study also identified 13 AAs, which were associated with 

22 genes detected in children with PCMs. Serine, cysteine, 

arginine, alanine, and tyrosine were related to genes found in 

both DCM and HCM. Serine and cysteine were also related to 

genes found in RCM, ARVC, and LVNC.

TABLE 4 Echocardiographic parameters for children with DCM treated 
with calcium.

Echocardiogram  
indicators

Calcium group (n = 17)

Before After P

LVDD 39.7 ± 10.1 33.5 (30.5, 38.0) 0.013

LVDS 33.5 ± 9.1 29.0 (22.5, 32.5) 0.028

LVEF 32.7 ± 9.9 39.6 ± 9.8 0.004

LVFS 15.3 ± 5.4 18.5 ± 5.1 0.013

LA 20.0 (18.0, 23.0) 19.0 (15.0, 22.0) 0.138
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Some AAs have been reported to be beneficial to CMs. A study 

showed that the activated ATF4-dependent serine synthesis 

pathway could attenuate the DCM phenotype and improve 

systolic dysfunction by improving mitochondrial respiration and 

increasing levels of tricarboxylic acid cycle metabolites and ATP 

(16, 27, 36). In addition, the activated serine and one-carbon 

metabolism could reduce cardiac hypertrophy and improve 

ventricular function (37). It was reported that the activated 

serine and one-carbon pathways could reduce protein oxidation 

in mitochondria, retain ATP production, and prevent adverse 

ventricular remodeling in the context of myocardial hypertrophy 

(16). Additionally, some serine/threonine protein kinases may be 

beneficial for CMs. For instance, glycogen synthase kinase-3β 
could inhibit excessive myocardial contraction and suppress the 

expression of hypertrophy-related genes. Protein kinase G could 

reduce oxidative stress (38). Cysteine is involved in the synthesis 

of glutathione (GSH), which is integral to the endogenous 

protective system of the myocardium. It was reported that 

cysteine could stimulate the activity and expression of GSH 

peroxidase to protect against oxidative stress in myocardial cells 

(15). Furthermore, N-acetylcysteine, the metabolite of cysteine 

and precursor of GSH, could reverse hypertrophy and diastolic 

dysfunction in familial HCM (39). Arginine could produce NO, 

which plays a major role in protecting the myocardium by 

reducing in;ammation in reperfusion and myocardial ischemia 

and maintaining myocardial contraction function (40, 41). In 

addition, Arginine could also eliminate oxygen radicals to 

protect the myocardium (41). Arginine has been suggested as a 

potential therapeutic option for mitochondrial CM and diabetic 

CM (42, 43). For this reason, arginine may be beneficial to 

pediatric PCMs, but the efficacy of arginine needs to be verified 

in clinical practice. Thus, children with PCMs may benefit from 

appropriate AA supplementation.

However, the link between cardiac function and two AAs, 

namely alanine and tyrosine, remains controversial. For example, 

alanine could exert a dual impact on heart function. On one 

hand, it was reported that levels of alanine were higher in 

patients with microvascular disease and lower in those with 

atherosclerosis (44, 45). On the other hand, it may be due to the 

inability to infer precise causality in observational studies. The 

increased level of alanine in CMs may be related to ischemic 

myocardium rather than being a risk factor for disorders (45). As 

for tyrosine, its oxidation products may lead to myocardial injury 

(46). However, another study also indicated that tyrosine could 

increase contractility in isolated atrial myocardium from patients 

with heart failure (47). Therefore, the in;uence of alanine and 

tyrosine in pediatric PCMs needs to be further studied.

This study has some limitations. Firstly, the current sample 

size is limited due to the rarity of pediatric PCMs. Larger 

samples are essential in the future to further explore the 

distribution of mutated genes in pediatric PCMs. Secondly, this 

is a single-center retrospective study, and bias in sample 

selection is unavoidable. Lastly, the in;uence of calcium and 

AAs in pediatric PCMs was inferred from genetic characteristics. 

The present study demonstrated that children who received 

calcium supplementation exhibited significant improvement in 

cardiac function. Of course, the efficacy of other potential drugs 

remains unexplored. Extensive preclinical and clinical validation 

studies are required to substantiate our findings.

5 Conclusion

Among the mutated genes detected in children with PCMs, 23 

genes were found in DCM, while 19 genes were found in HCM. 

TNNI3 and TNNT2 were only found in DCM, whereas 

MYBPC3 and RAF1 were only found in HCM. Six types of 

mutated genes were observed in both DCM and HCM, such as 

MYH7, RBM20, and PRKAG2. Children with DCM, particularly 

those with a family history, may benefit from appropriate 

supplementation of calcium, serine, cysteine, and arginine to 

decrease morbidity, slow down the progression, and improve 

prognosis. Serine, cysteine, and arginine may also be beneficial 

to children with HCM. Additionally, serine and cysteine could 

also be applied as supplementary medication for children with 

RCM, LVNC, or ARVC.
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