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Introduction: Childhood obesity is among the most serious and rapidly 
growing public health issues globally. Although body mass index (BMI) is 
commonly used to evaluate obesity, it does not always reflect early metabolic 
disturbances. Recent studies have emphasized the importance of 
metabolomics, particularly plasma amino acid profiling, in detecting 
subclinical metabolic risk. In this context, branched-chain amino acids 
(BCAAs) have emerged as potential early biomarkers of insulin resistance and 
cardiometabolic risk.
Methods: This cross-sectional study included 97 participants aged 5–18 years, 
including 56 children with obesity (BMI ≥ 95th percentile) and 41 healthy 
controls. Anthropometric measurements, as well as fasting glucose, insulin, 
lipid profile, and HbA1c levels, were recorded. Plasma concentrations of 44 
amino acids were measured using liquid chromatography–tandem mass 
spectrometry (LC–MS/MS) with a commercial kit (JASEM®, Agilent Ultivo 
Triple Quadrupole LC–MS). BCAA levels and relevant ratios, such as glycine/ 
BCAA and glutamic acid/glutamine, were calculated. Receiver operating 
characteristic (ROC) curve analyses were performed to evaluate the 
diagnostic performance of key variables.
Results: Children with obesity had significantly higher levels of BCAAs and other 
amino acids, including phenylalanine, tyrosine, alanine, and glutamic acid (all 
p < 0.05). Conversely, glycine, serine, and asparagine levels were significantly 
lower in children with obesity. Fasting insulin emerged as a strong predictor 
of obesity [area under the ROC curve (AUC) = 0.87], while total BCAAs also 
displayed strong predictive performance (AUC = 0.78). A reduced glycine/ 
BCAA ratio and an increased glutamic acid/glutamine ratio were associated 
with early metabolic dysregulation.
Conclusion: Our findings highlight the potential of plasma amino acid profiling 
as a supportive tool for the early assessment of metabolic risk in children with 
obesity. The integration of amino acid-based indices could improve risk 
classification and support personalized preventive strategies in 
pediatric populations.
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1 Introduction

The incidence of childhood obesity, an important public 

health problem, has rapidly increased globally in recent years, 

forming the basis of metabolic diseases in adulthood. The 

World Health Organization reports that approximately 18% of 

children aged 5–19 years worldwide are overweight, re%ecting an 

almost 10-fold increase over the last four decades (1). Excess 

weight and obesity in early childhood increase the risk of these 

conditions in adulthood, thereby elevating the risks of chronic 

in%ammatory diseases such as type 2 diabetes, cardiovascular 

disease, non-alcoholic fatty liver disease, and certain cancers (2, 3).

There is growing evidence that childhood obesity is associated 

with both energy imbalance and metabolic disorders at the cellular 

level. In this context, body mass index (BMI) or fasting insulin 

levels alone are insufficient to identify the metabolic risk of 

children with obesity. Although some children can be 

metabolically healthy despite high BMI, others could be in a 

“silent” phase of metabolic risk before insulin resistance 

develops. The use of new biomarkers is of great importance for 

identifying children at risk. Therefore, metabolomic analysis is 

critical for screening and intervening in childhood obesity (4, 5). 

Recently, investigations of early screening and diagnosis using 

metabolomics have been conducted (6).

Nutrients, such as glucose, amino acids, and lipids, in%uence 

each other; nevertheless, amino acids are critical modifiers in 

obesity. As amino acids re%ect internal metabolic changes and 

the intestinal microbiota and act as metabolic modulators, 

metabolomic analysis might be useful for monitoring amino 

acid levels and predicting metabolic disorders during childhood 

(7). Recent studies have suggested that branched-chain amino 

acids (BCAAs; valine, leucine, and isoleucine) play key roles in 

obesity-related metabolic disorders. Several metabolomic studies 

found that BCAA levels are markedly elevated in children and 

adults with obesity, and this increase is closely associated with 

the development of insulin resistance, glucose intolerance, and 

type 2 diabetes (8, 9). BCAAs are believed to reduce insulin 

sensitivity by affecting mTOR signaling pathways in liver and 

muscle cells and trigger in%ammatory processes by disrupting 

mitochondrial energy metabolism (10).

Furthermore, the plasma amino acid profile can be used to 

predict both the current biochemical effects of obesity and 

prospective cardiometabolic risk. In this context, amino acid 

analyses could provide early indications of the metabolic burden 

in childhood before clinical manifestations appear. In particular, 

BCAA levels could represent a harbinger of metabolic risk even 

in individuals with normal insulin levels or homeostasis model 

assessment of insulin resistance (HOMA-IR) values within the 

reference limit (11).

Based on this background, we investigated the differences in 

plasma amino acid levels between children with and without 

obesity, as well as the variations in various amino acid indices. In 

addition, we examined the differences in amino acid profiles 

among children with obesity according to the presence or absence 

of insulin resistance. Furthermore, we evaluated the accuracy of 

amino acid-based software in precisely distinguishing children 

with obesity from controls without obesity.

2 Methods

This study enrolled 97 children aged 5–18 years, including 56 

children diagnosed with obesity (study group) and 41 age- and 

sex-matched healthy children (control group). Obesity was 

defined as a BMI exceeding the 95th percentile based on 

national age-specific BMI percentile tables, while controls had 

BMI values between the 5th and 85th percentiles. All 

participants had no history of infection, chronic systemic 

disease, or prior use of any medications that could affect 

metabolic parameters. Blood samples were collected after an 

overnight fast, and participants who did not meet the fasting 

requirements were excluded from the study. Anthropometric 

measurements, including height and weight, were obtained using 

standard equipment with a precision of 0.1 cm and 0.1 kg, 

respectively. BMI was calculated and converted to standard 

deviation (SD) scores based on national growth references. The 

study protocol was approved by the Institutional Ethics 

Committee (Approval No: 2024/22/991) and conducted in 

accordance with the principles of the Declaration of Helsinki.

2.1 Sample collection

Serum and whole blood samples were drawn from each patient 

after 8–12 h of fasting for biochemical and amino acid analyses. 

Serum samples collected in serum separating tubes (Vacuette®, 

Greiner) were allowed to clot for 30 min and then centrifuged at 

3,600 rpm for 15 min for routine chemistry and hormone 

analysis. Serum samples were analyzed on the same day as part of 

routine analysis. Whole blood samples collected into potassium 

ethylenediaminetetraacetic acid-containing tubes were used for 

HbA1C analysis. To perform amino acid analysis, whole blood 

samples were collected in potassium EDTA (K2EDTA)-containing 

tubes (Vacuette®, Greiner) and centrifuged at 4,000 rpm for 

5 min to obtain plasma samples. Plasma samples were frozen at 

−20°C and measured in the following 2–3 days.

2.2 Biochemical analysis

Commercial kits were used for all chemistry and hormone 

parameters, including fasting plasma glucose, triglyceride 

Abbreviations  

AUC, area under the curve; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; ANOVA, analysis of variance; BCAAs, branched-chain 
amino acids; BMI, body mass index; ESI, electrospray ionization; HbA1c, 
hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; HPLC, high- 
performance liquid chromatography; IS, internal standard; K2EDTA, 
dipotassium ethylenediaminetetraacetic acid; LC–MS/MS, liquid 
chromatography–tandem mass spectrometry; LDL-C, low-density lipoprotein 
cholesterol; MASLD, metabolic dysfunction-associated steatotic liver disease; 
ROC, receiver operating characteristic; SD, standard deviation; SPSS, 
Statistical Package for the Social Sciences; TG, triglyceride; UA, uric acid; 
VFA, visceral fat area.
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(TG), and lipids (total cholesterol, HDL-C, LDL-C), aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), and 

uric acid (UA) (Beckman Coulter, USA). Serum levels of 

glucose, TG, AST, ALT, and UA were measured in a 

biochemistry autoanalyzer (AU5800 Series Clinical Chemistry 

Analyzer, Beckman Coulter, USA). The HbA1C analysis was 

performed on the same day in boronate affinity 

chromatography (Premier Hb9210, Trinity Biotech, Ireland), 

and a commercially available kit of the same manufacturer was 

used. Serum insulin levels were determined in a hormone 

autoanalyzer (UniCel DxI 800 Access Immunoassay System, 

Beckman Coulter, USA).

For plasma concentrations of 44 amino acids, the 

experiments were performed on Agilent high-performance 

liquid chromatography (HPLC) system (Agilent Technologies, 

Santa Clara, CA, USA) consisting of %exible pump (G7104A), 

column compartment (G7116B), and autosampler (G7129C) 

coupled to Agilent Ultivo Triple Quadrupole LC–MS (6465B, 

Agilent Technologies, Santa Clara, CA, USA) equipped with 

electrospray ionization source (ESI). For the determination of 

the concentrations of the underivatized free amino acids, 

JASEM Amino Acids LC–MS/MS analysis kit (product 

number JSM-CL-500) was used (Altium Laboratuvar 

Cihazları. AŞ, İstanbul, Türkiye). The analysis of the 

underivatized free amino acids was performed using 

calibration standards to create calibration curves, mobile 

phases (mobile phase A and B), an analytical column tailored 

for simultaneous analysis of the compounds, and 

chromatographic and mass detection parameters of the 

analytical method. The HPLC system was operated to inject 

3 μL of treated calibrators/samples into the analytical column 

which was maintained at 30°C. The temperature of the 

autosampler was kept at 8°C. The chromatographic separation 

was performed utilizing mobile phases A and B with gradient 

elution at a %ow rate of 0.7 mL/min. The HPLC elution was 

performed as follows: the initial LC gradient of 22% A was 

held for 1 min. Subsequently, the gradient was increased 

linearly to 78% B within 3.0 min and maintained for 0.5 min. 

Finally, the column was equilibrated at 22% A for 3 min. The 

total running time was 7.5 min. Mass detections of amino 

acids were conducted in positive ion multiple reaction 

monitoring mode. The mass spectrometer settings of the 

analytical method were as follows: drying gas temperature 

150 °C, drying gas %ow 10 L/min, nebulizer pressure 40 psi, 

sheath gas temperature 400 °C, sheath gas %ow 10 L/min, and 

capillary voltage 2,000 V. The MS/MS detections were 

achieved by product ion transitions generated by collision- 

induced dissociation (CID) of the corresponding precursor 

ion. Plasma amino acids’ limit of quantification (LOQ) values 

and linearity ranges are provided in Supplementary Table S1.

Amino acid-based metabolic risk indices were calculated using 

Amino-Check® software (Amino Acid Science Ltd., London, UK), 

which integrates specific amino acid ratios and concentrations 

based on previously validated multivariate models, including 

visceral adiposity indices defined by Yamakado et al. (12), 

insulin resistance, cardiovascular disease, type 2 diabetes, and 

metabolic dysfunction-associated steatotic liver disease 

(MASLD). Parameters such as the glutamic acid/glutamine, 

BCAA-related, and essential/non-essential amino acid (EAA/ 

NEAA) ratios were included in the stratification algorithms 

defined by Amino Acid Science Ltd. Details of the measured 

individual plasma amino acids and metabolic risk indices are 

presented in Supplementary Table S2.

2.3 Data visualization analyses

To plot the overall metabolic variations among groups and 

find significantly changed amino acids, a volcano plot and 

principal component analysis (PCA) were used. PCA was used 

to evaluate the general difference in plasma amino acid profiles 

between the obesity and control groups, and 95% confidence 

ellipses were plotted to visualize clustering patterns among 

groups. The first two principal components were used, capturing 

the maximum variation within the amino acid dataset. Volcano 

plot analysis was used to simultaneously display the statistical 

significance (p-values) and biological significance (fold changes) 

of individual amino acids between groups. The volcano plot was 

constructed by plotting the negative log10 of the p-values 

(y-axis) against the log2 fold change values (x-axis) for each 

amino acid. Statistical significance thresholds were set at 

p < 0.05, and fold change thresholds were established to identify 

amino acids with both statistical and biological significance. 

Significantly altered amino acids were highlighted and labeled 

on the plot to facilitate interpretation of metabolic differences 

between children with obesity and healthy controls (Figure 2

and Supplementary Figure S1).

2.4 Statistical analysis

The normality of the quantitative variables was assessed using 

skewness and kurtosis, with values within ±2 indicating a normal 

distribution. Normally distributed variables were presented as the 

mean ± SD and compared between the groups using the 

independent-samples t-test and one-way analysis of variance 

(ANOVA). Non-normally distributed variables were summarized 

as mean ranks and analyzed using the Mann–Whitney U-test 

and Kruskal–Wallis H-test. Categorical variables were expressed 

as frequencies and percentages, and group comparisons were 

performed using the chi-squared test. To investigate the 

relationships between quantitative variables, Pearson’s 

correlation coefficient was used for normally distributed data, 

whereas Spearman’s correlation coefficient was applied for non- 

normally distributed variables. Receiver operating characteristic 

(ROC) curve analysis was used to evaluate the diagnostic 

performance of the selected parameters, and the area under the 

ROC curve (AUC) was reported as an indicator of 

model efficiency.

All statistical analyses were performed using IBM SPSS 

Statistics version 25.0 (IBM Corp., Armonk, NY, USA), and a 

two-tailed p < 0.05 was considered statistically significant.
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3 Results

3.1 Group characteristics and 
anthropometric findings

The mean age of the included children was 11.98 ± 3.45 years 

in children with obesity vs. 12.12 ± 3.12 years in the control group 

(p = 0.838). Children with obesity had a male predominance 

(57.1%), whereas the control group included a higher 

proportion of females (61.0%). However, the sex distribution did 

not differ significantly between the groups (p = 0.119). Similarly, 

the age distribution (5–8, 9–13, 14–18) was comparable between 

the three groups (p = 0.858). Children with obesity had 

significantly higher mean body weight (78.94 ± 28.82 kg vs. 

45.42 ± 14.21 kg, p < 0.001), weight percentile (99.10 ± 1.41 

vs. 53.67 ± 30.06, p < 0.001), and BMI percentile (98.64 ± 2.53 vs. 

51.14 ± 30.02, p < 0.001) than those in the control group. 

Although height did not significantly differ between the groups 

(p = 0.133), the height percentile was significantly higher in 

children with obesity (p = 0.015, Figure 1).

FIGURE 1 

Anthropometric and biochemical variables in the control and obesity groups. Data are presented as mean ± standard deviation (SD). For normally 
distributed variables, comparisons between groups were performed using the independent sample t-test, whereas for non-normally distributed 
variables, the Mann–Whitney U-test was applied. Statistical significance is indicated as *p < 0.05; **p < 0.01 and; ns, not significant. BMI, body 
mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HbA1c, hemoglobin A1c.
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3.2 Biochemical and metabolic parameters

Fasting insulin levels were markedly higher in children 

with obesity compared with those in the control 

group (21.51 ± 13.69 IU/mL vs. 8.53 ± 4.25 µIU/mL, p < 0.001). 

Although fasting glucose levels were slightly higher in children 

with obesity (85.82 ± 6.49 mg/dL) compared with those in the 

control group (83.44 ± 7.78 mg/dL), the difference reached 

statistical significance (p = 0.033) but was clinically modest. 

Serum ALT (38.86 ± 38 U/L vs. 14.80 ± 5.67 U/L, p < 0.001) and 

AST (29.66 ± 18.16 U/L vs. 22.90 ± 5.84 U/L, p = 0.04) levels were 

significantly higher in children with obesity. TG levels were also 

significantly increased in children with obesity (136.98 ± 71.08 

mg/dL vs. 64.54 ± 22.83 mg/dL, p < 0.05). Although HDL 

cholesterol levels were lower in children with obesity, the 

difference did not reach statistical significance. UA 

concentrations were significantly higher among children with 

obesity compared with those in controls (6.01 ± 1.57 mg/dL vs. 

4.46 ± 1.44 mg/dL, p < 0.01), supporting its association with 

obesity-related metabolic stress (Figure 1).

3.3 Alterations in plasma amino acid 
profiles

The concentrations of BCAAs were significantly higher in 

children with obesity than those in the control group 

(p < 0.001). The levels of other essential and non-essential 

amino acids, such as phenylalanine, histidine, tyrosine, 

alanine, glutamic acid, 1-methyl-histidine, 3-methyl-histidine, 

FIGURE 2 

Volcano plot comparing plasma amino acid profiles between children with obesity and control groups. The x-axis represents the log2 fold change 
(children with obesity vs. control), and the y-axis represents the –log10 p-value from statistical testing. The vertical red line indicates no fold change 
(log2FC = 0), while the horizontal dashed blue line corresponds to the significance threshold (p = 0.05). The red dots indicate metabolites that are 
significantly different between groups (p < 0.05), and the gray dots represent non-significant metabolites. Amino acids enriched in the group with 
obesity [e.g., glutamic acid, tyrosine, branched-chain amino acids (valine, leucine, isoleucine)] are shown on the right, whereas those enriched in 
the control group (e.g., glycine, serine, glycine/BCAA ratio) are shown on the left.
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and ethanolamine, were also significantly elevated in children with 

obesity (all p < 0.05). Conversely, glycine, serine, and asparagine 

levels were significantly lower in children with obesity than 

those in the control group (all p < 0.001). Furthermore, glycine/ 

BCAA, glycine/valine, and glutamic acid/glutamine ratios were 

significantly altered in children with obesity, indicating early 

metabolic disorders (all p < 0.05, Figures 2, 3 and Supplementary 

Table S3).

3.4 Diagnostic performance of biomarkers

ROC curve analyses demonstrated the significant diagnostic 

potential of several biomarkers for distinguishing children with 

obesity from healthy controls. Fasting insulin exhibited the 

highest predictive power among the individual biomarkers, with 

an AUC of 0.87 and a cutoff of 13.15 µIU/mL, which yielded a 

sensitivity and specificity of 79% and 88%, respectively; Figure 3).

Regarding amino acid biomarkers, valine (AUC = 0.78, 

cutoff = 254.80 µmol/L), leucine (AUC = 0.74, cutoff = 138.85 

µmol/L), and isoleucine (AUC = 0.71, cutoff = 83.65 µmol/L) 

demonstrated moderate diagnostic accuracy. The combined 

BCAA level yielded an AUC of 0.78 with a sensitivity of 63% 

and specificity of 81% at a cutoff of 502.95 µmol/L. The Amino- 

Check®-derived obesity risk index demonstrated the highest 

overall discriminatory power (AUC = 0.94, cutoff = 1.50, 

sensitivity = 96%, specificity = 88%).

All ROC analyses demonstrated statistical significance 

(p < 0.05), supporting the potential use of targeted amino acid 

profiling, specifically BCAAs and amino acid-based composite 

indices, for the early diagnosis and stratification of metabolic 

risk in pediatric obesity.

3.5 Associations between clinical variables

According to the results of the analysis, there were no 

significant differences between children with obesity and control 

groups concerning sex and age (both p > 0.05); however, 

children with obesity included higher proportions of individuals 

with insulin, isoleucine, leucine, valine, BCAA, tryptophan, 

phenylalanine, and tyrosine levels above the cutoff than those in 

the control group (all p < 0.05, Table 1).

Using the developed obesity risk index (>1, children with 

obesity; ≤1, children without obesity), the vast majority of 

children with obesity (96.4%) were accurately marked as a 

group with obesity, whereas only 12.2% of participants in the 

control group were considered children with obesity. The 

estimated sensitivity and specificity of the obesity risk 

index were 96% and 87%, respectively, with comparisons 

made between participants’ scores. In addition, the obesity 

risk index performed significantly better than BCAA levels 

in accurately identifying children at risk of obesity (96.4% 

vs. 62.5%).

The visceral obesity risk index was markedly higher in 

children with obesity (96.4 ± 5.8%) compared with findings in 

the control group (58.06 ± 8.2%). The insulin resistance risk 

index indicated that 69.6 ± 7.1% of children with obesity and 

17.1 ± 4.6% of controls were at risk of developing insulin 

resistance. The cardiovascular disease risk index illustrated 

that the elevated risk of developing cardiovascular diseases in 

children with obesity (53.6 ± 6.5%) compared with the control 

group (9.8 ± 3.2%). The type 2 diabetes risk index revealed 

that 21.4 ± 4.9% of children with obesity were at risk of 

diabetes, compared with none in the control group. Finally, 

the MASLD risk index was 39.3 ± 6.0% in children with 

FIGURE 3 

ROC curves showing the discriminatory performance of insulin, isoleucine, leucine, valine, total branched-chain amino acids (BCAAs), and the 
obesity index in distinguishing children with obesity from controls. The area under the curve (AUC) values were calculated for each parameter, 
with higher AUC values indicating greater discriminatory ability.
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obesity compared with 2.4 ± 1.2% in the control group 

(Figure 4).

To evaluate the effect of adolescence on metabolic markers, 

children with obesity were divided into three age groups: 5–8, 

9–13, and 14–18 years. No statistically significant differences 

were observed between the three groups regarding BMI 

percentile, weight percentile, height percentile, and TG, fasting 

insulin, fasting glucose, and HBA1C levels (Tables 2, 3). The 

visceral fat area (VFA) index was significantly higher in 

adolescents, with the highest mean value observed in the 14– 

18-year group, followed by the 9–13-year group, and the lowest 

values in the 5–8-year group (p < 0.001). Total BCAA levels 

differed significantly across age groups (p < 0.001), with the 

highest values observed in the 14–18-year group, intermediate 

levels in the 9–13-year group, and the lowest levels in the 

5–8-year group. In contrast, fasting insulin levels did not show 

a statistically significant difference among the three age 

groups (Table 4).

4 Discussion

This study has provided novel insights into the metabolic 

signatures associated with pediatric obesity by evaluating plasma 

amino acid profiles and related indices. These findings 

underscore the potential utility of amino acid profiling in early 

risk stratification and metabolic phenotyping in pediatric 

populations. When placed within the current literature, our data 

suggest that altered amino acid metabolism could represent an 

early biomarker of cardiometabolic dysfunction in children, 

possibly occurring before the onset of overt insulin resistance or 

clinical metabolic syndrome.

Previous clinical studies consistently reported significant 

differences in BCAA and aromatic amino acid (AAA) levels 

between children with and without obesity (4, 13–17), similar to 

those observed in the present study. In addition, consistent with 

earlier research, we observed elevated glutamic acid levels (15, 

17), a higher glutamic acid/glutamine ratio (18), and increased 

TABLE 1 Comparison of the control and obesity groups using defined cutoff values for specific anthropometric, biochemical, and amino acid-related 
variables.

Parameters Control (n = 41) Obesity (n = 56) Total p

Number % Number % Number %

Sex

Female 25 61.0 24 42.9 49 50.5 0.12

Male 16 39.0 32 57.1 48 49.5

Age (years)

5–8 8 19.5 10 17.9 18 18.6 0.86

9–13 16 39.0 25 44.6 41 42.3

14–18 17 41.5 21 37.5 38 39.2

Insulin (mIU/L)

<13.15 36 87.8 12 21.4 48 49.5 0.00*

≥13.15 5 12.2 44 78.6 49 50.5

Isoleucine (µmol/L)

<83.65 32 78.0 23 41.1 55 56.7 0.00*

≥83.65 9 22.0 33 58.9 42 43.3

Leucine (µmol/L)

<138.85 31 75.6 21 37.5 52 53.6 0.00*

≥138.85 10 24.4 35 62.5 45 46.4

Valine (µmol/L)

<254.80 23 56.1 7 12.5 30 30.9 0.00*

≥254.80 18 43.9 49 87.5 67 69.1

BCAAs (µmol/L)

<502.95 33 80.5 21 37.5 54 55.7 0.00*

≥502.95 8 19.5 35 62.5 43 44.3

Tryptophan (µmol/L)

<47.25 18 43.9 9 16.1 27 27.8 0.01*

≥47.25 23 56.1 47 83.9 70 72.2

Phenylalanine (µmol/L)

<55.80 28 68.3 17 30.4 45 46.4 0.00*

≥55.80 13 31.7 39 69.6 52 53.6

Tyrosine (µmol/L)

<72.05 30 73.2 11 19.6 41 42.3 0.00*

≥72.05 11 26.8 45 80.4 56 57.7

p, chi-squared test of independence.

*p < 0.05.
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alanine concentrations (11, 19) in the group with obesity. 

Conversely, glycine levels were significantly lower in children 

with obesity, supporting previous reports (19, 20). Our findings 

also align with those of Bugajska et al., who reported that serine 

and asparagine levels were significantly reduced in the obesity 

group (11). Similarly, a recent publication by Campos et al. (20) 

highlighted increased BCAA and decreased glycine levels in 

overweight children, mirroring trends observed in adult 

populations. Our study replicated these patterns, further 

reinforcing the relevance of plasma amino acid profiling in 

identifying early metabolic risk in pediatric populations.

Previous studies frequently investigated the glutamic acid/ 

glutamine ratio and suggested its potential as a biomarker of 

insulin resistance in adolescents with obesity (18, 21). In 

addition, this ratio is negatively associated with β-cell function 

in young individuals with type 2 diabetes (21). In our study, this 

ratio was significantly higher in the obesity group than that in 

the control group and was additionally elevated in subgroups 

FIGURE 4 

Comparison of Amino-Check®-derived metabolic risk indices between the control and obesity groups. The bars represent the percentage of 
individuals (%) with positive risk for each index. The indices include obesity index, visceral obesity, insulin resistance, cardiovascular disease risk, 
type 2 diabetes risk, MASLD (fatty liver) risk, coronary artery disease risk, high-quality protein deficiency, and kwashiorkor/stunting. Statistical 
comparisons were performed using the chi-square test. Significance levels are indicated as p < 0.05 (*), p < 0.01 (**), and ns, not significant.

TABLE 2 Comparison of anthropometric measurements (weight, height, and BMI) among different age groups (5–8, 9–13, and 14–18 years) in children 
with obesity.

Anthropometric 
parameters

(a) 5–8 years, n = 10 (b) 9–13 years, n = 25 (c) 14–18 years, n = 21 F/χ2 p (difference)

�x+ SD �x+ SD �x+ SD
Weight (kg) 49.17 ± 17.28 68.46 ± 17.53 105.60 ± 21.33 F: 36.690 0.00* (a < b, c), (b < c)

Weight (percentile) 99.53 ± 0.69 98.77 ± 1.59 99.31 ± 1.40 χ2: 5.960 0.06

Height (cm) 134.50 ± 10.78 151.60 ± 11.36 171.67 ± 9.73 F: 45.038 0.00* (a < b, c), (b < c)

Height (percentile) 74.66 ± 29.40 75.72 ± 26.28 58.45 ± 29.01 F: 2.438 0.10

BMI (kg/m2) 26.58 ± 5.60 29.39 ± 4.29 35.96 ± 6.17 F: 13.747 0.00* (c > a, b)

BMI (percentile) 99.42 ± 0.53 98.16 ± 3.32 98.83 ± 1.91 χ2: 3.973 0.14

χ2, Kruskal–Wallis H-test; F, one-way ANOVA.

Data are presented as mean ± standard deviation (SD).

*p < 0.05.
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TABLE 3 Comparison of biochemical parameters (uric acid, AST, ALT, triglyceride, insulin, glucose, HbA1c) among children with obesity in three age 
groups (5–8, 9–13, and 14–18 years).

Biochemical 
parameters

(a) 5–8 years, n = 10 (b) 9–13 years, n = 25 (c) 14–18 years, n = 21 F/χ2 p (difference)

Mean ± SD Mean ± SD Mean ± SD
Uric acid (mg/dL) 4.71 ± 0.91 5.71 ± 1.63 6.98 ± 1.11 F: 10.758 0.00* (c > a, b)

AST (IU/L) 31.00 ± 17.99 30.64 ± 22.05 27.86 ± 13.13 χ2: 0.193 0.91

ALT (IU/L) 30.10 ± 31.25 37.36 ± 41.58 44.81 ± 37.12 χ2: 4.187 0.12

Triglyceride (mg/dL) 95.70 ± 37.38 136.40 ± 66.00 157.33 ± 82.17 F: 2.706 0.08

Insulin (mIU/L) 19.94 ± 24.31 19.84 ± 7.39 24.24 ± 13.09 χ2: 4.194 0.12

Glucose (mg/dL) 85.40 ± 5.76 86.56 ± 5.82 85.14 ± 7.68 F: 0.290 0.75

HBA1C (mmol/mol) 5.65 ± 0.26 5.63 ± 0.25 5.56 ± 0.24 F: 0.537 0.59

χ2, Kruskal–Wallis H-test; F, one-way ANOVA.

Data are presented as mean ± standard deviation (SD).

*p < 0.05.

TABLE 4 Analysis of plasma amino acid levels among various age groups (5–8, 9–13, and 14–18 years) in children with obesity.

Amino acids (µmol/L) (a) 5–8 years, n = 10 (b) 9–13 years, n = 25 (c) 14–18 years, n = 21 F/χ2 p (difference)

�x+ SD �x+ SD �x+ SD
Lysine 159.43 ± 23.72 175.55 ± 19.39 194.28 ± 38.04 F: 5.545 0.01* (c > a)

Methionine 25.04 ± 3.08 25.88 ± 3.82 30.63 ± 5.78 F: 7.979 0.00* (c > a, b)

Tryptophan 51.97 ± 10.37 56.05 ± 9.43 63.72 ± 11.62 F: 5.229 0.01* (c > a)

Isoleucine 72.58 ± 15.18 81.72 ± 14.91 102.77 ± 19.30 F: 14.165 0.00* (c > a, b)

Leucine 130.82 ± 22.73 140.34 ± 18.74 169.15 ± 30.03 F: 11.665 0.00* (c > a, b)

Valine 274.00 ± 43.76 299.89 ± 38.85 352.38 ± 73.17 F: 8.561 0.00* (c > a, b)

Phenylalanine 58.53 ± 11.86 57.97 ± 6.75 68.12 ± 14.76 χ2: 10.097 0.01* (c > b)

Histidine 81.69 ± 9.06 89.13 ± 12.14 93.95 ± 11.56 F: 3.924 0.03* (c > a)

Threonine 129.69 ± 27.50 133.29 ± 27.99 140.47 ± 28.73 F: 0.615 0.55

Tyrosine 80.83 ± 12.05 87.11 ± 13.69 85.13 ± 19.90 F: 0.545 0.58

Glutamine 528.14 ± 48.12 548.11 ± 70.82 575.48 ± 70.94 F: 1.885 0.16

Glycine 206.35 ± 45.48 203.94 ± 56.33 239.27 ± 58.23 F: 2.573 0.09

Serine 114.73 ± 25.02 119.32 ± 19.98 119.11 ± 23.15 F: 0.170 0.84

Cysteine 24.77 ± 12.35 26.17 ± 6.05 28.19 ± 8.77 F: 0.634 0.53

Proline 159.63 ± 33.75 201.11 ± 54.18 262.30 ± 92.79 χ2: 15.320 0.00* (c > a, b)

Arginine 45.97 ± 18.73 47.94 ± 16.52 54.68 ± 21.84 χ2: 3.170 0.21

Citrulline 25.73 ± 7.46 24.56 ± 5.31 27.21 ± 6.61 F: 1.041 0.36

Ornithine 82.80 ± 14.50 102.86 ± 26.75 106.76 ± 33.16 F: 2.641 0.08

Taurine 44.79 ± 15.80 43.66 ± 10.32 45.21 ± 14.13 χ2: 0.092 0.96

Alanine 371.49 ± 100.34 425.71 ± 83.93 501.30 ± 118.44 F: 6.371 0.01* (c > a)

Asparagine 43.42 ± 5.72 47.10 ± 8.63 52.96 ± 11.03 F: 4.247 0.02* (c > a)

Aspartic acid 5.24 ± 1.15 6.09 ± 2.07 6.21 ± 1.67 F: 1.072 0.35

Glutamic acid 52.74 ± 13.69 46.78 ± 11.31 66.22 ± 23.78 χ2: 10.711 0.01* (c > b)

β-Alanine 2.72 ± 0.88 4.09 ± 2.11 4.77 ± 2.55 χ2: 7.421 0.02* (c > a)

OH-lysine 1.39 ± 0.67 1.56 ± 0.81 1.15 ± 0.59 F: 1.892 0.16

OH-proline 13.65 ± 2.48 15.92 ± 4.72 14.38 ± 6.06 χ2: 2.996 0.22

1-Methyl-histidine 6.72 ± 5.66 3.70 ± 3.99 5.83 ± 4.93 F: 1.985 0.15

3-Methyl-histidine 1.73 ± 0.57 1.64 ± 0.36 2.20 ± 0.51 F: 9.213 0.00* (c > b)

Ethanolamine 8.22 ± 1.26 8.56 ± 1.23 10.05 ± 1.77 F: 7.591 0.00* (c > a, b)

EAAs/NEAAs 0.61 ± 0.07 0.62 ± 0.06 0.62 ± 0.07 F: 0.135 0.87

0.44 ± 0.09 0.40 ± 0.12 0.39 ± 0.11 F: 0.636 0.53

Glycine/valine 0.76 ± 0.15 0.69 ± 0.20 0.70 ± 0.20 F: 0.484 0.62

BCAAs (µmol/L) 477.40 ± 70.89 521.94 ± 66.21 624.30 ± 113.22 F: 12.245 0.00* (c > a, b)

VFA 1.33 ± 0.75 1.58 ± 0.82 2.68 ± 1.62 χ2: 9.292 0.01* (c > a, b)

Glutamic acid/glutamine 0.10 ± 0.03 0.09 ± 0.02 0.12 ± 0.05 χ2: 7.467 0.02* (c > b)

χ2, Kruskal–Wallis H-test; F, one-way ANOVA.

Data are given as mean ± standard deviation (SD) in µmol/L.

*p < 0.05.
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with high fasting insulin levels (≥13.15 μIU/mL vs. <13.15 μIU/ 

mL) and high BCAA concentrations (≥502.95 μmol/L vs. 

<502.95 μmol/L). These findings support previous reports and 

suggest that the glutamic acid/glutamine ratio is a valuable 

marker for assessing early metabolic risk assessment in children 

and adolescents.

We also found that 1-methyl-histidine and 3-methyl-histidine 

levels were significantly higher in the obesity group than those in 

the control group, consistent with the findings of Cosentino et al. 

(19). These amino acid derivatives, which are often associated with 

muscle protein turnover and dietary protein intake, could re%ect 

altered metabolic states in obesity. Moreover, glycine/BCAA, 

glycine/valine, and glutamic acid/glutamine ratios were markedly 

disrupted in the obesity group. These altered ratios could provide 

additional insight into early metabolic dysregulation, particularly 

in cases in which total BCAA levels do not strikingly differ. Their 

use could enhance the early detection and risk stratification of 

metabolic disorders in pediatric populations.

Although several recent studies supported the role of BCAAs 

in obesity-related metabolic dysfunction and frequently reported 

elevated BCAA levels in children with obesity, some 

inconsistencies remain in the literature. Notably, two cross- 

sectional studies involving adolescents (22, 23) did not find 

significantly higher BCAA concentrations in children with 

obesity than in their normal-weight counterparts. These 

discrepancies highlight the importance of examining a broader 

spectrum of metabolic markers. Beyond individual BCAA levels, 

amino acid ratios and derivative indices could represent more 

sensitive indicators of early metabolic dysregulation. Recognizing 

this, our study included such metrics to detect meaningful 

differences between children with obesity and between 

metabolically distinct subgroups.

To this end, we used Amino-Check, an amino acid profiling and 

evaluation software developed by Amino Acid Science Ltd. This tool 

calculates several clinically relevant amino acid ratios and synthesizes 

them into a cardiometabolic risk stratification framework. The 

software integrates known amino acid biomarker patterns to 

generate indices related to visceral adiposity, insulin resistance, 

cardiovascular disease risk, type 2 diabetes susceptibility, and fatty 

liver potential. This personalized profiling approach could enhance 

early detection and facilitate more targeted preventive strategies in 

at-risk pediatric populations.

Although total BCAA levels were significantly higher in the 

obesity group than those in controls in our study, only 62.5% of 

children in the obesity group were correctly classified using a 

BCAA cutoff of 502.95 µmol/L. Interestingly, 19.5% of 

participants without obesity exceeded the cutoff. These findings 

underscore the limitation of relying solely on BCAA levels for 

distinguishing metabolic risk. To improve diagnostic precision, 

we integrated additional biomarkers, including glycine, tyrosine, 

alanine, 3-methyl-histidine, ornithine, valine, and the VFA index 

(VFI), using the Amino-Check risk scales. This composite 

model markedly improved obesity detection, increasing the 

correct classification rate from 62.5% to 91.5%. Such 

multivariate approaches could better capture the complexity of 

metabolic disturbances related to obesity.

Regional fat distribution, particularly visceral adiposity, is a 

well-established predictor of metabolic risk that surpasses BMI 

and total fat mass in clinical relevance. Visceral fat contributes 

to systemic in%ammation and insulin resistance, increasing the 

risk of type 2 diabetes mellitus and cardiovascular disease (24). 

Furthermore, metabolomic signatures associated with visceral 

fat, including elevated BCAA, AAA, alanine, glycine, proline, 

glutamate, and tyrosine levels, have been linked to future type 2 

diabetes and myocardial infarction, even among normal-weight 

individuals and adolescents (12, 25). To the best of our 

knowledge, this is the first study to evaluate the VFI in 

adolescents, extending the work of Yamakado et al. (12) in 

Japanese adults with obesity. In our study, the VFI was 

significantly higher in the obesity group than in the control 

group. This increase in visceral fat was paralleled by significantly 

higher fasting insulin and BCAA levels, re%ecting the expected 

metabolic burden in pediatric obesity.

In this study, individuals with elevated BCAA levels exhibited 

significantly higher insulin levels and a higher VFA index. 

Similarly, the VFI and BCAA concentrations differed between 

groups stratified by fasting insulin levels. These findings indicate 

close associations of visceral fat accumulation with elevated 

insulin and BCAA levels. However, considering the dynamic 

hormonal changes during this developmental period, it is 

important to account for the potential confounding effects of 

puberty, as the surge in growth hormone and insulin-like growth 

factor-1 levels during puberty increases insulin resistance (26).

Although we observed no differences between the preadolescent 

and adolescent groups concerning BMI percentile, weight percentile, 

and fasting insulin, fasting glucose, and HbA1c levels, the VFI was 

significantly higher in the adolescent group, which likely re%ects 

the effect of puberty on the fat distribution. More importantly, 

BCAA levels were significantly elevated in the adolescent 

subgroup, whereas insulin levels remained unchanged. These 

findings suggest that in pubertal children with obesity, elevated 

BCAA levels may occur independently of insulin levels or insulin 

resistance, and these changes are more directly correlated with 

visceral fat accumulation. This finding highlights a potentially 

unique metabolic signature in this age group and supports the 

role of BCAA profiling as a sensitive marker for visceral adiposity, 

particularly during adolescence.

Contrary to our findings, Zhang et al. (27) reported that 

BCAA and AAA levels were positively associated with insulin 

resistance during pubertal growth independent of adiposity. 

However, all participants in their study had normal BMI, and 

the methodology for assessing adiposity was not specified. 

Moreover, no data regarding adiposity levels were presented, 

which limits the interpretation of the independence claim. In 

another study (28), no significant differences in BCAA 

concentrations were observed between pubertal and prepubertal 

lean children despite the increase in insulin resistance during 

puberty. Similarly, another study of lean children found no link 

between BCAA levels and the pubertal status (29). This suggests 

that BCAA levels do not increase in lean adolescents despite 

insulin resistance associated with puberty. These discrepancies 

might be attributable to differences in the study populations. 
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Unlike these studies, our research included children with obesity, 

in whom BCAA accumulation and altered amino acid metabolism 

might follow a different pathophysiological course, particularly in 

individuals with increased visceral adiposity. This emphasizes the 

need to consider the metabolic status when interpreting amino 

acid–puberty relationships.

Although insulin resistance commonly emerges during 

puberty (27), studies in healthy lean children revealed that this 

does not necessarily lead to elevated BCAA levels. This suggests 

that in cases in which BCAA concentrations increase during 

puberty, such increases might occur independently of insulin 

elevation, and they might represent early biomarkers of future 

cardiometabolic risk. Supporting this, McCormack et al. (13) 

demonstrated in a cross-sectional cohort of children and 

adolescents that elevated circulating BCAA levels were 

significantly associated with obesity and potentially predictive of 

the future development of insulin resistance.

Plasma amino acid profiling could represent a valuable tool for 

differentiating metabolically unhealthy obesity and metabolically 

healthy obesity (MHO) in children. Although clear associations of 

elevated BCAA and AAA levels with obesity were recorded in our 

cohort, a notable subset of children with obesity (37.5%) 

exhibited normal BCAA levels, and 21.4% had normal insulin 

concentrations. These children also displayed lower levels of ALT 

and lower visceral fat accumulation, supporting the presence of a 

more metabolically favorable profile despite their elevated BMI 

percentiles. These findings are consistent with the concept of 

MHO, a phenotype characterized by preserved insulin sensitivity 

and the absence of typical metabolic disturbances in the presence 

of excess adiposity (30, 31). Although the MHO phenotype is well 

documented in adults, with prevalence estimates ranging between 

10% and 30%, its definition and long-term clinical implications in 

children remain debated (32, 33). Our findings suggest that 

plasma amino acid profiling, particularly BCAAs, could provide 

early metabolic evidence of MHO in pediatric populations, which 

could be critical for individualized risk stratification and 

prevention strategies. Notably, no significant sex-based differences 

in BCAA levels or insulin resistance indices were observed, 

suggesting that sex is not a major determinant of the observed 

metabolic variability. The heterogeneity observed among children 

with obesity underscores the need for a more nuanced approach 

beyond BMI alone that incorporates metabolic profiling to better 

understand underlying risk and tailor interventions accordingly.

Beyond the evaluation of BCAA and AAA levels, a 

comprehensive analysis of the entire plasma amino acid profile, 

including cardiometabolic risk assessment, enables a more nuanced 

risk stratification in children with obesity. Software database 

systems, such as Amino-Check, were developed using amino acid- 

based algorithms that integrate individual amino acid levels and 

their ratios to assess visceral obesity independently of general 

obesity. In addition, these systems might provide risk stratification 

tools for insulin resistance, cardiovascular disease, type 2 diabetes, 

and MASLD. In line with our findings, Bugajska et al. investigated 

early markers of cardiovascular disease and MASLD in overweight 

children with obesity. Their study revealed that abnormal amino 

acid profiles, together with elevated ALT and UA levels, were 

already present in prepubertal children, suggesting early metabolic 

disturbances that could predispose them to metabolic syndrome, 

MASLD, and increased cardiovascular risk (11). These findings 

support the utility of plasma amino acid profiling as a predictive 

and preventive metabolic screening tool.

In our study, ALT and UA levels were significantly elevated in 

the obesity group. The obesity risk index clearly demonstrated that 

insulin and fasting glucose levels, BCAA concentrations, and the 

VFA index, all of which correspond to statistically significant 

increases in cardiometabolic risks, were highest in children with 

high obesity scores. Moreover, a higher obesity risk index was 

consistently associated with greater severity of other 

cardiometabolic risk indicators, including visceral obesity, 

insulin resistance, type 2 diabetes, and coronary artery disease.

Although the levels of nutrients such as glucose, amino acids, 

and lipids are interconnected, amino acids play a critical role in 

obesity, as they re%ect internal metabolic changes and the 

in%uence of the intestinal microbiota, acting as key metabolic 

modulators. Therefore, monitoring amino acids through 

metabolomic analysis could be a useful method for predicting 

metabolic disorders during childhood (7, 34).

One of the most important strengths of this study was its 

comprehensive evaluation of plasma amino acid profiles and 

their associations with metabolic risk indices in a pediatric 

population. Using validated stratification tools, such as the 

obesity risk index and VFA index, our study surpassed 

traditional anthropometric and biochemical markers to provide 

a metabolomic perspective on childhood obesity. In addition, 

the inclusion of preadolescent and adolescent subgroups 

provided a better understanding of the effects of development 

on amino acid metabolism. The use of high-sensitivity LC–MS/ 

MS methods for amino acid quantification further enhanced the 

reliability and reproducibility of our biochemical data.

Despite these strengths, our study had several limitations. First, 

the cross-sectional and retrospective design limited our ability to 

identify the intercausal relationships between amino acid changes 

and metabolic outcomes. Second, dietary intake and physical 

activity, known factors regulating amino acid levels, were not 

quantitatively assessed, potentially introducing confounding effects. 

Third, although the sample size was sufficient for the main 

analyses, it might not have been sufficient to detect subtle sex- 

specific differences or interactions between biomarkers. Finally, the 

study was conducted at a single tertiary healthcare center, which 

might have limited the generalizability of the findings to a broader 

pediatric population. To further generalize our findings, 

longitudinal and multicenter studies incorporating lifestyle data 

and pubertal stages according to the Tanner criteria are required.

In conclusion, the routine use of amino acid profiling in 

children could help predict their future susceptibility to obesity, 

assess whether existing obesity represents a metabolic risk, and 

forecast insulin resistance and other cardiometabolic risks 

regardless of BMI. The development of software systems that 

use specific calculations for amino acids will provide 

opportunities to use more detailed amino acid profiles, and their 

integration with other metabolites will increase the predictive 

power of these assessments.
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