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Introduction: Childhood obesity is among the most serious and rapidly
growing public health issues globally. Although body mass index (BMI) is
commonly used to evaluate obesity, it does not always reflect early metabolic
disturbances. Recent studies have emphasized the importance of
metabolomics, particularly plasma amino acid profiling, in detecting
subclinical metabolic risk. In this context, branched-chain amino acids
(BCAAs) have emerged as potential early biomarkers of insulin resistance and
cardiometabolic risk.

Methods: This cross-sectional study included 97 participants aged 5-18 years,
including 56 children with obesity (BMI>95th percentile) and 41 healthy
controls. Anthropometric measurements, as well as fasting glucose, insulin,
lipid profile, and HbAlc levels, were recorded. Plasma concentrations of 44
amino acids were measured using liquid chromatography—tandem mass
spectrometry (LC-MS/MS) with a commercial kit (JASEM®, Agilent Ultivo
Triple Quadrupole LC-MS). BCAA levels and relevant ratios, such as glycine/
BCAA and glutamic acid/glutamine, were calculated. Receiver operating
characteristic (ROC) curve analyses were performed to evaluate the
diagnostic performance of key variables.

Results: Children with obesity had significantly higher levels of BCAAs and other
amino acids, including phenylalanine, tyrosine, alanine, and glutamic acid (all
p <0.05). Conversely, glycine, serine, and asparagine levels were significantly
lower in children with obesity. Fasting insulin emerged as a strong predictor
of obesity [area under the ROC curve (AUC) = 0.87], while total BCAAs also
displayed strong predictive performance (AUC =0.78). A reduced glycine/
BCAA ratio and an increased glutamic acid/glutamine ratio were associated
with early metabolic dysregulation.

Conclusion: Our findings highlight the potential of plasma amino acid profiling
as a supportive tool for the early assessment of metabolic risk in children with
obesity. The integration of amino acid-based indices could improve risk
classification and  support personalized preventive strategies in
pediatric populations.
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1 Introduction

The incidence of childhood obesity, an important public
health problem, has rapidly increased globally in recent years,
forming the basis of metabolic diseases in adulthood. The
World Health Organization reports that approximately 18% of
children aged 5-19 years worldwide are overweight, reflecting an
almost 10-fold increase over the last four decades (1). Excess
weight and obesity in early childhood increase the risk of these
conditions in adulthood, thereby elevating the risks of chronic
inflammatory diseases such as type 2 diabetes, cardiovascular
disease, non-alcoholic fatty liver disease, and certain cancers (2, 3).

There is growing evidence that childhood obesity is associated
with both energy imbalance and metabolic disorders at the cellular
level. In this context, body mass index (BMI) or fasting insulin
levels alone are insufficient to identify the metabolic risk of
children with obesity. Although children
metabolically healthy despite high BMI, others could be in a
“silent” phase of metabolic risk before insulin resistance

some can be

develops. The use of new biomarkers is of great importance for
identifying children at risk. Therefore, metabolomic analysis is
critical for screening and intervening in childhood obesity (4, 5).
Recently, investigations of early screening and diagnosis using
metabolomics have been conducted (6).

Nutrients, such as glucose, amino acids, and lipids, influence
each other; nevertheless, amino acids are critical modifiers in
obesity. As amino acids reflect internal metabolic changes and
the intestinal microbiota and act as metabolic modulators,
metabolomic analysis might be useful for monitoring amino
acid levels and predicting metabolic disorders during childhood
(7). Recent studies have suggested that branched-chain amino
acids (BCAAs; valine, leucine, and isoleucine) play key roles in
obesity-related metabolic disorders. Several metabolomic studies
found that BCAA levels are markedly elevated in children and
adults with obesity, and this increase is closely associated with
the development of insulin resistance, glucose intolerance, and
type 2 diabetes (8, 9). BCAAs are believed to reduce insulin
sensitivity by affecting mTOR signaling pathways in liver and
muscle cells and trigger inflammatory processes by disrupting
mitochondrial energy metabolism (10).

Furthermore, the plasma amino acid profile can be used to
predict both the current biochemical effects of obesity and
prospective cardiometabolic risk. In this context, amino acid
analyses could provide early indications of the metabolic burden
in childhood before clinical manifestations appear. In particular,

Abbreviations

AUC, area under the curve; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; ANOVA, analysis of variance; BCAAs, branched-chain
amino acids; BMI, body mass index; ESI, electrospray ionization; HbAlc,
hemoglobin Alc; HDL-C, high-density lipoprotein cholesterol; HPLC, high-
performance liquid chromatography; IS, internal standard; K,EDTA,
dipotassium  ethylenediaminetetraacetic ~ acid; ~ LC-MS/MS,  liquid
chromatography-tandem mass spectrometry; LDL-C, low-density lipoprotein
cholesterol; MASLD, metabolic dysfunction-associated steatotic liver disease;
ROC, receiver operating characteristic; SD, standard deviation; SPSS,
Statistical Package for the Social Sciences; TG, triglyceride; UA, uric acid;
VFA, visceral fat area.
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BCAA levels could represent a harbinger of metabolic risk even
in individuals with normal insulin levels or homeostasis model
assessment of insulin resistance (HOMA-IR) values within the
reference limit (11).

Based on this background, we investigated the differences in
plasma amino acid levels between children with and without
obesity, as well as the variations in various amino acid indices. In
addition, we examined the differences in amino acid profiles
among children with obesity according to the presence or absence
of insulin resistance. Furthermore, we evaluated the accuracy of
amino acid-based software in precisely distinguishing children
with obesity from controls without obesity.

2 Methods

This study enrolled 97 children aged 5-18 years, including 56
children diagnosed with obesity (study group) and 41 age- and
sex-matched healthy children (control group). Obesity was
defined as a BMI exceeding the 95th percentile based on
national age-specific BMI percentile tables, while controls had
BMI values the 5th and 85th percentiles. All
participants had no history of infection, chronic systemic

between

disease, or prior use of any medications that could affect
metabolic parameters. Blood samples were collected after an
overnight fast, and participants who did not meet the fasting
requirements were excluded from the study. Anthropometric
measurements, including height and weight, were obtained using
standard equipment with a precision of 0.1 cm and 0.1Xkg,
respectively. BMI was calculated and converted to standard
deviation (SD) scores based on national growth references. The
study protocol was approved by the Institutional Ethics
Committee (Approval No: 2024/22/991) and conducted in
accordance with the principles of the Declaration of Helsinki.

2.1 Sample collection

Serum and whole blood samples were drawn from each patient
after 8-12h of fasting for biochemical and amino acid analyses.
Serum samples collected in serum separating tubes (Vacuette®,
Greiner) were allowed to clot for 30 min and then centrifuged at
3,600 rpm for 15min for routine chemistry and hormone
analysis. Serum samples were analyzed on the same day as part of
routine analysis. Whole blood samples collected into potassium
ethylenediaminetetraacetic acid-containing tubes were used for
HbAIC analysis. To perform amino acid analysis, whole blood
samples were collected in potassium EDTA (K,EDTA)-containing

®

tubes (Vacuette™, Greiner) and centrifuged at 4,000 rpm for

5 min to obtain plasma samples. Plasma samples were frozen at
—20°C and measured in the following 2-3 days.

2.2 Biochemical analysis

Commercial kits were used for all chemistry and hormone
parameters, including fasting plasma glucose, triglyceride
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(TG), and lipids (total cholesterol, HDL-C, LDL-C), aspartate
aminotransferase (AST), alanine aminotransferase (ALT), and
uric acid (UA) (Beckman Coulter, USA). Serum levels of
glucose, TG, AST, ALT, and UA were measured in a
biochemistry autoanalyzer (AU5800 Series Clinical Chemistry
Analyzer, Beckman Coulter, USA). The HbA1C analysis was
performed on the boronate

same day in

chromatography (Premier Hb9210, Trinity Biotech, Ireland),

affinity

and a commercially available kit of the same manufacturer was
used. Serum insulin levels were determined in a hormone
autoanalyzer (UniCel DxI 800 Access Immunoassay System,
Beckman Coulter, USA).

For plasma concentrations of 44 amino acids, the
experiments were performed on Agilent high-performance
liquid chromatography (HPLC) system (Agilent Technologies,
Santa Clara, CA, USA) consisting of flexible pump (G7104A),
column compartment (G7116B), and autosampler (G7129C)
coupled to Agilent Ultivo Triple Quadrupole LC-MS (6465B,
Agilent Technologies, Santa Clara, CA, USA) equipped with
electrospray ionization source (ESI). For the determination of
the concentrations of the underivatized free amino acids,

JASEM Amino Acids LC-MS/MS analysis kit (product

number JSM-CL-500) was used (Altium Laboratuvar
Cihazlar1. AS, istanbul, Tiirkiye). The analysis of the
underivatized free amino acids was performed using

calibration standards to create calibration curves, mobile
phases (mobile phase A and B), an analytical column tailored
for simultaneous analysis of the compounds, and
chromatographic and mass detection parameters of the
analytical method. The HPLC system was operated to inject
3 pL of treated calibrators/samples into the analytical column
which was maintained at 30°C. The temperature of the
autosampler was kept at 8°C. The chromatographic separation
was performed utilizing mobile phases A and B with gradient
elution at a flow rate of 0.7 mL/min. The HPLC elution was
performed as follows: the initial LC gradient of 22% A was
held for 1 min. Subsequently, the gradient was increased
linearly to 78% B within 3.0 min and maintained for 0.5 min.
Finally, the column was equilibrated at 22% A for 3 min. The
total running time was 7.5 min. Mass detections of amino
acids were conducted in positive ion multiple reaction
monitoring mode. The mass spectrometer settings of the
analytical method were as follows: drying gas temperature
150 °C, drying gas flow 10 L/min, nebulizer pressure 40 psi,
sheath gas temperature 400 °C, sheath gas flow 10 L/min, and
2,000 V. The MS/MS detections

achieved by product ion transitions generated by collision-

capillary voltage were
induced dissociation (CID) of the corresponding precursor
ion. Plasma amino acids’ limit of quantification (LOQ) values
and linearity ranges are provided in Supplementary Table S1.
Amino acid-based metabolic risk indices were calculated using
Amino-Check® software (Amino Acid Science Ltd., London, UK),
which integrates specific amino acid ratios and concentrations
based on previously validated multivariate models, including
visceral adiposity indices defined by Yamakado et al. (12),
insulin resistance, cardiovascular disease, type 2 diabetes, and
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metabolic  dysfunction-associated  steatotic  liver  disease
(MASLD). Parameters such as the glutamic acid/glutamine,
BCAA-related, and essential/non-essential amino acid (EAA/
NEAA) ratios were included in the stratification algorithms
defined by Amino Acid Science Ltd. Details of the measured
individual plasma amino acids and metabolic risk indices are

presented in Supplementary Table S2.

2.3 Data visualization analyses

To plot the overall metabolic variations among groups and
find significantly changed amino acids, a volcano plot and
principal component analysis (PCA) were used. PCA was used
to evaluate the general difference in plasma amino acid profiles
between the obesity and control groups, and 95% confidence
ellipses were plotted to visualize clustering patterns among
groups. The first two principal components were used, capturing
the maximum variation within the amino acid dataset. Volcano
plot analysis was used to simultaneously display the statistical
significance (p-values) and biological significance (fold changes)
of individual amino acids between groups. The volcano plot was
constructed by plotting the negative logl0 of the p-values
(y-axis) against the log, fold change values (x-axis) for each
amino acid. Statistical significance thresholds were set at
p <0.05, and fold change thresholds were established to identify
amino acids with both statistical and biological significance.
Significantly altered amino acids were highlighted and labeled
on the plot to facilitate interpretation of metabolic differences
between children with obesity and healthy controls (Figure 2
and Supplementary Figure SI).

2.4 Statistical analysis

The normality of the quantitative variables was assessed using
skewness and kurtosis, with values within +2 indicating a normal
distribution. Normally distributed variables were presented as the
mean+SD and compared between the groups using the
independent-samples f-test and one-way analysis of variance
(ANOVA). Non-normally distributed variables were summarized
as mean ranks and analyzed using the Mann-Whitney U-test
and Kruskal-Wallis H-test. Categorical variables were expressed
as frequencies and percentages, and group comparisons were
performed using the chi-squared test. To investigate the
relationships ~ between  quantitative  variables, Pearson’s
correlation coefficient was used for normally distributed data,
whereas Spearman’s correlation coefficient was applied for non-
normally distributed variables. Receiver operating characteristic
(ROC) curve analysis was used to evaluate the diagnostic
performance of the selected parameters, and the area under the
ROC (AUC)

model efficiency.

curve was reported as an indicator of
All statistical analyses were performed using IBM SPSS
Statistics version 25.0 (IBM Corp., Armonk, NY, USA), and a

two-tailed p < 0.05 was considered statistically significant.
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3 Results

3.1 Group characteristics and
anthropometric findings

The mean age of the included children was 11.98 + 3.45 years
in children with obesity vs. 12.12 + 3.12 years in the control group
(p=0.838). Children with obesity had a male predominance
(57.1%), the group included
proportion of females (61.0%). However, the sex distribution did

whereas control a higher

10.3389/fped.2025.1631302

not differ significantly between the groups (p =0.119). Similarly,
the age distribution (5-8, 9-13, 14-18) was comparable between
the three groups (p=0.858). Children with obesity had
significantly higher mean body weight (78.94+28.82kg vs.
4542+ 14.21kg, p<0.001), weight percentile (99.10+1.41
vs. 53.67 £ 30.06, p <0.001), and BMI percentile (98.64 + 2.53 vs.
51.14+30.02, p<0.001) than those in the control group.
Although height did not significantly differ between the groups
(p=0.133), the height percentile was significantly higher in
children with obesity (p =0.015, Figure 1).
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FIGURE 1
Anthropometric and biochemical variables in the control and obesity groups. Data are presented as mean + standard deviation (SD). For normally
distributed variables, comparisons between groups were performed using the independent sample t-test, whereas for non-normally distributed
variables, the Mann-Whitney U-test was applied. Statistical significance is indicated as *p <0.05; **p <0.01 and; ns, not significant. BMI, body
mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HbAlc, hemoglobin Alc.
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Volcano Plot: Obese vs Control Groups
Comparison of plasma amino acid profiles
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FIGURE 2
Volcano plot comparing plasma amino acid profiles between children with obesity and control groups. The x-axis represents the log, fold change
(children with obesity vs. control), and the y-axis represents the —log;o p-value from statistical testing. The vertical red line indicates no fold change
(log,FC = 0), while the horizontal dashed blue line corresponds to the significance threshold (p = 0.05). The red dots indicate metabolites that are
significantly different between groups (p < 0.05), and the gray dots represent non-significant metabolites. Amino acids enriched in the group with
obesity [e.g., glutamic acid, tyrosine, branched-chain amino acids (valine, leucine, isoleucine)] are shown on the right, whereas those enriched in
the control group (e.g., glycine, serine, glycine/BCAA ratio) are shown on the left.

3.2 Biochemical and metabolic parameters

difference  did not reach statistical

concentrations were significantly higher among children with

significance.  UA

Fasting insulin levels were markedly higher in children
with  obesity compared with those in the control
group (21.51+13.69 IU/mL vs. 8.53 +£4.25 ulU/mL, p<0.001).
Although fasting glucose levels were slightly higher in children
with obesity (85.82 +6.49 mg/dL) compared with those in the
(83.44+7.78 mg/dL), the difference reached
statistical significance (p=0.033) but was clinically modest.
Serum ALT (38.86+38 U/L vs. 14.80 £5.67 U/L, p <0.001) and
AST (29.66 + 18.16 U/L vs. 22.90 + 5.84 U/L, p = 0.04) levels were
significantly higher in children with obesity. TG levels were also

control group

significantly increased in children with obesity (136.98 +71.08
64.54 +22.83 mg/dL, p<0.05). Although HDL
cholesterol levels were lower in children with obesity, the

mg/dL  vs.

Frontiers in Pediatrics

obesity compared with those in controls (6.01 £ 1.57 mg/dL vs.
4.46 + 144 mg/dL, p<0.01), supporting its association with
obesity-related metabolic stress (Figure 1).

3.3 Alterations in plasma amino acid
profiles

The concentrations of BCAAs were significantly higher in
children with obesity than those in the control group
(p<0.001). The levels of other essential and non-essential
amino acids, such as histidine,

phenylalanine, tyrosine,

alanine, glutamic acid, 1-methyl-histidine, 3-methyl-histidine,
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and ethanolamine, were also significantly elevated in children with
obesity (all p<0.05). Conversely, glycine, serine, and asparagine
levels were significantly lower in children with obesity than
those in the control group (all p <0.001). Furthermore, glycine/
BCAA, glycine/valine, and glutamic acid/glutamine ratios were
significantly altered in children with obesity, indicating early
metabolic disorders (all p <0.05, Figures 2, 3 and Supplementary
Table S3).

3.4 Diagnostic performance of biomarkers

ROC curve analyses demonstrated the significant diagnostic
potential of several biomarkers for distinguishing children with
obesity from healthy controls. Fasting insulin exhibited the
highest predictive power among the individual biomarkers, with
an AUC of 0.87 and a cutoff of 13.15 uIU/mL, which yielded a
sensitivity and specificity of 79% and 88%, respectively; Figure 3).

Regarding amino acid biomarkers, valine (AUC=0.78,
cutoff = 254.80 umol/L), leucine (AUC=0.74, cutoff=138.85
umol/L), and isoleucine (AUC=0.71, cutoff=_83.65umol/L)
demonstrated moderate diagnostic accuracy. The combined
BCAA level yielded an AUC of 0.78 with a sensitivity of 63%
and specificity of 81% at a cutoff of 502.95 umol/L. The Amino-
Check®-derived obesity risk index demonstrated the highest

overall discriminatory power (AUC=0.94, cutoff=1.50,
sensitivity = 96%, specificity = 88%).
All ROC analyses demonstrated statistical significance

(p <0.05), supporting the potential use of targeted amino acid
profiling, specifically BCAAs and amino acid-based composite
indices, for the early diagnosis and stratification of metabolic
risk in pediatric obesity.

10.3389/fped.2025.1631302

3.5 Associations between clinical variables

According to the results of the analysis, there were no
significant differences between children with obesity and control
groups concerning sex and age (both p>0.05); however,
children with obesity included higher proportions of individuals
with insulin, isoleucine, leucine, valine, BCAA, tryptophan,
phenylalanine, and tyrosine levels above the cutoff than those in
the control group (all p <0.05, Table 1).

Using the developed obesity risk index (>1, children with
obesity; <1, children without obesity), the vast majority of
children with obesity (96.4%) were accurately marked as a
group with obesity, whereas only 12.2% of participants in the
control group were considered children with obesity. The
estimated sensitivity and specificity of the obesity risk
index were 96% and 87%, respectively, with comparisons
made between participants’ scores. In addition, the obesity
risk index performed significantly better than BCAA levels
in accurately identifying children at risk of obesity (96.4%
vs. 62.5%).

The visceral obesity risk index was markedly higher in
children with obesity (96.4 + 5.8%) compared with findings in
the control group (58.06 +8.2%). The insulin resistance risk
index indicated that 69.6 +7.1% of children with obesity and
17.1£4.6% of controls were at risk of developing insulin
resistance. The cardiovascular disease risk index illustrated
that the elevated risk of developing cardiovascular diseases in
children with obesity (53.6 + 6.5%) compared with the control
group (9.8+3.2%). The type 2 diabetes risk index revealed
that 21.4+4.9% of children with obesity were at risk of
diabetes, compared with none in the control group. Finally,
the MASLD risk index was 39.3+6.0% in children with

with higher AUC values indicating greater discriminatory ability.
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FIGURE 3

ROC curves showing the discriminatory performance of insulin, isoleucine, leucine, valine, total branched-chain amino acids (BCAAs), and the
obesity index in distinguishing children with obesity from controls. The area under the curve (AUC) values were calculated for each parameter,
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TABLE 1 Comparison of the control and obesity groups using defined cutoff values for specific anthropometric, biochemical, and amino acid-related

variables.

Paramete O O 4 Obe 6 ota D

be A be be

Sex

Female 25 61.0 24 42.9 49 50.5 0.12
Male 16 39.0 32 57.1 48 49.5

Age (years)

5-8 8 19.5 10 17.9 18 18.6 0.86
9-13 16 39.0 25 44.6 41 423

14-18 17 415 21 37.5 38 39.2

Insulin (mIU/L)

<13.15 36 87.8 12 21.4 48 49.5 0.00*
>13.15 5 12.2 44 78.6 49 50.5

Isoleucine (umol/L)

<83.65 32 78.0 23 41.1 55 56.7 0.00%
>83.65 9 22.0 33 58.9 42 433

Leucine (umol/L)

<138.85 31 75.6 21 37.5 52 53.6 0.00*
>138.85 10 24.4 35 62.5 45 46.4

Valine (umol/L)

<254.80 23 56.1 7 12.5 30 30.9 0.00*
>254.80 18 439 49 87.5 67 69.1

BCAAs (umol/L)

<502.95 33 80.5 21 37.5 54 55.7 0.00%
>502.95 8 19.5 35 62.5 43 443

Tryptophan (umol/L)

<47.25 18 439 9 16.1 27 27.8 0.01*
>47.25 23 56.1 47 83.9 70 72.2

Phenylalanine (umol/L)

<55.80 28 68.3 17 304 45 46.4 0.00*
>55.80 13 31.7 39 69.6 52 53.6

Tyrosine (umol/L)

<72.05 30 73.2 11 19.6 41 423 0.00*
>72.05 11 26.8 45 80.4 56 57.7

p» chi-squared test of independence.
*p <0.05.

obesity compared with 2.4+1.2% in the control group
(Figure 4).

To evaluate the effect of adolescence on metabolic markers,
children with obesity were divided into three age groups: 5-8,
9-13, and 14-18 years. No statistically significant differences
were observed between the three groups regarding BMI
percentile, weight percentile, height percentile, and TG, fasting
insulin, fasting glucose, and HBAIC levels (Tables 2, 3). The
visceral fat area (VFA) index was significantly higher in
adolescents, with the highest mean value observed in the 14-
18-year group, followed by the 9-13-year group, and the lowest
values in the 5-8-year group (p<0.001). Total BCAA levels
differed significantly across age groups (p<0.001), with the
highest values observed in the 14-18-year group, intermediate
levels in the 9-13-year group, and the lowest levels in the
5-8-year group. In contrast, fasting insulin levels did not show
a statistically significant difference among the three age
groups (Table 4).

Frontiers in Pediatrics

4 Discussion

This study has provided novel insights into the metabolic
signatures associated with pediatric obesity by evaluating plasma
amino acid profiles and related indices. These findings
underscore the potential utility of amino acid profiling in early
risk stratification and metabolic phenotyping in pediatric
populations. When placed within the current literature, our data
suggest that altered amino acid metabolism could represent an
early biomarker of cardiometabolic dysfunction in children,
possibly occurring before the onset of overt insulin resistance or
clinical metabolic syndrome.

Previous clinical studies consistently reported significant
differences in BCAA and aromatic amino acid (AAA) levels
between children with and without obesity (4, 13-17), similar to
those observed in the present study. In addition, consistent with
earlier research, we observed elevated glutamic acid levels (15,

17), a higher glutamic acid/glutamine ratio (18), and increased
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FIGURE 4 7
Comparison of Amino-Check®-derived metabolic risk indices between the control and obesity groups. The bars represent the percentage of
individuals (%) with positive risk for each index. The indices include obesity index, visceral obesity, insulin resistance, cardiovascular disease risk,
type 2 diabetes risk, MASLD (fatty liver) risk, coronary artery disease risk, high-quality protein deficiency, and kwashiorkor/stunting. Statistical
comparisons were performed using the chi-square test. Significance levels are indicated as p <0.05 (*), p < 0.01 (**), and ns, not significant.

TABLE 2 Comparison of anthropometric measurements (weight, height, and BMI) among different age groups (5-8, 9-13, and 14-18 years) in children

with obesity.

Anthropometric
parameters

(a) 5-8 years, n=10 | (b) 9-13 years, n=25 (c) 14-18 years, n=21

Fly?

p (difference)

X + SD

X + SD

x + SD

Weight (kg) 49.17 £17.28 68.46 + 17.53 105.60 +21.33 F: 36.690 | 0.00* (a<b, c), (b<c)
Weight (percentile) 99.53 +0.69 98.77 + 1.59 99.31 + 1.40 2% 5.960 0.06

Height (cm) 134.50 + 10.78 151.60 + 11.36 171.67 +9.73 F: 45038 | 0.00* (a<b, ), (b<c)
Height (percentile) 74.66 + 29.40 75.72 +26.28 58.45 +29.01 F: 2438 0.10

BMI (kg/m?) 26.58 £ 5.60 29.39+4.29 35.96 +6.17 F: 13.747 0.00% (c>a, b)
BMI (percentile) 99.42 +0.53 98.16 + 3.32 98.83 +1.91 73973 0.14

% Kruskal-Wallis H-test; F, one-way ANOVA.
Data are presented as mean * standard deviation (SD).
*p <0.05.

alanine concentrations (11, 19) in the group with obesity.
Conversely, glycine levels were significantly lower in children
with obesity, supporting previous reports (19, 20). Our findings
also align with those of Bugajska et al., who reported that serine
and asparagine levels were significantly reduced in the obesity
group (11). Similarly, a recent publication by Campos et al. (20)
highlighted increased BCAA and decreased glycine levels in
in adult
Our study replicated these patterns, further

overweight children, mirroring trends observed

populations.
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reinforcing the relevance of plasma amino acid profiling in
identifying early metabolic risk in pediatric populations.
Previous studies frequently investigated the glutamic acid/
glutamine ratio and suggested its potential as a biomarker of
insulin resistance in adolescents with obesity (18, 21). In
addition, this ratio is negatively associated with B-cell function
in young individuals with type 2 diabetes (21). In our study, this
ratio was significantly higher in the obesity group than that in
the control group and was additionally elevated in subgroups
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TABLE 3 Comparison of biochemical parameters (uric acid, AST, ALT, triglyceride, insulin, glucose, HbAlc) among children with obesity in three age
groups (5-8, 9-13, and 14-18 years).

Biochemical
parameters

(a) 5-8 years, n =10
Mean + SD

(b) 9-13 years, n = 25
Mean + SD

(c) 14-18 years, n=21
Mean + SD

Fly?

p (difference)

Uric acid (mg/dL) 4.71+£0.91 571+1.63 6.98 £ 1.11 F: 10.758 0.00* (c>a, b)
AST (IU/L) 31.00 +17.99 30.64 +22.05 27.86+13.13 7% 0.193 0.91
ALT (IU/L) 30.10 +31.25 37.36 +41.58 44.81 £37.12 27 4187 0.12
Triglyceride (mg/dL) 95.70 + 37.38 136.40 + 66.00 157.33 £82.17 F: 2.706 0.08
Insulin (mIU/L) 19.94 +24.31 19.84 £7.39 24.24+13.09 24194 0.12
Glucose (mg/dL) 85.40 +5.76 86.56 +5.82 85.14+7.68 F: 0.290 0.75
HBAIC (mmol/mol) 5.65+0.26 5.63+0.25 5.56 +0.24 F: 0.537 0.59

% Kruskal-Wallis H-test; F, one-way ANOVA.
Data are presented as mean + standard deviation (SD).

*p < 0.05.

TABLE 4 Analysis of plasma amino acid levels among various age groups (5-8, 9-13, and 14-18 years) in children with obesity.

Amino acids (umol/L) = (a) 5-8 years, n =10 | (b) 9-13 years, n=25 | (c) 14-18 years, n=21 | F/¥*> | p (difference)
Lysine 159.43 +23.72 175.55 +19.39 194.28 + 38.04 F: 5.545 0.01* (c>a)
Methionine 25.04 +3.08 25.88 +3.82 30.63+5.78 F: 7.979 0.00* (c>a, b)
Tryptophan 51.97 +10.37 56.05 +9.43 63.72+11.62 F: 5.229 0.01% (c>a)
Isoleucine 72.58 £15.18 81.72+1491 102.77 £19.30 F: 14.165 0.00% (c>a, b)
Leucine 130.82 +£22.73 140.34 +£18.74 169.15 + 30.03 F: 11.665 0.00* (c>a, b)
Valine 274.00 +43.76 299.89 +38.85 352.38+73.17 F: 8.561 0.00* (c>a, b)
Phenylalanine 58.53+11.86 57.97 +6.75 68.12 + 14.76 )(2: 10.097 0.01* (c>b)
Histidine 81.69 £ 9.06 89.13 +12.14 93.95+ 11.56 F: 3.924 0.03* (c>a)
Threonine 129.69 +27.50 133.29 £27.99 140.47 +28.73 F: 0.615 0.55
Tyrosine 80.83 +12.05 87.11 +13.69 85.13+19.90 F: 0.545 0.58
Glutamine 528.14 +48.12 548.11 +70.82 575.48 +70.94 F: 1.885 0.16
Glycine 206.35 +45.48 203.94 +56.33 239.27 +£58.23 F: 2.573 0.09
Serine 114.73 £25.02 119.32+£19.98 119.11 £23.15 F: 0.170 0.84
Cysteine 24.77 £12.35 26.17 £6.05 28.19+£8.77 F: 0.634 0.53
Proline 159.63 £ 33.75 201.11+£54.18 262.30 £92.79 ){2: 15.320 0.00% (c>a, b)
Arginine 4597 +18.73 47.94 £16.52 54.68 +21.84 ;{2: 3.170 0.21
Citrulline 25.73+£7.46 24.56 £5.31 27.21+6.61 F: 1.041 0.36
Ornithine 82.80 + 14.50 102.86 +26.75 106.76 + 33.16 F: 2.641 0.08
Taurine 44.79 £ 15.80 43.66 +10.32 4521+14.13 )(2: 0.092 0.96
Alanine 371.49 +100.34 425.71+£83.93 501.30 + 118.44 F: 6.371 0.01* (c>a)
Asparagine 43.42+5.72 47.10 £ 8.63 52.96 +11.03 F: 4.247 0.02* (c>a)
Aspartic acid 524+1.15 6.09 £2.07 6.21 £ 1.67 F: 1.072 0.35
Glutamic acid 52.74 +13.69 46.78 +11.31 66.22+23.78 2% 10711 0.01* (¢>b)
B-Alanine 2.72+0.88 409+2.11 477 +2.55 3 7.421 0.02* (c>a)
OH-lysine 1.39+0.67 1.56 +0.81 1.15+0.59 F: 1.892 0.16
OH-proline 13.65 +2.48 1592 +£4.72 14.38 £ 6.06 27 2.996 0.22
1-Methyl-histidine 6.72 £ 5.66 3.70+£3.99 5.83+493 F: 1.985 0.15
3-Methyl-histidine 1.73+£0.57 1.64 £0.36 2.20+0.51 F: 9.213 0.00% (c>b)
Ethanolamine 8.22+1.26 8.56+1.23 10.05+ 1.77 F: 7.591 0.00* (c>a, b)
EAAS/NEAAs 0.61 +0.07 0.62 +0.06 0.62 £ 0.07 F: 0.135 0.87
0.44 +0.09 0.40 £0.12 0.39+0.11 F: 0.636 0.53

Glycine/valine 0.76 + 0.15 0.69 +0.20 0.70 +0.20 F: 0.484 0.62
BCAAs (umol/L) 477.40 £70.89 521.94 +66.21 624.30 +113.22 F: 12.245 0.00* (c>a, b)
VFA 1.33+0.75 1.58 +£0.82 2.68 +1.62 )(Z: 9.292 0.01* (c>a, b)
Glutamic acid/glutamine 0.10+0.03 0.09 £ 0.02 0.12+0.05 ;(2: 7.467 0.02* (c>b)

;(2, Kruskal-Wallis H-test; F, one-way ANOVA.

Data are given as mean * standard deviation (SD) in ymol/L.

*p <0.05.
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with high fasting insulin levels (>13.15 pIU/mL vs. <13.15 pIU/
mL) and high BCAA concentrations (>502.95 umol/L vs.
<502.95 umol/L). These findings support previous reports and
suggest that the glutamic acid/glutamine ratio is a valuable
marker for assessing early metabolic risk assessment in children
and adolescents.

We also found that 1-methyl-histidine and 3-methyl-histidine
levels were significantly higher in the obesity group than those in
the control group, consistent with the findings of Cosentino et al.
(19). These amino acid derivatives, which are often associated with
muscle protein turnover and dietary protein intake, could reflect
altered metabolic states in obesity. Moreover, glycine/BCAA,
glycine/valine, and glutamic acid/glutamine ratios were markedly
disrupted in the obesity group. These altered ratios could provide
additional insight into early metabolic dysregulation, particularly
in cases in which total BCAA levels do not strikingly differ. Their
use could enhance the early detection and risk stratification of
metabolic disorders in pediatric populations.

Although several recent studies supported the role of BCAAs
in obesity-related metabolic dysfunction and frequently reported
elevated BCAA children with
inconsistencies remain in the literature. Notably, two cross-

levels in obesity, some
sectional studies involving adolescents (22, 23) did not find
significantly higher BCAA concentrations in children with
These

discrepancies highlight the importance of examining a broader

obesity than in their normal-weight counterparts.
spectrum of metabolic markers. Beyond individual BCAA levels,
amino acid ratios and derivative indices could represent more
sensitive indicators of early metabolic dysregulation. Recognizing
this, our study included such metrics to detect meaningful
differences between children with obesity and between
metabolically distinct subgroups.

To this end, we used Amino-Check, an amino acid profiling and
evaluation software developed by Amino Acid Science Ltd. This tool
calculates several clinically relevant amino acid ratios and synthesizes
them into a cardiometabolic risk stratification framework. The
software integrates known amino acid biomarker patterns to
generate indices related to visceral adiposity, insulin resistance,
cardiovascular disease risk, type 2 diabetes susceptibility, and fatty
liver potential. This personalized profiling approach could enhance
early detection and facilitate more targeted preventive strategies in
at-risk pediatric populations.

Although total BCAA levels were significantly higher in the
obesity group than those in controls in our study, only 62.5% of
children in the obesity group were correctly classified using a
BCAA cutoff of 502.95umol/L. 19.5% of

participants without obesity exceeded the cutoff. These findings

Interestingly,

underscore the limitation of relying solely on BCAA levels for
distinguishing metabolic risk. To improve diagnostic precision,
we integrated additional biomarkers, including glycine, tyrosine,
alanine, 3-methyl-histidine, ornithine, valine, and the VFA index
(VFI), using the Amino-Check risk scales. This composite
model markedly improved obesity detection, increasing the
from 62.5% to 91.5%. Such
multivariate approaches could better capture the complexity of

correct classification rate

metabolic disturbances related to obesity.
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Regional fat distribution, particularly visceral adiposity, is a
well-established predictor of metabolic risk that surpasses BMI
and total fat mass in clinical relevance. Visceral fat contributes
to systemic inflammation and insulin resistance, increasing the
risk of type 2 diabetes mellitus and cardiovascular disease (24).
Furthermore, metabolomic signatures associated with visceral
fat, including elevated BCAA, AAA, alanine, glycine, proline,
glutamate, and tyrosine levels, have been linked to future type 2
diabetes and myocardial infarction, even among normal-weight
individuals and adolescents (12, 25). To the best of our
knowledge, this is the first study to evaluate the VFI in
adolescents, extending the work of Yamakado et al. (12) in
Japanese adults with obesity. In our study, the VFI was
significantly higher in the obesity group than in the control
group. This increase in visceral fat was paralleled by significantly
higher fasting insulin and BCAA levels, reflecting the expected
metabolic burden in pediatric obesity.

In this study, individuals with elevated BCAA levels exhibited
significantly higher insulin levels and a higher VFA index.
Similarly, the VFI and BCAA concentrations differed between
groups stratified by fasting insulin levels. These findings indicate
close associations of visceral fat accumulation with elevated
insulin and BCAA levels. However, considering the dynamic
hormonal changes during this developmental period, it is
important to account for the potential confounding effects of
puberty, as the surge in growth hormone and insulin-like growth
factor-1 levels during puberty increases insulin resistance (26).

Although we observed no differences between the preadolescent
and adolescent groups concerning BMI percentile, weight percentile,
and fasting insulin, fasting glucose, and HbAlc levels, the VFI was
significantly higher in the adolescent group, which likely reflects
the effect of puberty on the fat distribution. More importantly,
BCAA levels were significantly elevated in the adolescent
subgroup, whereas insulin levels remained unchanged. These
findings suggest that in pubertal children with obesity, elevated
BCAA levels may occur independently of insulin levels or insulin
resistance, and these changes are more directly correlated with
visceral fat accumulation. This finding highlights a potentially
unique metabolic signature in this age group and supports the
role of BCAA profiling as a sensitive marker for visceral adiposity,
particularly during adolescence.

Contrary to our findings, Zhang et al. (27) reported that
BCAA and AAA levels were positively associated with insulin
resistance during pubertal growth independent of adiposity.
However, all participants in their study had normal BMI, and
the methodology for assessing adiposity was not specified.
Moreover, no data regarding adiposity levels were presented,
which limits the interpretation of the independence claim. In
(28), no in BCAA
concentrations were observed between pubertal and prepubertal

another study significant  differences
lean children despite the increase in insulin resistance during
puberty. Similarly, another study of lean children found no link
between BCAA levels and the pubertal status (29). This suggests
that BCAA levels do not increase in lean adolescents despite
insulin resistance associated with puberty. These discrepancies

might be attributable to differences in the study populations.
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Unlike these studies, our research included children with obesity,
in whom BCAA accumulation and altered amino acid metabolism
might follow a different pathophysiological course, particularly in
individuals with increased visceral adiposity. This emphasizes the
need to consider the metabolic status when interpreting amino
acid-puberty relationships.

Although insulin resistance commonly emerges during
puberty (27), studies in healthy lean children revealed that this
does not necessarily lead to elevated BCAA levels. This suggests
that in cases in which BCAA concentrations increase during
puberty, such increases might occur independently of insulin
elevation, and they might represent early biomarkers of future
cardiometabolic risk. Supporting this, McCormack et al. (13)
children and

levels

in a cross-sectional cohort of
that circulating BCAA
significantly associated with obesity and potentially predictive of

demonstrated

adolescents elevated were
the future development of insulin resistance.

Plasma amino acid profiling could represent a valuable tool for
differentiating metabolically unhealthy obesity and metabolically
healthy obesity (MHO) in children. Although clear associations of
elevated BCAA and AAA levels with obesity were recorded in our
cohort, a notable subset of children with obesity (37.5%)
exhibited normal BCAA levels, and 21.4% had normal insulin
concentrations. These children also displayed lower levels of ALT
and lower visceral fat accumulation, supporting the presence of a
more metabolically favorable profile despite their elevated BMI
percentiles. These findings are consistent with the concept of
MHO, a phenotype characterized by preserved insulin sensitivity
and the absence of typical metabolic disturbances in the presence
of excess adiposity (30, 31). Although the MHO phenotype is well
documented in adults, with prevalence estimates ranging between
10% and 30%, its definition and long-term clinical implications in
children remain debated (32, 33). Our findings suggest that
plasma amino acid profiling, particularly BCAAs, could provide
early metabolic evidence of MHO in pediatric populations, which
could be critical for individualized risk stratification and
prevention strategies. Notably, no significant sex-based differences
in BCAA levels or insulin resistance indices were observed,
suggesting that sex is not a major determinant of the observed
metabolic variability. The heterogeneity observed among children
with obesity underscores the need for a more nuanced approach
beyond BMI alone that incorporates metabolic profiling to better
understand underlying risk and tailor interventions accordingly.

Beyond the evaluation of BCAA and AAA levels,

comprehensive analysis of the entire plasma amino acid profile,

a

including cardiometabolic risk assessment, enables a more nuanced
risk stratification in children with obesity. Software database
systems, such as Amino-Check, were developed using amino acid-
based algorithms that integrate individual amino acid levels and
their ratios to assess visceral obesity independently of general
obesity. In addition, these systems might provide risk stratification
tools for insulin resistance, cardiovascular disease, type 2 diabetes,
and MASLD. In line with our findings, Bugajska et al. investigated
early markers of cardiovascular disease and MASLD in overweight
children with obesity. Their study revealed that abnormal amino
acid profiles, together with elevated ALT and UA levels, were
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already present in prepubertal children, suggesting early metabolic
disturbances that could predispose them to metabolic syndrome,
MASLD, and increased cardiovascular risk (11). These findings
support the utility of plasma amino acid profiling as a predictive
and preventive metabolic screening tool.

In our study, ALT and UA levels were significantly elevated in
the obesity group. The obesity risk index clearly demonstrated that
insulin and fasting glucose levels, BCAA concentrations, and the
VFA index, all of which correspond to statistically significant
increases in cardiometabolic risks, were highest in children with
high obesity scores. Moreover, a higher obesity risk index was
of other
including visceral obesity,

consistently associated with greater severity

cardiometabolic risk indicators,
insulin resistance, type 2 diabetes, and coronary artery disease.

Although the levels of nutrients such as glucose, amino acids,
and lipids are interconnected, amino acids play a critical role in
obesity, as they reflect internal metabolic changes and the
influence of the intestinal microbiota, acting as key metabolic
modulators. Therefore, monitoring amino acids through
metabolomic analysis could be a useful method for predicting
metabolic disorders during childhood (7, 34).

One of the most important strengths of this study was its
comprehensive evaluation of plasma amino acid profiles and
their associations with metabolic risk indices in a pediatric
population. Using validated stratification tools, such as the
obesity risk index and VFA index, our study surpassed
traditional anthropometric and biochemical markers to provide
a metabolomic perspective on childhood obesity. In addition,
the

provided a better understanding of the effects of development

inclusion of preadolescent and adolescent subgroups
on amino acid metabolism. The use of high-sensitivity LC-MS/
MS methods for amino acid quantification further enhanced the
reliability and reproducibility of our biochemical data.

Despite these strengths, our study had several limitations. First,
the cross-sectional and retrospective design limited our ability to
identify the intercausal relationships between amino acid changes
and metabolic outcomes. Second, dietary intake and physical
activity, known factors regulating amino acid levels, were not
quantitatively assessed, potentially introducing confounding effects.
Third, although the sample size was sufficient for the main
analyses, it might not have been sufficient to detect subtle sex-
specific differences or interactions between biomarkers. Finally, the
study was conducted at a single tertiary healthcare center, which
might have limited the generalizability of the findings to a broader
To further
longitudinal and multicenter studies incorporating lifestyle data

pediatric  population. generalize our findings,

and pubertal stages according to the Tanner criteria are required.
In conclusion, the routine use of amino acid profiling in
children could help predict their future susceptibility to obesity,
assess whether existing obesity represents a metabolic risk, and
forecast insulin resistance and other cardiometabolic risks
regardless of BMI. The development of software systems that
use specific calculations for amino acids will provide
opportunities to use more detailed amino acid profiles, and their
integration with other metabolites will increase the predictive

power of these assessments.
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