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Objectives: This study aimed to determine the incidence and disease spectrum
of inherited metabolic diseases (IMDs) among newborns in Huai'an City, China.
Methods: Expanded newborn screening for IMDs using tandem mass
spectrometry (MS/MS) enables the simultaneous analysis of more than 40
metabolites and the identification of approximately 50 types of IMDs. Next-
generation sequencing (NGS), targeting hundreds of IMD-associated genes,
was subsequently performed for genetic analysis of patients identified
through screening. Between June 2018 and December 2024, in total, 161,966
newborns in Huai'an were screened using MS/MS. Ultimately, 57 patients
were diagnosed with IMDs based on plasma amino acid and acylcarnitine
profiling, urinary organic acid analysis, and molecular genetic testing,
performed via NGS. Data were analyzed using descriptive statistics.

Results: Fifty-seven cases of IMDs were diagnosed, corresponding to an overall
incidence rate of 1 in 2,842. Among these, 28 cases involved amino acid
metabolism disorders (1 in 5,785), 17 cases of organic acid metabolism
disorders (1 in 9,527), and 12 cases of fatty acid oxidation disorders (1 in
13,497). The three most common IMDs were phenylalanine hydroxylase
deficiency (1 in 8,098), primary carnitine deficiency (1 in 23,138), and
methylmalonic acidemia (1 in 32,393). Genetic testing revealed variants in all
57 patients, with 75 variants identified across 17 IMD-associated genes.
Recurrent variants were observed in five IMDs, including PAH gene variants
c.728G>A, c.611A>G, and c.721C>T for phenylketonuria, PAH c.158G>A,
c.721C>T, and «c¢.728G>A for mild hyperphenylalaninemia, SLC22A5
c.1400C>G for primary carnitine deficiency, MMACHC c.609G>A, c.567dup
and ¢.482G>A for methylmalonic acidemia, ACADS c¢.1055C>T, and
c.1130C>T for short-chain acyl-CoA dehydrogenase deficiency, and ACADSB
c.923G>A for 2-methylbutyrylglycinuria. All these recurrent variants were
reported as pathogenic or likely pathogenic, except PAH c.158G>A, which
was classified as a variant of uncertain significance.
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Conclusion: The majority of IMD patients in Huai'an carried pathogenic or
potentially pathogenic variants identified through expanded newborn screening.
Although MS/MS newborn screening followed by NGS confirmation cannot
prevent the occurrence of IMDs, timely diagnosis combined with appropriate
treatment and management can effectively prevent morbidity, reduce mortality,
and support long-term symptom control. Overall, this study demonstrates that
MS/MS-based newborn screening combined with molecular diagnosis was
highly effective for the study early detection and management of IMDs in the

Huai'an population.
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1 Introduction

Inherited metabolic diseases (IMDs) constitute a large group
of disorders in which a single gene defect results in a metabolic
block, leading to biochemical abnormalities that may manifest at
birth and/or later in life. IMDs are classified as single-gene
genetic diseases, most of which follow an autosomal recessive
pattern of inheritance. The majority of children with IMDs
present with non-specific clinical manifestations at birth and
may remain undiagnosed wunless neonatal screening is
conducted. Without prompt diagnosis and treatment, IMDs can
impair the function of multiple organs and systems, cause
progressive and irreversible damage to the nervous system, and
lead to developmental delay or even death. These outcomes
impose a considerable burden on affected families and society.
Early diagnosis and timely intervention for neonates identified
with IMDs through screening can prevent severe clinical
consequences, such as mild to severe irreversible intellectual
disability, lifelong disability, physical handicaps, coma, and early
death (1).

Newborn screening (NBS) for IMDs represents a highly
successful public-health initiative aimed at detecting life-
threatening or long-term health conditions to reduce morbidity
and mortality (2). Tandem mass spectrometry (MS/MS) serves
as a cornerstone technology in NBS programs, enabling the
rapid detection of numerous metabolites in dried blood spots
(DBSs). The simultaneous quantification of amino acids and
acylcarnitines allows identification of approximately 40-50 IMDs
within a few days after birth (3). Expanded NBS using MS/MS
has been widely adopted worldwide due to its advantages,
including rapid and convenient analysis, significantly increased
detection rates of IMDs (4), early diagnosis, prevention of
premature death, and cost-effectiveness (5, 6).

With the advent of target capture and next-generation
sequencing (NGS), it has become possible to sequence large
panels of disease-related genes simultaneously, making NGS the
preferred approach for identifying the genetic etiology in
newborns with abnormal MS/MS screening results for IMDs.
Since 2018, Huai’an City in China has implemented newborn

screening for IMDs using tandem mass spectrometry, achieving
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a screening rate exceeding 98%. This study aimed to determine
the incidence, disease spectrum, and gene spectrum of IMDs
among newborns in Huai’an City, China.

2 Materials and methods

2.1 Subjects

In total, 210,395 newborns were born in Huai’an between
June 2018 and December 2024. Informed and written consent
was obtained from the parents of 161,966 newborns, who were
subsequently enrolled in the MS/MS-based NBS program. In
total, 48,429 parents declined participation in the MS/MS NBS.
Ultimately, 57 patients were diagnosed with IMDs through
NGS. The screening protocol used in this study was consistent
with that used by other newborn screening centers in China
(Figure 1). The protocol was reviewed and approved by the
Ethics Committee of Huai’an Maternal and Child Health
Care Hospital, affiliated with Yangzhou University (Review
No. 2022077).

2.2 Expanded newborn screening

Heel-prick blood samples were collected from the newborns,
and 11 amino acids, 30 acylcarnitines, free carnitine, and
succinylacetone were analyzed as biomarkers for 27 IMDs using
a non-derivatized MS/MS method at the Huai’an Newborn
Disease Screening Center. Samples were collected at between
48 h and 20 days after birth (median: 4 days). Screening assays
were performed using a commercial kit (PerkinElmer, USA) and
a Waters HPLC-MS/MS system (TQD, Waters, USA). For each
patient, a 3.2-mm DBS punch was taken using a Puncher 9
automatic drilling instrument (PerkinElmer, Finland) and placed
in a 96-well U-bottom plate. Then, 100 ul of extraction solution
containing internal standards was added to each well. After
incubation at 45°C for 45min, 90 ul of the extract was
transferred to a V-bottom plate and left at room temperature
for 2 h. Subsequently, 25 pl of the extract was injected into the
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Newborns screened via MS/MS between June
2018 and December 2024 (N=161966)

Il

Newborns with a second DBS positive result

(N=480)

{

Newborns sent to diagnostic testing

(N=467)

§

Newborns with one of the targeted IEMs
(N=57)

FIGURE 1
Flowchart of expanded newborn screening for IMDs and diagnosis
of patients

MS/MS instrument for metabolite analysis. Three levels of internal
quality control—blank, low, and high were included in each batch
to ensure analytical reliability.

2.3 Positive results for IMDs

The screening panel encompassed 27 types of IMDs. Each
IMD was defined by two or more diagnostic indicators,
including metabolites and metabolite ratios, with specific cut-off
values. DBS results that met the positive criteria for IMDs were
classified as suspected positive cases.

2.4 Genetic analysis

2.4.1 DNA extraction

In total, 5 ml of peripheral whole blood was collected from
each subject in EDTA-containing anticoagulant tubes. Genomic
DNA was extracted from 2ml of peripheral blood using a
Qiagen Blood DNA Mini Kit (Qiagen®, Hilden, Germany).
DNA concentration was measured, and the extracted samples
were stored at —20 °C. The remaining whole blood samples were
stored at —80 °C for future use.
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2.4.2 High throughput sequencing

High-throughput sequencing was conducted for all patients
clinically diagnosed with IMDs using an expanded IMD gene panel
(Genuine Diagnostic, Hangzhou, China) that included 346 genes
related to IMDs. Target regions were captured using multiple probe
hybridization, and the resulting capture products were purified
with Agencourt AMPure XP beads (Beckman Coulter). The
purified DNA was processed using a TruePrep’™ DNA Library
Prep Kit V2 for Illumina (Vazyme) and indexed with a
TruePrep™ Index Kit V2 for Illumina (Vazyme). Library quality
was assessed using a Qubit fluorometer and an Agilent 2100
bioanalyzer (High Sensitivity DNA Kit, Agilent Technologies).
Sequencing libraries were quantified using an Illumina DNA
Standards and Prime Premix Kit (Kapa Biosystems) and then
subjected to massively parallel sequencing on the DNBSEQ-T7
platform. Paired-end reads were quality-trimmed using the
Trimmomaticprogram and aligned to the human reference genome
(UCSC Genome). Single-nucleotide polymorphisms and insertions/
deletions were identified using the SAMtoolsprogram.

2.4.3 Sanger sequencing

All variants identified through high-throughput sequencing
were confirmed by Sanger sequencing using specific primers.
Polymerase chain reaction (PCR) amplification was performed
using aTaKaRa LA PCR™ Kit ver. 2.1 (TaKaRa). PCR products
were purified from agarose gels using aNucleoSpin® Gel and
PCR Clean-up Kit (MACHEREY-NAGEL). Purified PCR
products were diluted to a final concentration of 10 ng/pl and
subjected to sequencing PCR using aBigDye® Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems). Each reaction well
received 10 ul of Hi-Di™ Formamide (Applied Biosystems).
The samples were denatured at 95°C for 5 min, cooled, and
transferred to 96-well plates. Sequencing was performed using
an ABI 3500XL Genetic Analyzer (Applied Biosystems).

2.5 Statistical analysis

Statistical analyses were conducted using SPSS software
version 26.0 (IBM Corp., Armonk, NY, USA). Descriptive
statistics were applied for count data.

3 Results
3.1 Screening of IMDs with MS/MS

In total, 161,966 newborns were screened using the expanded
NBS program in Huai’an (Figure 1). Following the initial
screening and subsequent repeat testing, 480 newborns with a
second positive result were classified as “suspected positive”. Of
these, 467 underwent NGS diagnostic testing, while the
remaining 13 did not proceed with NGS. The biochemical
indicators in these 13 newborns were only mildly abnormal, and
their parents declined further genetic testing. During follow-up,
the previously abnormal biochemical indicators in these cases
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returned to normal. Ultimately, 57 patients were diagnosed with
IMDs based on MS/MS testing, urinary organic acid analysis,
and molecular genetic testing using NGS.

3.2 Distribution of disease spectrum in
children with IMDs

In total, 57 cases of IMDs were confirmed, corresponding to
an overall incidence rate of 1 in 2,842 live births. Among these,
28 cases were amino acid metabolism disorders (1 in 5,785), 17
were organic acid metabolism disorders (1 in 9,527), and 12
were fatty acid oxidation disorders (1 in 13,497). The three most
common IMDs by incidence were phenylalanine hydroxylase
deficiency (1 in 8,098), primary carnitine deficiency (PCD; 1 in
23,138), and methylmalonic acidemia (MMA; 1 in 32,393)
(Table 1, Figures 2A-D).

3.3 Results of MS/MS in 57 children with
IMDs

The results from the primary MS/MS screening and secondary
recall testing in 57 children with IMDs revealed characteristic
abnormalities in disease-related indices. The corresponding
metabolite ratios and indicative values are presented in Table 2.

3.4 Variants in IMD patients identified by
expanded newborn screening

Genetic analysis identified pathogenic or likely pathogenic
variants in all 57 patients diagnosed with IMDs. In total, 75

TABLE 1 Disease spectrum of 57 children with IMDs in 161,966 newborns.

Disease name

Number of confirmed

10.3389/fped.2025.1629840

variants were detected across 17 IMD-associated genes. Several
recurrent variants were observed among 5 IMD types, including
PAH gene variants c.728G>A, c.611A>G, and ¢.721C>T in
phenylketonuria; PAH gene variants ¢.158G>A, ¢.721C>T, and
c.728G>A in mild hyperphenylalaninemia; SLC22A5 gene
variant ¢.1400C>Gin PCD; MMACHC gene variants c.609G>A,
¢.567dup, and c.482G>A in MMA; ACADS gene variants
c1055C>T  and  ¢1130C>Tin  short-chain  acyl-CoA
dehydrogenase deficiency (SCADD); and ACADSB gene variant
¢.923G>A in 2-methylbutyryl-CoA dehydrogenase deficiency
(SBCADD). All of these recurrent variants have previously been
reported as pathogenic or likely pathogenic, except for the
PAH gene variant c.158G>A, which remains of uncertain
significance (Table 3).

4 Discussion

There are many types of IMDs, and the total number of
identified disorders is estimated to exceed several thousand.
Although the incidence of any single IMD is generally low,
ranging from several per 10,000 to several per 100,000 live
births, the cumulative incidence of all IMDs is considerably
higher. Since the early 1990s, MS/MS has been widely
implemented in neonatal screening programs for IMDs due to
its relatively low cost, high sensitivity (99%), and high specificity
(>99.8%) (7). The majority of IMDs detected through MS/MS
are disorders of organic acid, amino acid, or fatty acid
metabolism. Reported IMD types and their incidences vary
substantially among countries and regions, reflecting differences
in screening panels, population genetics, and healthcare systems.

Morbidity Constituent ratio Constituent ratio

cases (%) (%)

Amino acid metabolic disease 28 1:5,785 49.12%

Phenylalanine hydroxylase deficiency 20 1:8,089 71.43%
Hypermethioninemia 3 1:53,989 10.72%
Homocysteinemia 1 1:161,966 3.57%
Citrullinemia type 1 2 1:80,983 7.14%
Citrin deficiency 1 1:161,966 3.57%
Maple syrupurine disease 1 1:161,966 3.57%
Organic acid metabolic disease 17 1:9,527 29.83%

Methylmalonic acidemia 5 1:32,393 29.42%
Isobutyrylglycine uria 3 1:53,989 17.65%
Glutaric acidemia type I 2 1:80,983 11.76%
2-Methylbutyl coenzyme A dehydrogenase deficiency 3 1:53,989 17.65%
Propionic acidemia 1 1:161,966 5.88%
3-methylcrotonyl-CoA carboxylase deficiency 1 1:161,966 5.88%
Beta-ketolytic enzyme deficiency 2 1:80,983 11.76%
Fatty acid metabolic disease 12 1:13,497 21.05%

primary carnitine deficiency 7 1: 23,138 58.34%
Short-chain acyl-coenzyme A dehydrogenase 3 1:53,989 25.00%
deficiency

Medium chain acyl-coenzyme A dehydrogenase 1 1:161,966 8.33%
deficiency

Trifunctional protein deficiency 1 1:161,966 8.33%
Frontiers in Pediatrics 04 frontiersin.org
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Inherited metabolic disease

B Amino acid metabolic disease
=1 Organic acid metabolic disease
=3 Fatty acid metabolic disease
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Organic acid metabolic disease
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FIGURE 2

(D) Distributions of fatty acid metabolic disease.

(A) Distributions of inherited metabolic disease. (B) Distributions of amino acid metabolic disease. (C) Distributions of organic acid metabolic disease.

Amino acid metabolic disease

Phenylalanine hydroxylase deficiency
Hypermethioninemia

Citrullinemia type I
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Fatty acid metabolic disease

primary carnitine deficiency

Short-chain acyl A dehyd defici
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Trifunctionalprotein deficiency

58.34%

As summarized in Table 4, expanded newborn screening
programs worldwide demonstrate diverse detection rates. For
example, approximately 40 types of IMDs are screened in Italy,
with an incidence of about 1 in 6,041 (4). In Spain, 13 IMDs
are screened with an incidence of approximately 1 in 2,577 (8).
Germany, Japan, and Korea screen for 24, 18, and 24 IMDs,
respectively, with corresponding incidences of 1/2,200, 1/8,557,
and 1/13,205 (9). In China, 38 IMDs are screened by MS/MS
across multiple neonatal screening centers, with an overall
incidence of about 1 in 1,410 (10). In the present study, in total
161,966 newborns were screened in Huai’an, and 57 IMD cases
were confirmed by NGS, corresponding to an incidence of 1/
2,842. The three most common IMDs were phenylalanine
hydroxylase deficiency (1/8,098), PCD (1/23,138), and MMA (1/
32,393), consistent with previously reported data from other
regions of China (10). All 57 affected children exhibited
biochemical abnormalities of varying degrees that were
successfully detected by MS/MS, confirming its reliability and
critical role in early IMD screening and diagnosis.

Hyperphenylalaninemia is the most prevalent amino acid
metabolism disorder, resulting from a deficiency of either
phenylalanine ~ hydroxylase =~ (PAH) or its  cofactor,
tetrahydrobiopterin (BH4). The deficiency leads to elevated
phenylalanine concentrations in the blood, which can cause
neurotoxicity and irreversible brain damage if left untreated. To
date, more than 800 PAH gene variants have been identified in
patients with PAH deficiency (11), with several recurrent
variants reported in distinct populations. The most frequent
variants include ¢.168+5G>C in Western (12),
IVS10-11G>A in Iranians (13, 14) and Spaniards (15),
¢.1238G>C in Japanese (16), ¢.1162G>A in Brazilians (17),
¢.728G>A in Chinese (11, 18, 19), c¢.1068C>A and c.728G>A in

Iranians
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South Koreans (20), c¢.1222C>T and
¢.782G>A in Syrians (22).

In the Huai’an cohort, all 20 patients diagnosed with PAH
deficiency harbored variants in the PAH gene. The detected
variant included ¢.728G>A, c.611A>G, ¢.721C>T, c¢.598dup,
c.1068C>A, ¢.331C>T, ¢.509+1G>A, ¢.1045T>G, ¢.699C>G,
c.1301C>A,  c.194T>C, c.158G>A, c.929C>T, c.301G>A,
c1256A>G, c460T>C, ¢.827T>A, and c.1031G>A. Consistent
with findings from other Chinese populations, the most frequent
variant in this study was ¢.728G>A, accounting for 22.5% of
alleles, followed by ¢.721C>T (17.5%) and c.611A>G (12.5%).

PCD was the second most common IMD detected in this

in Australians (21),

study. PCD is caused by defects in the carnitine transporter
protein encoded by the SLC22A5 gene, leading to impaired fatty
acid B-oxidation within cells. The reported incidence of PCD in
China varies regionally, ranging from 1/26,777 to 1/8,938 (18,
23, 24), while the incidence in Huai’an was 1/23,138. More than
110 SLC22A5variants have been identified to date, with distinct
recurrent variants observed across different ethnic groups (25).
For example, ¢.844T>C is common among Caucasian patients
(26-28), while ¢.1400C>Gis the predominant hotspot variant in
Southeast Asian populations (29-31). In Chinese populations,
recurrent variants are relatively consistent across regions. The
c.1400C>G variant is the most frequent, with a relative
frequency of 50%, accounting for 80% of PCD cases in Suzhou
(22). Chen et al. reported c.760C>T (32.9%) and c.1400C>G
(21.1%) as the most common variants (32). Similarly, in the
Huai’an cohort, ¢.1400C>G was the predominant SLC22A5
variant, with a relative frequency of 64.29%, aligning with
findings from most other studies.

MMA was identified as the third most prevalent IMD and the
most common organic acid metabolic disorder among the Huai’an
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TABLE 2 Results of MS/MS in children with IMDs (umol/L).

Disease name

MS/MS

characteristic

Reference

value

Readouts in primary
screening [X(min-

10.3389/fped.2025.1629840

Readout in secondary
screening and reviewing

anomaly index

max)]

[X(min-max)]

Phenylalanine hydroxylase 20 PHE 25.00-90.00 518.78 (109.06-1870.4) 838.91 (112.57-2695.8)
deficiency PHE/TYR 0.20-1.56 9.07 (1.42-39.74) 11.24 (1.17-40.99)
Hypermethioninemia 3 MET 7.50-40.00 59.38 (32.58-81.88) 108.92 (37.76-239.36)
MET/ PHE 0.15-0.77 1.29 (1.02-1.81) 3.24 (1.19-7.25)
Homocysteinemia 1 MET 7.50-40 4.65 5.18
MET/PHE 0.15-0.77 0.13 0.19
Citrullinemia type 1 2 CIT 6.20-30.00 112.48 (88.81-136.15) 138.74 (105.95-171.53)
CIT/PHE 0.10-0.72 2.18 (1.62-2.73) 2.75 (2.08-3.41)
Citrin deficiency 1 CIT 6.20-30.00 216.38 60.76
CIT/PHE 0.10-0.72 1.25 1.72
Maple syrupurine disease 1 LEU+ILE+PRO-OH 88.00-276.00 1976.58 2935.24
Leu+ILE+PRO-OH/PHE 1.61-5.54 52.35 90.60
VAL 65.00-233.00 566.21 328.17
VAL/PHE 1.31-4.63 15.00 10.13
Methylmalonic acidemia 5 C3 0.40-3.90 8.98 (4.16-15.41) 6.46 (2.86-13.04)
C3/C2 0.04-0.24 0.62 (0.32-1.08) 0.82 (0.39-1.15)
C3/Co 0.02-0.18 0.40 (0.23-0.78) 0.35 (0.14-0.74)
Isobutyrylglycine uria 3 C4 0.10-0.48 1.28 (1.15-1.52) 1.82 (1.42-2.14)
C4/C3 0.05-0.40 1.85 (1.58-2.21) 2.04 (1.47-2.75)
C4/C8 1.21-10.67 26.83 (19.5-38.00) 44,17 (31.67-53.50)
Glutaric acidemia type I 2 C5DC+C60H 0.04-0.20 2.47 (2.31-2.62) 1.38 (0.98-1.78)
C5DC+C60OH/C8 0.60-4.50 55.90 (46.20-65.60) 69.00 (49.00-89.00)
C5DC+C60H/C4DC+C50H 0.18-1.10 9.86 (9.24-10.28) 6.10 (4.46-7.74)
2-Methylbutyl coenzyme 3 C5 0.04-0.27 0.48 (0.44-0.51) 0.83 (0.72-0.94)
A dehydrogenase deficiency C5/C3 0.02-0.32 0.34 (0.16-0.44) 1.19 (0.78-1.45)
Propioninemia® 1 C3 0.40-3.90 14.39 /
C3/C2 0.04-0.24 1.31 /
C3/Co 0.02-0.18 1.24 /
3-methylcrotonyl-CoA 1 C4DC+C50H 0.08-0.48 9.43 10.24
carboxylase deficiency C4DC+C50H/CO 0.00-0.03 2.97 4.15
C4DC+C50H/C8 0.90-13.00 471.50 1024.00
Beta-ketolytic enzyme deficiency 2 C4DC+C50H 0.08-0.48 1.30 (1.10-1.49) 1.18 (1.02-1.34)
C3DC+C40H 0.02-0.32 0.84 (0.66-1.02) 0.31 (0.25-0.37)
C5:1 0.00-0.02 0.37 (0.36-0.38) 0.29 (0.24-0.34)
Primary carnitine deficiency 7 Co 9.00-49.00 6.66 (3.58-8.91) 5.24 (1.66-7.41)
Short chain acyl-coenzyme 3 C4 0.10-0.48 1.33 (0.80-2.13) 1.25 (1.10-1.52)
A dehydrogenase deficiency C4/C2 0.00-0.05 0.10 (0.06-0.15) 0.16 (0.13-0.20)
C4/C3 0.05-0.40 1.00 (0.75-1.14) 1.49 (1.39-1.59)
Medium chain acyl-coenzyme 1 C8 0.01-0.15 0.45 0.33
A dehydrogenase deficiency C8/C2 0.00-0.01 0.04 0.04
C8/C10 0.40-1.50 3.00 4.13
Trifunctionalprotein deficiency 1 C12 0.01-0.22 0.05 0.46
Cl4 0.03-0.36 0.07 0.55
C14-OH 0-0.03 0.03 0.13
Cl6 0.33-5.54 0.40 1.33
Cl16-OH 0-0.04 0.10 0.22
C18 0.13-1.47 0.38 0.46
C18-OH 0-0.03 0.10 0.54

All ratios have no units.

*No data from secondary screening is available as propioninemia is a fatal disease and all subjects died before secondary screening.

population. MMA can be classified according to the specific defect =~ morbidity. Currently, isolated MMA is attributed to variants in
five genes—MMADHC, MUT, MCEE, MMAA, and MMAB.

Among Chinese populations, MUT gene variants are the most

into two categories: cobalamin (cbl) metabolic defects and
methylmalonyl-CoA mutase deficiency (MUT type). It is a
disorder

genetically and  phenotypically  heterogeneous

characterized by diverse clinical manifestations and significant

frequently observed pathogenic type, with more than 400 related
variant sites cataloged in ClinVar. The cbIC type of MMA is

Frontiers in Pediatrics 06 frontiersin.org



10.3389/fped.2025.1629840

Qu et al.

(panuguoD)
%00°0T 1 %00°0T d1 - [op TuoX? 1
%0007 1 %0001 d 81y zurnd D<VY082 1
%00°0T 1 %00°01 d »Loozdird V<0665 I
%00°0% 4 %00°0T d uo19181y°d V<DI87 4
%00°0% 4 %00°0T d1 €111 SPAL06 1211 d dnp/9g> 4
%00°0¥ (4 %00°0€ d Brgozdiyd V<5609 € (0072£7) 2dk
S 01 (1€8°609) DOHOVININ D[P ‘BUNUNSA>OWOY PUE BLINPIOE JTUO[RWAYIN
%6T 1 1 %¥1°L d na7L19yg d D<OISD 1
%6T 1 1 %YT'L d BLys8ry-d 1<D09L I
%6TFH1 I %YL d ILLeTT84Dd V<DBEED 1
%6T T 1 %YT'L d1 - I<VT-867 I
%6T 1 1 %YT'L d uH69181y°d V<5905 1
%IL'SS 9 %6CF9 d s&D/9p195d D<D00FT 6
L ¥I (£££°€09) SVTTOTS (0v1°C1T) Aousryap suniured Areuriq
%IT'TI I %95°S d1 dsypredind V<DIE01? 1
%IT'TI 1 %95°S d nLIT8yd 1<01€€D I
%IT'TI 1 %95°S d1 s&19LTINd V<LLT8D 1
%IT'TI 1 %95°S d SIHPSTIA1 d D<109% I
%ITTL I %95°S d s&op0zIf L d DVI19? 1
%IT'TI I %95°S d Sryerpurn-d D<Y9STID 1
%IT'TI 1 %95°S d1 usy1o1dsy-d Y<DI10£2 1
%IT'TT 1 %95°S d aydoreresd 1<06T67 I
%TTTT 4 %IT'TI d upoepedryd V<D87LD 4
%TTTT 4 %TTTT d s&01y8ryd L1<OTTLD i2
%Y Ty ¥ %TTTT SNA stHesS1yd Y<D8GT id
6 81 (6V€°T19) HVd (009°197) erwautueeduaydiadAy ppN
%60°6 1 %SSF d 1y159ard D<Ii61 1
%60°6 1 %SSH d Tspepervd V<OI0€12 1
%60°6 1 %8S d na7eezayq-d D<D669° 1
%60°6 1 %S5 d ey6heiagd D<ISHOT 1
%60°6 1 %S5 d - V<DI+605 I
%60°6 1 %SS d BpLIT181y"d 1<OT1g€D I
%60°6 1 %SSH d 1195¢1L1 d V<089012 I
%60°6 1 %SSY d 913 sjusy00zayLd dnpges> 1
%LT'LT € %H9'€T d s&D1¥¢81yd 1<OTeL €
%LT'LT € %8181 d s&opozidLd DLYI192 4
%SSVS 9 %T8'1€ d upHepzdryd V<D8TLD L
11 44 (6¥€C19) HVd (009°797) BLMUORPNAUIY]

(%) syuaned jueLeA Jaquinu (lequinu

Joj bununodoy sased) | %4y | olusboyied pioe oulwy JUBLIBA SPIIOSINN | S]] UoneIN|y WIWO) ausn (laquinu WIWO) Suonipuod

‘Buluda1ds ulogmau papuedxs Aq paynuapl sl Yum syuaned /g ul suoneiny ¢ 379v.L

frontiersin.org

07

Frontiers in Pediatrics



10.3389/fped.2025.1629840

Qu et al.

(panunuo))
%00°0S 1 %00°ST SNA noseurnd D<D69012 1
%0005 I %00°5T d1 s&nL0g81vd 1<06167 1
%00°0S 1 %00°ST d1 1PN697EAd V<D5082 1
%00°0S 1 %00°ST d 15.11415°d V<D6VED 1
T i4 (0£¥°€09) 1SSV (00£°517) 1 2d4) erwaunNID
%00°0S 1 %00°ST SNA s&T11CUDd V<O1£92 1
%00°0S 1 %00°ST d 18g/gusy d OLVHTIT? 1
%00°0S I %00°ST d1 157641°d V<DSLTD 1
%00°05 1 %00°ST sn - D<DE-TTD I
4 i2 (608°209) TLVOV (0s£°€07)4ouamoyap swkzus onA[o1eN-eag
%EE'EE 1 %00°ST d1 upoeyzdryd V<D97LD 1
%EE'EE 1 %00°ST d1 eA6sTeY'd 1<09LLD 1
%EE'EE 1 %00°ST d1 aydeseard L<VPSLO 1
%EE'EE I %00°ST d skD66z31y d 1<05682 1
€ ¥ (055°019) VILVIN (058°057) erwautuoryowIadAH
%00°0S 1 %00°ST d upozopdryd Y<DG0TI 1
%00°0S 1 %00°ST d1 - D<IL66117 1
%0005 1 %00°ST d1 nOeHTAID d 1<069L7 I
%00°05 1 %00°ST sn naTp9goid-d L1<D1601° 1
4 4 (108°809) HADD (0£9°1€7) T 2d4 “ermpedTIRINID
%EE'EE 1 %L9°91 SNA nOFSIAD d V<1992 1
%EE'EE 1 %L9°91 d1 1PN6ITEAd V<DE§9 1
%EEEE 1 %L9°91 d1 skDegradrd D<VY8Y8D I
%EE'EE 1 %L9°91 d1 TRISMO 1641 d PPTLITD 1
%EE'EE 1 %EE'EE d1 1£1.80¢s4D°d V<DET6D 4
€ 9 (10€°009) 4SAVOV (900°019) eLmMuUDABIAIANQIAPIN-C
%EE'EE 1 %L9°91 d nayggoid-d L<OV9T I
%EE'EE 1 %L9°9T sn eAb6TeYd 1<01882 I
%EE'EE 1 %EE'EE d1 na7zLg014°d L<D0ETT? 4
%L9°99 4 %EE'EE d1 leAzseeryd 1<DS501° 4 (0L7°102)
13 9 (88909) SAVOV Aoudrdyap dseuddoIpAyap eoD-[4oe ureyd-110ys
%EE'EE 1 %L9°91 sn - D<DE-8957 1
%EE'EE 1 %L9°9T sn upHe3ryd V<D9£THD 1
%EE'EE 1 %L9°91 sn yrosreryd V<5978 1
%EE'EE 1 %L9°91 d 1959641°d V<0987 1
%EE'EE 1 %L9°91 sn - PPOOVETIVET £92TTTvET S I
%EE°EE I %L9°91 d1 skoyeedry-d 1<D0001° 1
€ 9 (€££909) 8AVOV (£87°119) Aouspyap aseuaforpAysp eod [A14inqosy

(%) syusned
10j bunnunoosdoy

sased

%4y | dlusboyied

jueliea
pi1oe oulwy

juelieA 3plIO3DNN

Jaquinu
sa)9))e uoneny

(4eqwinu
WIWO) susn

(d9qwinu WIWO) Suonipuod

panunuo) ¢ 3749v.L

frontiersin.org

08

Frontiers in Pediatrics



Qu et al.

TABLE 3 Continued

Cases Accounting for

Pathogenic RF%

=
c
©
=
©
>
[J]
e
=1
(o]
kD
3]
)
P4

Mutation alleles

Gene (OMIM

Conditions (OMIM number)

Aminc_) acid

patients (%)

number)

SR N SR EES X R SR
[=an=} =3 =2} o2 (=3 =23 ==}
Q<2 < Q<2 << < Q|2 2|2
[=R=1 [=3 oo oo (=3 [=aR=3 =R}
oo S o O oo (= oo oSO
== = == == = == ==
— g QT JEEPY QU I DY (U QI [ O —
gl |8 (glg ggl | g g8
S| 2 =4 S| 2 S| 2 S S| 2 S |2
S|3 3 S|3 S|3 3 3|3 S|3
S|o =3 S|o S| S S| S|o
N S N n | N S n | N n|n
=71 A0 %2 -V ny
Al A = =D Al A =) =ai) ~ 3
— — <+
; 3 % i
— ®
AR 2 &= = B 2 5% S
<% Ey 23 R <} g < O
S| N a8 ISR} I5a) 2 o N
0| o = Q == <+ < | ® ~
| w0 < e Y [~ N 3/ Q =
&l a g |RlB (2|2 & Bz 2
<= 4 g2 8<| |8 2T <
al e a RN 2 a a, S| a a
= = =
a. 2 9
o) (=R} © <
<9 Q R o B < << N~
AR A T | = A A A QA
Q| Il [N < O (&} w0 =10
2% 2 =19 2R 2 ilg + S
| 2 Q 0 |
Sl 2 dg 28 ] g8 &8
G| R 51 | e g J AIS] N J
Sl SIS (9] o
N~ NN AN~ —~ N = AN AN NN~ =~
e —~
2 @ = = 3T = =)
0 o} o 5 — =3 0
he3 3 3 e} =3 < <
o o~ -t < o~ [N Py
) =] & N S 2 <
~ ) - @ ° N o)
- L s 8 N2
— -4 N = /M
< 2R ) O 7 =
A £ |8 g g |3 2
Q @) -9 Q <
=3 = 2 = =z T
N
9 oy
N 5
Z g
@ oy <
R = 13}
° () o S
=) ks) 3} S
Q e=} 7] A
) < s =3
A\ g g S
s = g |2 <
e} @ = =1 B
el Q
) £ - = 5 =
- o = (3]
- Q 5 = 2 Q ‘S
=) o g 3 El = &
= 3
o E ] S S g <
wy ] <
3 E |5 e § |2 g
= 5 2 2 = & 8
L o
oy 2 s g = © g,
= ES S 5 S £
o 9] = = =4 —
2 3 o S ) =
s) = 2 = = =1
B= g = S LS AP =
Y 9] I g ) S 5
< = @ = _:,_,E.n |5}
S =] =]
(=} b3 2 = o N |2
£ o 2. S8 = £
= g: < o Elv—'tvo =
o T = ~ w Q=g =

Frontiers in Pediatrics

10.3389/fped.2025.1629840

concurrent
MMA are
approximately 1/50,000 in Japan (33) and 1/250,000 in Germany

the most common form associated with

homocysteinemia. ~ Reported  incidences of
(34). However, in mainland China, the incidence ranges from 1/
3,920 to 1/26,000 (18, 35). The incidence of MMA in Huai’an,
approximately 1/32,393, is evidently higher than that in Japan
and Germany but lower than in Shandong, Henan, Beijing,
Shanghai, and Suzhou.

In this study, five patients were diagnosed with MMA, and
all were classified as the cblC type. These patients carried six
MMACHC gene variants: c.609G>A, c.567dup, c.482G>A,
c.599G>A, c.80A>G, and an exon 1 deletion. These variants
accounted for 28.6% of the total detected genetic sites, a
distribution consistent with findings from most Chinese
studies (36-38). All children diagnosed with MMA in the
present cohort exclusively exhibited the combined type, and
no variants in other related genes were identified. Given the
limited sample size, the precision of variant frequency
representation in the affected population may be
constrained. Nevertheless, the identification of recurrent
MMACHC gene variants—c.609G>A, c¢.567dup, and
c.482G>A—highlights their importance as potential hotspots
for subsequent MMA gene screening, prenatal diagnosis, and
genetic counseling.

SCADD is an autosomal recessive disorder of fatty acid
oxidation caused by defects in the ACADS gene, leading to
the accumulation of butyrylcarnitine (C4) and ethylmalonic
acid in urine. The ACADS gene is located on chromosome
12q24.31, spans approximately 13 kb, contains 10 exons, and
encodes a 412-amino-acid enzyme. In this study, three cases
of SCADD were identified with ACADS gene variants at four
c.1055C>T, ¢.881C>T, ¢.1130C>T, and c.164C>T.
c.1055C>T and c.1130C>T exhibited the
highest variant frequencies, each accounting for 33.33% of the
detected sites. According to the American College of Medical
Genetics and Genomics (ACMG) variant classification
standards, c.881C>T (p.Ala294Val) was deemed clinically
insignificant. Variants ¢.511C>T and ¢.625G>A are prevalent

sites:
Among these,

in Euramerican and Jewish populations (39), whereas
c.1031A>G, c.164C>T, and ¢.323G>A have been reported in
Japan (40). Long-term follow-up studies of SCADD cases
detected through newborn screening have shown most
patients remain asymptomatic, underlying a rationale that
SCADD should not be routinely screened in newborns (41,
42). SCADD has been labeled a “biochemical phenotype”
rather than a clinically significant monogenic disorder (43).
This remains a controversial issue regarding the clinical
significance of SCADD and whether it should be included in
newborn screening panels.

Isobutyryl-CoA dehydrogenase deficiency (IBDD) is a rare
autosomal recessive metabolic disorder that results from defects
in the ACAD8gene, which encodes an enzyme responsible for
the catabolism of the essential amino acid valine. Disruption of
leads to the
isobutyrylglycine, which is excreted in urine and detectable

this metabolic pathway accumulation  of

through organic acid analysis. Accordingly, the condition is
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TABLE 4 Comparison of expanded newborn screening detection incidences of inherited metabolic diseases per country.

‘ Publication year Types of IMDs | Sample size (n) | Incidence rates of IMDs

Messina M, et al. (4) 2018 Italy®
Cambra Conejero A, et al. (8) 2020 Spam
Shibata N, et al. (9) 2018 Germany®
Shibata N, et al. (9) 2018 IapanCl
Shibata N, et al. (9) 2018 Korea®
Tang C, et al. (10) 2024 China’

“Data from Italy are from 2011 to 2017.

Data from Spain are from 2011 to 2019.

“Data from Germany are from 2002 to 2015.

9Data from Japan are from 1997 to 2015.

“Data from Korea are from 2000 to 2015.

‘Data from China are from February 2021 to December 2021.

often referred to as isobutyrylglycinuria. The ACAD8gene is

located on chromosome 11q25, comprises 11 exons, and
encodes a member of the acyl-CoA dehydrogenase family. In
this study, three cases of isobutyrylglycinuria were diagnosed, all
associated with ACADS8 gene variants. Five variants—
¢.1000C>T, ¢.286G>A, ¢.526G>A, ¢.236G>A, and ¢.568-3C>G—
as well as one structural variant (g.UNK1134123466 deletion)
were identified. Based on ACMG classification criteria,
c.526G>A, c.236G>A, and c¢.568-3C>G were categorized as
variants of uncertain clinical significance. Reports from both
Chinese and international studies imply that most IBDD
patients are asymptomatic, making it difficult to establish clear
genotype-phenotype correlations.

(HHCY) is
multifactorial and can be categorized into congenital and

The etiology of hyperhomocysteinemia

acquired causes. Congenital factors primarily involve genetic

variants in key enzymes such as thioether-B-synthase,

methionine  synthase reductase, —methylenetetrahydrofolate
reductase (MTHFR), and methionine synthase. These genetic
defects lead to deficiencies in required for
homocysteine  (HCY) HCY

accumulation and subsequent development of HHCY. In the

cofactors
metabolism, resulting in
present study, one case of homocysteinemia was identified, in
which a homozygous variant of the MTHFR gene (c.1316T>C)
was detected. This case was initially identified through MS/MS
screening, which revealed methionine levels below the diagnostic
threshold, and was subsequently confirmed through molecular
diagnosis using NGS. These findings indicate that HHCY can be
detected by MS/MS-based newborn screening, acknowledging
that screening for low methionine without screening for
elevated HCY wouldn’t effectively screen for all genetic
etiologies of HHCY.

type I (CTLN1), also
argininosuccinate synthase (ASS) deficiency, is caused by

Citrullinemia referred to as
pathogenic variants in the ASSlgene, a key enzyme in the urea
cycle. The disorder is characterized by hyperammonemia and
elevated citrulline levels and follows an autosomal recessive
ASS1
chromosome 9q34.11, spans approximately 56 kb, comprises 16

inheritance pattern (44). The gene is located on

exons, and encodes a 4l12-amino-acid protein. Reported

common variants include ¢.1085G>T and c.970G>A in Turkish

Frontiers in Pediatrics

60,408 1/6,041
13 592,822 1/2,577
24 7,510,000 1/2,200
18 3,360,000 1/8,557
24 3,440,000 1/13,205
38 29,601 1/1,410

patients, and c.1088G>A in German patients (45, 46). In East
Asian populations, ¢.421-2A>G is the most frequently observed
variant, whereas ¢.970G>A predominates in Korean patients (47,
48). Additionally, ¢.794G>A is the most common variant
reported among Japanese CTLNI patients (49). In the present
of CTLN1 were diagnosed,
heterozygous ASS1 gene variants were detected:
¢.805G>A, ¢.919C>T, and c.1069C>G.

Maple syrup urine disease (MSUD) is an autosomal recessive

and four
C.349G>A,

study, two cases

disorder affecting the catabolism of branched-chain amino acids.
The condition derives its name from the characteristic sweet,
“maple syrup-like” odor of the urine. MSUD results from a
defect in the
dehydrogenase complex. The primary pathogenic genes
implicated in this disorder include BCKDHA (34%), BCKDHB
(29%), DLD, and DBT. In this study, we identified an MSUD
case in which two heterozygous variants of the BCKDHB gene
were detected: ¢.93_103dup and ¢.673_675del. According to the
ACMG variant €.673_675del
(p.Leu226del) variant is classified as having uncertain clinical

functional branched-chain  a-keto  acid

classification guidelines, the

significance, warranting further functional validation. It shows
how NGS as a standalone first tier screen would be insufficient
as VUS clinical correlation is only feasible because of the MS/
MS NBS result.

3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD) is
an autosomal recessive inborn error of leucine metabolism that
exhibits considerable phenotypic variability. Most affected
individuals remain asymptomatic unless secondary systemic
carnitine deficiency develops. However, severe cases may present
with  leukodystrophy,
metabolic acidosis,

developmental delay, hypoglycemia,
failure to thrive, lactic acidosis, and
hyperammonemia (50). Deficiency of 3-MCCC, caused by
pathogenic variants in either MCCCl or MCCC2, leads to
elevated levels of 3-hydroxyisovalerylcarnitine in the blood. The
enzyme comprises a and B subunits encoded by the MCCCl
and MCCC2 genes, respectively. Previous studies have shown
that MCCC2variants are more frequently reported worldwide,
MCCClvariants  are

populations  (51).

whereas predominant in  Chinese
In the present study, one patient with
3-MCCD was diagnosed, carrying a homozygous MCCC2 gene

variant (c.728G>A).
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5 Conclusions

This study reports, for the first time, the results of newborn
screening for IMDs and their epidemiological characteristics in
Huai’an over the past 7 years. Among 161,966 newborns
screened using MS/MS, 57 children were diagnosed with 17
different types of IMDs, yielding an overall incidence rate of 1
in 2,842. The three most prevalent disorders were phenylalanine
hydroxylase deficiency, PCD, and MMA, findings that were
consistent with the reported incidence patterns of these diseases
in other regions of China.

Of the total 77 genetic variants identified, 49.35% (38/77) were
classified as pathogenic, 32.47% (25/77) as likely pathogenic, and
18.18% (14/77) as variants of uncertain clinical significance, the
latter requiring further functional validation. Several recurrent
variants were identified across 10 IMDs, including PAH gene
(c.728G>A, c.611A>G, c.721C>T)
phenylketonuria; PAH gene variants (c.158G>A, ¢.721C>T, and
c.728G>A) for mild hyperphenylalaninemia; SLC22A5gene
variant (c.1400C>G) for PCD; MMACHC gene variants
(c.609G>A, c.567dup, and c.482G>A) for MMA; ACADS gene
variants (c.1055C>T and ¢.1130C>T) for SCADD; and ACADSB
gene variant (c.923G>A) for SBCADD. All these recurrent
variants have been previously reported as pathogenic or likely

variants and for

pathogenic, except for the PAH gene variant c.158G>A.

In conclusion, the majority of the IMD patients identified
through expanded newborn screening in Huai’an carried
pathogenic or potentially pathogenic variants. These findings
underscore the clinical value of combining MS/MS-based
screening with NGS for the accurate diagnosis and genetic
confirmation of IMDs in newborns.
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