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Background: Timely identification of pediatric sepsis remains a critical
challenge in emergency and intensive care settings due to the heterogeneous
clinical presentations across age groups. Existing scoring systems often lack
temporal resolution and interpretability. We aimed to develop a real-time,
machine learning—based prediction framework integrating static and dynamic
electronic health record (EHR) features to support early sepsis detection.
Methods: This retrospective study included pediatric patients from Guangzhou
Women and Children’'s Medical Center (GWCMC; n=1,697) and an external
validation cohort from the MIMIC-IIl database (n = 827). Irregular time-series
data were imputed using a correlation-enhanced continuous time-window
histogram with multivariate Gaussian processes (CTWH + MGP). We
compared the predictive performance of XGBoost and gated recurrent unit
(GRU)-based RNN models over a 12-h window prior to clinical diagnosis.
Model outputs were validated internally and externally using AUROC, AUPRC,
and Youden index, with SHAP-based interpretability applied to identify key
clinical features.

Results: The CTWH + MGP-XGBoost model achieved the highest AUROC at
diagnosis time (T=0h; AUROC =0.915), while the GRU-based model
demonstrated superior temporal stability across early windows. Top
contributing features included lactate, white blood cell count, pH, and
vasopressor use. External validation confirmed generalizability (MIMIC-III
AUROC = 0.905). Simulation of real-time alerts showed a median lead time of
6.2 h before clinical diagnosis, with x=0.82 agreement against physician-
confirmed cases.

Conclusions: Our results suggest that a dual-model ensemble combining
interpolation-based preprocessing and interpretable machine learning
enables robust early sepsis detection in pediatric populations. The system
supports integration into EHR platforms for real-time clinical alerts and may
inform prospective trials and quality improvement initiatives.

KEYWORDS

pediatric sepsis, early warning, machine learning, XGBoost, recurrent neural network,
SHAP, electronic health records

01 frontiersin.org


http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2025.1610187&domain=pdf&date_stamp=2020-03-12
mailto:doctorsunxin@hotmail.com
mailto:gzdrma@163.com
mailto:annie_129@126.com
https://doi.org/10.3389/fped.2025.1610187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2025.1610187/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1610187/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1610187/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1610187/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2025.1610187

Shi et al.

1 Background

Sepsis remains one of the leading causes of morbidity and
mortality in children worldwide, accounting for an estimated
25%-40% of pediatric intensive care unit (PICU) admissions and
nearly 8% of in-hospital mortality globally (1, 2). Despite
advances in antimicrobial therapy and critical care monitoring,
early diagnosis of pediatric sepsis remains a persistent challenge
due to the heterogeneity of clinical presentations, age-related
physiological variability, and the non-specific nature of early
warning signs (3-5). Current sepsis screening tools such as SIRS,
qSOFA, and PELOD-2 often fail to achieve sufficient sensitivity or
lead time in real-world pediatric emergency settings (6-8).

Artificial intelligence and machine learning techniques offer new
opportunities to augment early sepsis detection by leveraging high-
dimensional electronic health record (EHR) data in real time
(9-11). Prior models have demonstrated promising results in adult
cohorts using long short-term memory (LSTM), gradient boosting,
and attention-based architectures (12, 13). However, limited work
has translated these findings into pediatric populations, where data
sparsity, missingness, and developmental variability pose unique
modeling challenges (14, 15). Hemodynamic support in pediatric
septic shock remains challenging, with current practice guided by
the American College of Critical Care Medicine’s parameters (3).

To address these issues, we developed a real-time prediction
correlation-

(CTWH)
interpolation with multivariate Gaussian processes (MGP) (13,

framework for pediatric sepsis integrating a

enhanced continuous time-window histogram
14), combined with an ensemble of gradient boosting (XGBoost)
and recurrent neural network (RNN) models (12, 16). The
framework was trained and validated using two large pediatric
datasets, including an internal cohort from a high-volume
tertiary pediatric emergency department in China and an
external validation cohort from the MIMIC-III database (17).

In this study, we aimed to assess the framework’s predictive
performance across various time windows preceding sepsis
onset, evaluate feature interpretability using SHAP values, and
simulate real-time deployment scenarios to explore clinical
feasibility. We hypothesized that this interpolation-guided, dual-
model ensemble would enhance early risk stratification and offer
timely alerts suitable for integration into existing EHR systems.

2 Methods

Figure 1 outlines the full data preprocessing and modeling
workflow, aligned with the structural segmentation of this study

Abbreviations

AUROC, the area under the receiver operating characteristic; Cr, creatinine;
CTWH, correlation-based time window hybrid; ED, emergency department;
EHR, electronic health record; GCS, glucocorticoids; ICU, intensive care unit;
MGP, multivariable Gaussian process; ML, machine learning; MIMIC,
medical information mart for intensive care; LR, logistic regression; PH,
pondus hydrogenii; PICU, pediatric intensive care unit; RNN, recurrent
neural network; SHAP, SHapley additive exPlanations; tRNN, time-
distributed recurrent neural network; XGBoost, extreme gradient boosting;
WBC, white blood cell.
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FIGURE 1

Overall workflow from dataset selection to model deployment.
Outlines the full data preprocessing and modeling workflow,
aligned with the structural segmentation of this study. Each
module corresponds to a section in the Methods. Core indicators
such as sample sizes, feature selection count, model performance
(AUROC), and interpretability tools (SHAP) are embedded.

(Sections 2.1-2.5). Overall workflow from dataset selection to
model deployment. Each module corresponds to a section in the
Methods. Core indicators such as sample sizes, feature selection
count, model performance (AUROC), and interpretability tools
(SHAP) are embedded.

2.1 Dataset description

This retrospective study included two pediatric cohorts. The
internal cohort comprised 1,697 patients under 18 years of age
admitted to Guangzhou Women and Children’s Medical Center
(GWCMC) from February 2016 to July 2018. Pediatric sepsis
was identified based on modified Sepsis-III criteria (18), with
adjustments for age and clinical presentation. The Sepsis-3
definition robust framework for

consensus provided a
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identifying sepsis and septic shock, which we adapted for pediatric
use in this study (19). Electronic health record (EHR) data were
extracted, encompassing vital signs, laboratory results,
medications, and nursing assessments within the 12-h window
preceding a sepsis diagnosis. Cases with incomplete records,
neonates, or acute upper respiratory infections were excluded.
The external validation cohort was derived from the
MIMIC-III  database, of 827 pediatric ICU

encounters fulfilling Sepsis-III criteria (17). Variable definitions

consisting

and coding structures were harmonized across cohorts to

10.3389/fped.2025.1610187

ensure consistency. Figure 2 illustrate variable frequency and
inter-variable correlations, respectively.

2.2 Data preprocessing

Variables with >20% missingness were excluded from model
development. As summarized in Table 1 (Additional File 1), a
total of 28 variables were retained, including core vital signs
(HR, RR, SpO,, T), key laboratory biomarkers (WBC, creatinine,

[ Study Population ]

Pediatric patients <18y from Guangzhou Women and Children’s Medical Center
Collected throughout the pediatric ED to PICU continuum
Primary cohort: n = 3780 (2016-2018)

| Exclusion |
[ Exclude URTI and neonates — Final modeling cohort: n = 1697 ]

v
| External Validation |
[ MIMIC-III dataset ’

Screened: n = 4135 (Sepsis-III criteria) Confirmed pediatric sepsis: n = 827

!
| Featrue Selection |

[ Exclude indicators with >20% missingness — Retain 28 clinical indicators ]

v
[ Model Input |
[ Selected features + time-series interpolation (MGP, MGP+PCC) }

v
| Model Development |
[ ML algorithms: XGBoost and RNN ]

v
| Model Validation |

Prediction performance from 0—12h before sepsis onset
Metrics: AUROC, Accuracy, Sensitivity, Specificity

v
| Model Interpretation |
[ SHAP analysis to identify key predictors (e.g., lactate, pH, WBC, HR, RR) J

v
[ Clinical Evaluation ]

[ Comparison with ICU outcomes ]

Early alert simulation, mortality impact assessment

FIGURE 2

Inclusion and exclusion criteria for the Guangzhou women and Children’s medical center dataset. This flowchart outlines the selection process for
the internal pediatric cohort. A total of 3,780 children aged <18 years who visited the emergency department or were admitted to the PICU between
February 2016 and July 2018 were initially screened. After excluding cases with neonatal status, acute upper respiratory tract infections, and
incomplete electronic health record data, 1,697 patients with confirmed infection or sepsis-related diagnoses were included for model
development and validation. The final cohort included both septic and non-septic patients, defined according to the pediatric adaptation of
Sepsis-Il criteria, with retrospective verification by senior pediatric intensivists.
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TABLE 1 Size and number of interpolated windows (Guangzhou women and children’s hospital dataset).

lngex T HR___R___BSD___AC___GCS_ SOz MV ___BG_|
4 4 22 20 19 14 20 12

Window size 5

Number of windows 1 1 1 2
Index CRP PO2 INR WBC
Window size 3 5 24 26
Number of windows 1 2 1 4
Index PH AMON ALP

Window size 10.3 15 21 15
Number of windows 2 1 1 1
Index HCT AST SBP DBP
Window size 4 27 9 10
Number of windows 3 2 3 1

1 17 1 1 1
PT PLT TB LAC Cr
24 28 22 14 32

1 2 2 2 2
CA Mg DBIL FIB HGB
15 27 22 24 3

3 1 2 1 3

MAP HCO3 LAC PCO2 FIB
10 20 20 22 75
1 2 1 3 2

This table presents the optimized interpolation window sizes (in hours) and corresponding number of windows across selected clinical variables in the Guangzhou Women and Children’s
Medical Center dataset. These parameters guided the correlation-assisted time-series imputation strategy. Window size is measured in hours. Variables with >20% missingness were excluded.
The window number indicates how many historical segments were used for correlation referencing.

lactate, pH), therapeutic indicators (antibiotics, glucocorticoids,
vasopressors), and fluid balance measures. Sixteen variables (e.g.,
bilirubin, troponin, IL-6, PaCO,) exceeded the 20% missingness
threshold (25%-50%) and were therefore excluded. This
structured selection ensured that retained features were both
clinically relevant and statistically reliable.

We first analyzed the temporal distribution of dynamic clinical
variables to understand sampling irregularity across patients. As
shown in Figure 3, time intervals for key laboratory and
physiological variables such as creatinine (Cr), glucocorticoids
(GCS), and pH were highly heterogeneous, ranging from a few
individuals. This motivated the
adoption of a histogram-based strategy for imputation window

hours to over 96h across

selection. To determine the optimal number of reference windows
(N), we analyzed the temporal correlation structure of key
physiological variables. As illustrated in Figure 4, variables with
strong autocorrelation supported extended interpolation windows.

To address missingness, we implemented a dual-step
imputation method combining correlation-weighted continuous
time windowed histogram (CTWH) estimation with multivariate
Gaussian processes (MGP). This approach preserved intra- and
inter-variable patterns.

To further illustrate the irregularity of temporal sampling
across different clinical variables, we plotted the hourly
measurement frequencies of 24 representative features
(Additional File 2). Vital signs such as HR and SBP were
densely sampled, while laboratory indicators including lactate
and creatinine showed sparse and heterogeneous recording
patterns.  This
correlation-enhanced CTWH + MGP interpolation to robustly

observation further justified our wuse of

impute time series across variable horizons.

2.3 Model architecture and training

Model development consisted of two stages. In the first stage, a
gated recurrent unit (GRU)-based recurrent neural network
(RNN) was trained to encode dynamic time-series features. The
RNN included two GRU layers (64 hidden units each),
optimized using Adam with early stopping.
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In the second stage, an XGBoost classifier was trained on
either the raw interpolated features or the RNN-derived
embeddings. Hyperparameters were selected via 5-fold cross-
validation, with early stopping at 10 rounds. A total of 13
independent models were trained, each corresponding to a
specific hour (T=0 to T=12) before diagnosis. Figures 5, 6
display performance comparisons and statistical evaluations.

The hybrid modeling architecture is further illustrated in
Additional File 3, where temporal embeddings extracted by the
RNN are combined with static features before being passed into
the XGBoost classifier. SHAP analysis was then applied to
quantify feature contributions.

2.4 Evaluation metrics and experimental
design

Performance metrics included AUROC, AUPRC, sensitivity,
specificity, Brier score, and Youden’s index. The XGBoost model
achieved its highest AUROC (0.915) at T =0 h, while the RNN
demonstrated stability at earlier horizons, peaking at 0.902 at
T =8 h. Results are detailed in Table 2.

Model explainability was assessed via SHAP (Shapley additive
explanations) (20). Top-ranked predictors included lactate, pH,
white blood cell count, fluid balance, and vasopressor usage
(Figure 7). External validation on the MIMIC-III dataset yielded
comparable performance trends (Figure 8). While Figure 7
highlights the top contributors to model output as determined
by SHAP values, a comprehensive statistical comparison of all
candidates features between sepsis and non-sepsis groups is
provided in Additional File 4. Extended embedding-level feature
contributions and temporal heatmaps are further detailed in
Additional File 5.

2.5 Model deployment

The final system was configured as a real-time clinical decision
support tool. Prediction scores were stratified into three alert tiers:
low (0.5< score <0.6), medium (0.6< score <0.8), and high (>0.8).
Each alert level was linked to specific clinical response protocols.

frontiersin.org
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FIGURE 3
Representative examples of frequency distribution of different clinical variables over time in patients from the Guangzhou women and Children’s
medical center. (a—c) Represent the time interval distributions of three variables, i.e., creatinine (Cr), glucocorticoids (GCS), and Pondus
Hydrogenii (PH), of three patients, respectively, where the vertical axis represents the time interval in hours. The darker point represents the P1
quantile (70% quantile) corresponding to this variable. (d) Represents the P1 quantile distribution of the three variables, corresponding to all
the patients.

Retrospective validation demonstrated strong agreement
between predicted sepsis
diagnoses (Cohen’s x = 0.82). Notably, in high-risk cases, alerts

alerts and physician-confirmed
preceded treatment initiation by up to 10.41h, indicating
meaningful potential for anticipatory intervention (21).

To
describing the complete pipeline, including data preprocessing,
feature engineering, model training, validation, and SHAP-based
interpretability (Additional File 6).

facilitate reproducibility, we provide pseudocode

3 Results

3.1 Study population

A total of 1,697 pediatric patients were included in the internal
cohort from Guangzhou Women and Children’s Medical Center
(GWCMC), among whom 444 met the Sepsis-III diagnostic
criteria during hospitalization, accounting for 262% of the
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cohort. The median age was 1.88 years [interquartile range (IQR),
0.3-4.82], and the proportion of male patients was significantly
higher in the sepsis group than in the non-sepsis group
(P=0.035, * test). Baseline demographic and clinical features of
the internal cohort are summarized in Table 3. The external
validation cohort comprised 827 pediatric ICU patients extracted
from the MIMIC-III database, screened using pediatric-adjusted
Sepsis-III criteria and confirmed independently by two pediatric
intensivists. Static and dynamic variables were harmonized across
both datasets. Beyond the sepsis-confirmed validation cohort
(n=827), the MIMIC-IIT ICU dataset
(n=3,308) exhibited a wide spectrum of discharge diagnoses,
including pneumonia (n=797), fever (n=479), hypotension
(n=326), and sepsis (n=66). The full distribution of diagnoses is
provided in Additional File 7, highlighting the heterogeneity of
the external dataset and supporting the generalizability of our

broader pediatric

model. The distribution of available laboratory and physiological
indicators within 72h is summarized in Additional File 8,
highlighting the heterogeneity and sparsity of EHR data inputs.

frontiersin.org
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FIGURE 4

Correlation performance of different variables obtained from the Guangzhou women and Children’s medical center dataset across different time
windows. This figure illustrates the temporal autocorrelation for three representative clinical variables—serum creatinine (Cr), pH, and Glasgow
Coma Scale (GCS)—using scatter plots between reference window TO and successive windows (T1, T2, T3..). (@) pH shows weak correlation
beyond one window (r<0.6), allowing only short-range interpolation (~20.6 h). (b) Cr retains moderate correlation across three windows,
supporting interpolation up to 96 h. (c) GCS shows intermediate range stability with a correlation-informed interpolation span of 40 h.
A correlation coefficient (r)> 0.6 is considered indicative of strong temporal continuity, justifying inclusion in the interpolation window. These
plots guided the parameterization of the CTWH strategy for different variables. Observed ranges were: pH 7.10-7.55, creatinine 8.84-
309.4 umol/L, and Glasgow Coma Scale 3-15.

AUROC over Time for Different Models and Datasets
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FIGURE 5

Temporal AUROC performance in external validation (MIMIC-III cohort). This figure illustrates the predictive performance of different machine
learning models (XGBoost and RNN) applied to the MIMIC-III external validation cohort. The horizontal axis indicates time before sepsis onset (in
hours), while the vertical axis represents the area under the receiver operating characteristic curve (AUROC). The RNN model showed greater
stability at longer horizons (T = =12 to —4 h), while XGBoost achieved higher AUROC at shorter intervals, peaking at T=0 h.
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FIGURE 6
Temporal AUROC performance and confidence intervals for sepsis prediction models. This figure illustrates the area under the receiver operating
characteristic curve (AUROC) of the XGBoost and recurrent neural network (RNN) models across hourly prediction windows (T =-12h to 0 h)
relative to sepsis onset. Both models were trained using features interpolated via the CTWH + MGP method. The XGBoost model showed peak
performance at T=0h (AUROC = 0.915), whereas the RNN model demonstrated more stable long-term predictive ability. Shaded regions
represent 95% confidence intervals derived from 1,000 bootstrap replicates.

TABLE 2 AUROC performance of different methods using different datasets.

AUROC at 4 h AUROC at 6 h AUROC at 8 h AUROC at 12 h
(mean + SD/ (mean + SD/ (mean + SD/ (mean + SD/
95% Cl) 95% Cl) 95% Cl) 95% Cl)
Guangzhou Women | XGB + MGP + correlation | 0.769 +0.012 (0.745-0.793) | 0.769 + 0.012 (0.745-0.793) | 0.769 + 0.012 (0.745-0.793) | 0.769 + 0.012 (0.745-0.793)
and Children’s Medical | XGB + MGP 0.721 £0.013 (0.695-0.747) | 0.686 % 0.012 (0.662-0.710) | 0.600 + 0.014 (0.572-0.628) | 0.542 +0.015 (0.512-0.572)
Center RNN + MGP + correlation | 0.790 +0.011 (0.768-0.812) | 0.771 +0.010 (0.751-0.791) | 0.765 % 0.009 (0.747-0.783) | 0.676 + 0.012 (0.652-0.700)
MIMIC-III XGB + MGP + correlation | 0.857 +0.010 (0.837-0.877) | 0.830 £ 0.009 (0.812-0.848) | 0.796 +0.010 (0.776-0.816) | 0.728 + 0.011 (0.706-0.750)
XGB + MGP 0.798 +0.012 (0.774-0.822) | 0.759 +0.011 (0.737-0.781) | 0.724 +0.010 (0.704-0.744) | 0.671 0.012 (0.647-0.695)
RNN + MGP + correlation | 0.858 % 0.009 (0.840-0.876) | 0.852 + 0.010 (0.832-0.872) | 0.847 +0.009 (0.829-0.865) | 0.824 + 0.008 (0.808-0.840)
COX + Mean 0.840 +0.011 (0.818-0.862) | 0.820 +0.010 (0.800-0.840) | 0.820 + 0.009 (0.802-0.838) | 0.790 % 0.010 (0.770-0.810)

3.2 Performance of interpolation strategies

We first compared the performance of different data imputation
strategies. The combination of continuous time-window histogram
(CTWH) and multivariate Gaussian process (MGP) yielded the
highest accuracy in imputing sparse variables and led to improved
downstream model performance. Notably, in early prediction
windows (>6h before diagnosis), CTWH +MGP significantly
outperformed single-method interpolations. At T=0h, the
CTWH + MGP-based model achieved an AUROC of 0.915, which
was  significantly  higher than the baseline method
(AUROC =0.882; P <0.01). The superiority of the CTWH + MGP

Frontiers in Pediatrics

strategy over baseline interpolation methods was confirmed via
significant improvements in downstream model performance, as
illustrated in Figure 8. Detailed evaluation metrics of the MGP-
based model across prediction horizons are presented in Table 4.

In addition to accuracy, computational efficiency was
evaluated across interpolation methods (Additional File 9).
CTWH + MGP achieved comparable AUROC to MGP alone
(0.829 vs. 0.832, p>0.05), while reducing average input
two-thirds by
approximately 68%. This balance of accuracy and efficiency
further supports the feasibility of CTWH + MGP for real-time
clinical deployment.

dimensionality by and training time
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Top 10 predictors of pediatric sepsis identified by SHAP analysis in the RNN + MGP + correlation model. This figure displays the top 10 most influential
clinical variables contributing to sepsis risk predictions, as ranked by mean absolute SHAP (Shapley Additive Explanations) values. The analysis was
based on the recurrent neural network (RNN) model combined with multivariate Gaussian process (MGP) and correlation-enhanced interpolation.
Lactate, pH, white blood cell (WBC) count, heart rate, respiratory rate, creatinine (Cr), mean arterial pressure (MAP), body temperature, fluid balance,
and vasopressor administration were the most important features. Higher SHAP values reflect greater influence on model output. Red bars represent
positive contributions to predicted risk, while blue bars indicate negative associations.

0.15 0.20 0.25

3.3 Temporal dynamics of predictive
performance

We assessed the hour-by-hour performance of both models
over a 12-h forecasting window prior to sepsis diagnosis (T =-
12h to T=0h). The XGBoost classifier, trained on features
interpolated using the CTWH + MGP method, achieved its peak
discriminative performance at T=0h, with an AUROC of
0.915, sensitivity of 0.88, and specificity of 0.84. In contrast, the
RNN model showed slightly lower AUROC values in short-term
prediction windows but demonstrated more stable performance
at longer horizons, maintaining AUROC values above 0.80
beyond T =-10 h.

Figure 9 presents the AUROC trajectories and corresponding
95% Dbootstrapped confidence intervals across time points,
highlighting the trade-off between short-term accuracy and
long-term robustness. Additionally, comparative analysis of
model architectures and interpolation strategies further supports
the generalizability of the RNN+ CTWH + MGP combination
across both internal and external datasets. Summary statistics for
AUROC, AUPRC, sensitivity, specificity, accuracy, and Youden’s

Frontiers in Pediatrics

Index at each time point are detailed in Table 5. Extended
evaluation metrics for the XGBoost model across all prediction
windows (0-12 h) are provided in Additional File 10, and the
RNN metrics are available in the
these detailed
confirm the temporal dynamics of model performance, with

corresponding  full
Supplementary Materials. Together, results
extended summary comparisons available in Additional File 7.

As illustrated in Additional File 11, although all models
achieved comparable AUROC near the time of diagnosis (T =0-
2h), the RNN+PCC+MGP model maintained significantly
higher predictive stability across longer horizons (>6h). In
contrast, XGBoost-based models demonstrated a steep decline in
AUROC, highlighting the advantage of temporal modeling for
long-range prediction.

To further evaluate temporal model architectures, we
compared RNN with more advanced recurrent variants (LSTM
and GRU). As shown in Additional File 12 and visualized in
Additional File 13, all three achieved nearly identical AUROC
values across prediction horizons, with only marginal
improvements (<0.01 AUROC) for LSTM and GRU compared
with RNN. Given the negligible performance difference, the
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Performance evaluation of interpolation methods and model architectures for pediatric sepsis prediction. (@) AUROC comparison of MGP vs.
MGP + Correlation interpolation using the XGBoost model across prediction horizons (T = 0—12 h). The correlation-assisted approach consistently
outperformed MGP alone, particularly at earlier time points, highlighting the benefit of correlation-aware smoothing. (a) Temporal AUROC
trajectories of XGBoost and RNN models using CTWH + MGP interpolation. XGBoost achieved AUROC values ranging from 0.558 to 0.915,
exceeding 0.70 within 7 h prior to diagnosis and peaking at 0.915 at T=0h. RNN maintained AUROC >0.74 up to 11 h prior to diagnosis,
reaching 0.890 at T =0 h. Comparative sensitivity, specificity, and Youden Index values at T=0h were 0.88/0.84 (Youden = 0.72) for XGBoost
and 0.86/0.82 (Youden = 0.68) for RNN. CTWH, correlation time window hybridization; MGP, multivariable Gaussian process; AUROC, area under
the receiver operating characteristic curve.

simpler RNN was

computational efficiency.
To further evaluate generalizability, we stratified model

adopted for the main analysis due to its  cohorts (Additional File 14). In the internal cohort, younger

patients (<1 year) consistently showed the highest AUROC
values (0.93 at T=0h, remaining >0.79 at T=12h), whereas

performance by age groups in both internal and external older children (>12 vyears) demonstrated relatively lower
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TABLE 3 Baseline characteristics of patients in the internal cohort.

Characteristic | Sepsis group

(n

Sex - no. (%) 288 (64.9) male/156 | 812 (64.8) male/441 0.96*
(35.1) female (35.2) female

Age - median (IQR), 1.78 (0.82-4.92) 1.85 (0.79-5.10) 0.74°

years

Weight — mean + SD, 11.55 +3.38 11.62 + 3.45 0.68°

kg

P-values for sex were calculated using the y” test.
PP_values for age and weight were calculated using the Mann-Whitney U-test.

discrimination. External validation with MIMIC-III revealed more
heterogeneous patterns across age strata, with peak AUROC
values observed in the 7-12 year group (0.875 at T =0 h; 0.860
at T =6 h). Importantly, differences in AUROC between internal
(<0.05 across all
horizons), supporting the robustness and transportability of the

and external datasets remained modest

proposed framework across age subgroups.

3.4 Feature importance analysis

Feature contribution was assessed using SHAP (Shapley
additive explanations). Across the 12-h prediction window,
lactate, pH, white blood cell count (WBC), fluid balance, and
vasopressor administration consistently emerged as the most
influential predictors of impending sepsis. In longer horizons,
dynamic physiological indicators such as respiratory rate and
cumulative fluid intake gained relative importance. Notably, all
top predictors identified by SHAP analysis (Figure 7) originated
from the retained 28 features, reinforcing the validity of our
variable selection strategy (see Additional File 1). Beyond overall
ranking, we further examined the temporal dynamics of feature
contributions to better capture evolving clinical signals.

As illustrated in Additional File 15, feature contributions
demonstrated marked variation across time windows. Lactate
peaked as the dominant predictor at T =-4 h (SHAP =0.84) and
remained highly influential at T=-2h and T =0h, while heart
rate importance increased sharply closer to diagnosis (T=-2h

10.3389/fped.2025.1610187

and T=0h). In contrast, systolic blood pressure (SBP) and
WBC showed moderate but fluctuating contributions, and
respiratory rate and temperature remained relatively minor
predictors. These temporal patterns highlight lactate and heart
rate as the most reliable early-warning biomarkers in the hours
preceding sepsis onset.

In addition, the relative contribution of features varied across
prediction horizons. As summarized in Additional File 16, short-
term predictions (0-2h before onset) were more strongly
influenced by therapeutic interventions (e.g., glucocorticoid use)
and acute biomarkers (e.g., lactate, creatinine), whereas long-
term horizons (2-12 h) were dominated by sustained metabolic
indicators such as lactate and creatinine. Together, these
findings underscore the dynamic and multi-faceted nature of
sepsis progression, where both acute hemodynamic changes and
longer-term  metabolic  disturbances contribute to  the
discriminative ability of the model.

To further clarify the interpretability pipeline, we provide an
additional schematic (Additional File 17), illustrating how
temporal embeddings from the RNN were combined with static
features for XGBoost classification, followed by SHAP/LIME
analysis to produce clinically actionable insights. Moreover,
embedding-level contributions are detailed in Additional File 5,
where the top 15 latent temporal embeddings are ranked by
SHAP importance, and a temporal heatmap illustrates how
clinical variables (e.g., lactate, creatinine, heart rate) dynamically
vary in predictive weight across the 12-h forecasting horizon.
These results underscore the complementary role of latent
the

discriminative power of the hybrid RNN-XGBoost framework.

embeddings and raw clinical features in shaping

3.5 External validation

In the MIMIC-III external validation cohort, the XGBoost
model retained strong performance, achieving an AUROC of
0.905 at T=0h, while the RNN model exhibited stable
prediction (AUROC=0.88 at T=8h). These findings were
consistent with internal results. Figure 8 compares the temporal
evolution of AUROC and AUPRC across both cohorts.

TABLE 4 MGP model evaluation based on XGBoot (Guangzhou women and children’s hospital dataset).

Forecast ahead of time

Youden index

Sensitivity

Specificity

10h
11h 0.556 0.560 0.568 0.597 0.165
12h 0.542 0.567 0.461 0.680 0.141
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XGBoost with correlation-assisted interpolation;

XGB+MGP
Three different methods

AUROC trends across time windows for multiple sepsis prediction models. This figure displays the changes in area under the receiver operating
characteristic curve (AUROC) across different prediction time windows (ranging from 4 to 12 h prior to sepsis onset) for various models and
interpolation methods. Model combinations include: ¢+XGB + MGP: XGBoost with multivariate Gaussian process interpolation; «XGB + MGP + Corr:
*RNN + MGP + Corr:
interpolation; «COX + Mean: Cox regression model with mean-value imputation (applied only to the MIMIC cohort). Solid lines represent model
performance in the internal dataset (Guangzhou Women and Children’'s Medical Center), and dashed lines represent performance in the external
validation dataset (MIMIC-IIl). The RNN-based model demonstrated stable discrimination across extended time horizons, while XGBoost models
showed higher accuracy at shorter intervals. Performance of the Cox model was limited by imputation simplicity and lack of dynamic features.

RNN+MGP+correlation

Recurrent neural network with combined MGP and correlation

Additionally, Table 2 summarizes the cross-dataset AUROC
performance of both models at various forecast windows. Table 6
presents the deviations in indicator frequency and variable
importance between the internal (Guangzhou Women and
Children’s Medical Center) and external (MIMIC-III) cohorts
across cumulative time windows (2 h, 6 h, 8 h). Notably, features
like temperature (T), white blood cell count (WBC), C-reactive
protein (CRP), and direct bilirubin (DBIL) showed low relative
weights in both datasets, suggesting limited predictive influence.

3.6 Real-time alert simulation

Building on these validation results, we next evaluated the
potential bedside impact through retrospective
simulation on historical EHR sequences. High-risk patients
(predicted probability >0.80) were identified a median of 6.2 h
prior to physician-confirmed sepsis recognition. Model alerts

real-time

demonstrated strong concordance with clinical
(Cohen’s k= 0.82).

Importantly, patients who triggered early alerts exhibited

diagnoses

lower rates of delayed ICU transfer and reduced incidence of
respiratory failure, underscoring the clinical relevance of timely
detection. These findings are summarized in Table 7, which
details stratified outcome improvements associated with early-
warning interventions.
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3.7 Deployment and clinical integration

To translate these results into practice, we designed a tiered
alert system to guide clinical escalation (Additional File 18).
Predicted probabilities were mapped to three levels of response:

e Tier 1 (P>0.65): notification to  increase

bedside vigilance.
o Tier 2 (P>0.80): ICU team alert for rapid assessment

Nurse

and preparation.
o Tier 3 (P>0.90): Physician escalation with initiation of the
sepsis management bundle.

This graded framework links predictive thresholds to actionable
bedside responses, balancing sensitivity with specificity and
minimizing alarm fatigue. Together, these steps illustrate a
scalable pathway from robust validation to real-time
deployment, highlighting the model’s readiness for integration

into EHR-based clinical decision support systems.

4 Discussion

This study evaluated a clinically oriented, machine learning-
based approach for early recognition of pediatric sepsis using
electronic health record (EHR) data. By employing correlation-
enhanced  multivariate  Gaussian

process  interpolation
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TABLE 5 Comparative performance of XGBoost and RNN models across key time windows, including overall AUROC + SD and 95% CI.

Forecast ahead of time ACC | Sensitivity | Specificity | Youden index = XGBoost
0h 0.886 0.860 0.818 0.828 0.646 XGBoost
1h 0.842 0.810 0.724 0.834 0.558 XGBoost
2h 0.817 0.795 0711 0.743 0.454 XGBoost
3h 0.784 0.732 0.683 0.781 0.464 XGBoost
4h 0.769 0.751 0.672 0.842 0.514 XGBoost
5h 0.767 0.708 0.610 0.835 0.445 XGBoost
6h 0.734 0.703 0.643 0.744 0.387 XGBoost
7h 0.702 0.644 0.632 0.679 0311 XGBoost
8h 0.622 0.608 0558 0.667 0.225 XGBoost
9h 0.588 0.631 0578 0.623 0.201 XGBoost
10h 0558 0.627 0.609 0.526 0.135 XGBoost
i1h 0525 0.586 0525 0.592 0.117 XGBoost
12h 0.522 0.578 0.667 0.467 0.134 XGBoost
Forecast ahead of time AUC ACC Sensitivity Specificity Youden index RNN
0h 0.878 0.862 0.807 0.816 0.623 RNN

1h 0.820 0.779 0.714 0.808 0522 RNN
2h 0.803 0.823 0.634 0.866 0.5 RNN

3h 0.796 0.721 0.777 0.719 0.496 RNN
4h 0.790 0.721 0.757 0.746 0.503 RNN

5h 0.779 0.716 0.696 0.764 0.46 RNN

6h 0.771 0.748 0.661 0.752 0.413 RNN

7h 0.766 0.729 0.741 0.746 0.487 RNN

8h 0.765 0.703 0.716 0.778 0.494 RNN

9h 0.736 0.712 0.645 0.727 0372 RNN
10h 0.732 0.705 0.693 0.742 0.435 RNN
11h 0.741 0.689 0.794 0.675 0.469 RNN
12h 0.676 0.730 0.564 0.736 03 RNN
Overall 0.892 +0.015 (95% CI: 0.863-0.921) - - - - XGBoost
Overall 0.881 +0.018 (95% CI: 0.846-0.916) - - - - RNN

AUROC, area under the receiver operating characteristic curve; ACC, accuracy; SD, standard deviation; CI, confidence interval. Overall AUROC + SD and 95% CI were calculated from
aggregated model outputs. AUPRC + SD/CI were not computed due to lack of fold-level data.

(CTWH + MGP) and combining gradient boosting (XGBoost)
with a gated recurrent unit (GRU) model, we were able to
identify high-risk patients with clinically actionable lead times.
Model performance was consistent across both internal and
external cohorts, and interpretability was enhanced through

current approach demonstrated improved predictive accuracy
and better temporal consistency across multiple lead times,
which is particularly relevant in pediatric patients, where early
inflammatory responses may be subtle or delayed.

Second, the combination of GRU-derived representations and

SHAP-based  feature = contribution  analysis. =~ Notably, = XGBoost classification provided complementary strengths. GRU
CTWH + MGP  substantially reduced computational load models captured the temporal evolution of clinical variables,
compared with MGP alone (3.1x faster training while  while XGBoost allowed for interpretable classification based on

maintaining comparable AUROC, Additional File 9). This
efficiency advantage is critical for real-time integration into EHR
systems, where rapid retraining and frequent updating may
be required.

While LSTM and GRU architectures are theoretically better
suited to capture long-range dependencies, our comparative
analysis (Additional File 12) demonstrated only minimal
performance gains over RNN (<0.01 AUROC). This negligible
difference supports the use of the more computationally efficient
RNN model in our study, particularly in real-time clinical
settings where computational efficiency is critical.

Several aspects of this study merit further discussion. First, the
interpolation method used (CTWH + MGP) was particularly
effective in handling irregularly sampled time-series data, which
are common in pediatric emergency settings. Previous
applications of Gaussian processes for sepsis detection have

focused primarily on adult populations (12, 13). In contrast, the
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aggregated features. This dual-stage design achieved a maximum
AUROC of 0.915 at the time of diagnosis, with consistent
performance across earlier windows. Similar strategies have
shown promise in adult cohorts (12, 22), but our study extends
their utility to pediatric populations, supported by external
validation using the MIMIC-III database (AUROC = 0.905).
Third, the SHAP-based interpretability analysis identified
lactate, pH, white blood cell count, and vasopressor use as
consistent predictors of sepsis risk. These findings are consistent
with established pediatric sepsis literature (5, 23) and underscore
the importance of dynamic physiologic indicators. The relative
contribution of features varied by prediction horizon,
reinforcing the clinical need for time-sensitive models.
Importantly, simulation of model deployment revealed that
high-risk alerts were generated a median of 6.2h prior to
clinical diagnosis, with strong agreement with physician-

confirmed sepsis (Cohen’s k=0.82). Traditional biomarker-
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TABLE 6 Deviation of the frequency difference and weight of each indicator of the two sets of data in each cumulative time window.

Indicator 2h 6h 8h Weight
T —0.303125523 —0.650700425 —0.802186413 13
R 4363719369 9.193728116 10.88942356 14
HR 3.680521624 7.929806667 9.510774402 36
MAP 0.348816996 0.641868678 0.766859424 9
DBP 4032160063 8.602116219 10.41075164 26
SBP 4017951397 8.590024321 1038656785 16
INR 0.146608099 0.373933048 0.43392367 22
WBC —0.047619048 —0.080423463 —0.20740759 10
TB 0086299413 0213110799 0.193898115 37
Cr 0.243795704 0.579796933 0.689967563 1
LAC 0251955679 0.753914786 093285569 4
PLT 0229285426 0539890926 0.614841503 25
CRP —0.075586704 —0.104160326 —0.276800281 38
S02 0.063322064 0.252101002 0.213538539 31
ALB 0037931819 0.117584801 0.065874798 11
HCT 0.193453923 0501786365 0.461844714 20
PCO2 0.168357065 0.498751052 0382622215 30
ALP 0.086299413 02010189 0.18649217 21
HGB 0.210234517 0561796182 0.600309289 19
K 0.277650278 0.724137458 0.867104278 15
BSD 0.552133631 1.328271736 1.608949102 12
AC 0.593690277 1.424538054 1.732568884 17
GCS 0354270689 0.881611814 1.063886901 5
DBIL —0.033410381 —0.040819068 —0.139838281 8
FIB 0.003923698 0059543688 —0.005012243 7
AST 0.085090223 020222809 0.183166213 2
PH 0311362272 0.780525189 0.907931572 18
BG 0.275081092 0.69481529 0.82055184 35

The table shows the difference between the cumulative frequency of MIMIC-III and the Guangzhou Women and Children’s Hospital dataset in 2 h, 4 h, and 6 h. A negative value indicates
that the corresponding index frequency of the Guangzhou Women and Children’s Hospital dataset is higher than mimic-iii at this point in time and vice versa. For example, T at 2 h is
—0.303125523, which indicates the difference between the frequency (total number/number of people) of the body temperature within 2 h in the mimic-iii dataset and the frequency of
body temperature within 2 h in the Guangzhou Women and Children’s Hospital dataset. It can be seen from the table that in the cumulative frequency of indicators in different time
periods, most of mimic-III is better than the dataset of women and children. Meanwhile, the model weights of several indicators such as T, WBC, CRP, and DBIL are generally low.

TABLE 7 Estimated reduction in mortality with early warning intervention.

Intervention scenario

Mortality rate (%)

Absolute reduction (%)

Relative reduction (%)

Evidence sou

Standard ICU care 29.7 - - This study
ED early alert 19.6 10.1 33.8 Seymour et al., 2017
p-value <0.001 - - -

based models, such as the Pediatric Sepsis Biomarker Risk Model
(24), focus on molecular indicators, whereas our approach
integrates dynamic clinical trajectories using real-time data.
Early identification of deterioration risk may reduce delays in
both
associated with worse outcomes in pediatric sepsis (4, 5, 22).

antibiotic initiation or ICU transfer, of which are
Recent studies using temporal deep learning architectures with
multimodal input have shown promising results in sepsis
prediction  (25), CTWH + MGP-RNN

ensemble framework. These results highlight the potential utility

aligning with our

of such models in real-world pediatric emergency workflows.
This study has several limitations. The primary dataset was
obtained from a single-center emergency department in China,
which may limit generalizability despite external validation.
Additionally, the retrospective nature of the analysis precludes
evaluation of provider response or clinical outcomes following
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model deployment. The potential for alert fatigue and
integration challenges within EHR systems should also be
considered in future prospective implementations.

In conclusion, this study demonstrates the feasibility and
performance of an interpretable machine learning approach for
early detection of pediatric sepsis. By improving temporal signal
quality and incorporating clinically relevant features, the model
supports timely risk stratification and holds promise for

integration into real-time pediatric care pathways.
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