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Background: Timely identification of pediatric sepsis remains a critical 

challenge in emergency and intensive care settings due to the heterogeneous 

clinical presentations across age groups. Existing scoring systems often lack 

temporal resolution and interpretability. We aimed to develop a real-time, 

machine learning–based prediction framework integrating static and dynamic 

electronic health record (EHR) features to support early sepsis detection.

Methods: This retrospective study included pediatric patients from Guangzhou 

Women and Children’s Medical Center (GWCMC; n = 1,697) and an external 

validation cohort from the MIMIC-III database (n = 827). Irregular time-series 

data were imputed using a correlation-enhanced continuous time-window 

histogram with multivariate Gaussian processes (CTWH + MGP). We 

compared the predictive performance of XGBoost and gated recurrent unit 

(GRU)-based RNN models over a 12-h window prior to clinical diagnosis. 

Model outputs were validated internally and externally using AUROC, AUPRC, 

and Youden index, with SHAP-based interpretability applied to identify key 

clinical features.

Results: The CTWH + MGP-XGBoost model achieved the highest AUROC at 

diagnosis time (T = 0 h; AUROC = 0.915), while the GRU-based model 

demonstrated superior temporal stability across early windows. Top 

contributing features included lactate, white blood cell count, pH, and 

vasopressor use. External validation confirmed generalizability (MIMIC-III 

AUROC = 0.905). Simulation of real-time alerts showed a median lead time of 

6.2 h before clinical diagnosis, with κ = 0.82 agreement against physician- 

confirmed cases.

Conclusions: Our results suggest that a dual-model ensemble combining 

interpolation-based preprocessing and interpretable machine learning 

enables robust early sepsis detection in pediatric populations. The system 

supports integration into EHR platforms for real-time clinical alerts and may 

inform prospective trials and quality improvement initiatives.
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1 Background

Sepsis remains one of the leading causes of morbidity and 

mortality in children worldwide, accounting for an estimated 

25%–40% of pediatric intensive care unit (PICU) admissions and 

nearly 8% of in-hospital mortality globally (1, 2). Despite 

advances in antimicrobial therapy and critical care monitoring, 

early diagnosis of pediatric sepsis remains a persistent challenge 

due to the heterogeneity of clinical presentations, age-related 

physiological variability, and the non-specific nature of early 

warning signs (3–5). Current sepsis screening tools such as SIRS, 

qSOFA, and PELOD-2 often fail to achieve sufficient sensitivity or 

lead time in real-world pediatric emergency settings (6–8).

Artificial intelligence and machine learning techniques offer new 

opportunities to augment early sepsis detection by leveraging high- 

dimensional electronic health record (EHR) data in real time 

(9–11). Prior models have demonstrated promising results in adult 

cohorts using long short-term memory (LSTM), gradient boosting, 

and attention-based architectures (12, 13). However, limited work 

has translated these findings into pediatric populations, where data 

sparsity, missingness, and developmental variability pose unique 

modeling challenges (14, 15). Hemodynamic support in pediatric 

septic shock remains challenging, with current practice guided by 

the American College of Critical Care Medicine’s parameters (3).

To address these issues, we developed a real-time prediction 

framework for pediatric sepsis integrating a correlation- 

enhanced continuous time-window histogram (CTWH) 

interpolation with multivariate Gaussian processes (MGP) (13, 

14), combined with an ensemble of gradient boosting (XGBoost) 

and recurrent neural network (RNN) models (12, 16). The 

framework was trained and validated using two large pediatric 

datasets, including an internal cohort from a high-volume 

tertiary pediatric emergency department in China and an 

external validation cohort from the MIMIC-III database (17).

In this study, we aimed to assess the framework’s predictive 

performance across various time windows preceding sepsis 

onset, evaluate feature interpretability using SHAP values, and 

simulate real-time deployment scenarios to explore clinical 

feasibility. We hypothesized that this interpolation-guided, dual- 

model ensemble would enhance early risk stratification and offer 

timely alerts suitable for integration into existing EHR systems.

2 Methods

Figure 1 outlines the full data preprocessing and modeling 

workBow, aligned with the structural segmentation of this study 

(Sections 2.1–2.5). Overall workBow from dataset selection to 

model deployment. Each module corresponds to a section in the 

Methods. Core indicators such as sample sizes, feature selection 

count, model performance (AUROC), and interpretability tools 

(SHAP) are embedded.

2.1 Dataset description

This retrospective study included two pediatric cohorts. The 

internal cohort comprised 1,697 patients under 18 years of age 

admitted to Guangzhou Women and Children’s Medical Center 

(GWCMC) from February 2016 to July 2018. Pediatric sepsis 

was identified based on modified Sepsis-III criteria (18), with 

adjustments for age and clinical presentation. The Sepsis-3 

consensus definition provided a robust framework for 

FIGURE 1 

Overall workflow from dataset selection to model deployment. 

Outlines the full data preprocessing and modeling workflow, 

aligned with the structural segmentation of this study. Each 

module corresponds to a section in the Methods. Core indicators 

such as sample sizes, feature selection count, model performance 

(AUROC), and interpretability tools (SHAP) are embedded.

Abbreviations  

AUROC, the area under the receiver operating characteristic; Cr, creatinine; 

CTWH, correlation-based time window hybrid; ED, emergency department; 

EHR, electronic health record; GCS, glucocorticoids; ICU, intensive care unit; 

MGP, multivariable Gaussian process; ML, machine learning; MIMIC, 

medical information mart for intensive care; LR, logistic regression; PH, 

pondus hydrogenii; PICU, pediatric intensive care unit; RNN, recurrent 

neural network; SHAP, SHapley additive exPlanations; tRNN, time- 

distributed recurrent neural network; XGBoost, extreme gradient boosting; 

WBC, white blood cell.
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identifying sepsis and septic shock, which we adapted for pediatric 

use in this study (19). Electronic health record (EHR) data were 

extracted, encompassing vital signs, laboratory results, 

medications, and nursing assessments within the 12-h window 

preceding a sepsis diagnosis. Cases with incomplete records, 

neonates, or acute upper respiratory infections were excluded.

The external validation cohort was derived from the 

MIMIC-III database, consisting of 827 pediatric ICU 

encounters fulfilling Sepsis-III criteria (17). Variable definitions 

and coding structures were harmonized across cohorts to 

ensure consistency. Figure 2 illustrate variable frequency and 

inter-variable correlations, respectively.

2.2 Data preprocessing

Variables with >20% missingness were excluded from model 

development. As summarized in Table 1 (Additional File 1), a 

total of 28 variables were retained, including core vital signs 

(HR, RR, SpO2, T), key laboratory biomarkers (WBC, creatinine, 

FIGURE 2 

Inclusion and exclusion criteria for the Guangzhou women and Children’s medical center dataset. This flowchart outlines the selection process for 

the internal pediatric cohort. A total of 3,780 children aged <18 years who visited the emergency department or were admitted to the PICU between 

February 2016 and July 2018 were initially screened. After excluding cases with neonatal status, acute upper respiratory tract infections, and 

incomplete electronic health record data, 1,697 patients with confirmed infection or sepsis-related diagnoses were included for model 

development and validation. The final cohort included both septic and non-septic patients, defined according to the pediatric adaptation of 

Sepsis-III criteria, with retrospective verification by senior pediatric intensivists.
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lactate, pH), therapeutic indicators (antibiotics, glucocorticoids, 

vasopressors), and Buid balance measures. Sixteen variables (e.g., 

bilirubin, troponin, IL-6, PaCO2) exceeded the 20% missingness 

threshold (25%–50%) and were therefore excluded. This 

structured selection ensured that retained features were both 

clinically relevant and statistically reliable.

We first analyzed the temporal distribution of dynamic clinical 

variables to understand sampling irregularity across patients. As 

shown in Figure 3, time intervals for key laboratory and 

physiological variables such as creatinine (Cr), glucocorticoids 

(GCS), and pH were highly heterogeneous, ranging from a few 

hours to over 96 h across individuals. This motivated the 

adoption of a histogram-based strategy for imputation window 

selection. To determine the optimal number of reference windows 

(N), we analyzed the temporal correlation structure of key 

physiological variables. As illustrated in Figure 4, variables with 

strong autocorrelation supported extended interpolation windows.

To address missingness, we implemented a dual-step 

imputation method combining correlation-weighted continuous 

time windowed histogram (CTWH) estimation with multivariate 

Gaussian processes (MGP). This approach preserved intra- and 

inter-variable patterns.

To further illustrate the irregularity of temporal sampling 

across different clinical variables, we plotted the hourly 

measurement frequencies of 24 representative features 

(Additional File 2). Vital signs such as HR and SBP were 

densely sampled, while laboratory indicators including lactate 

and creatinine showed sparse and heterogeneous recording 

patterns. This observation further justified our use of 

correlation-enhanced CTWH + MGP interpolation to robustly 

impute time series across variable horizons.

2.3 Model architecture and training

Model development consisted of two stages. In the first stage, a 

gated recurrent unit (GRU)-based recurrent neural network 

(RNN) was trained to encode dynamic time-series features. The 

RNN included two GRU layers (64 hidden units each), 

optimized using Adam with early stopping.

In the second stage, an XGBoost classifier was trained on 

either the raw interpolated features or the RNN-derived 

embeddings. Hyperparameters were selected via 5-fold cross- 

validation, with early stopping at 10 rounds. A total of 13 

independent models were trained, each corresponding to a 

specific hour (T = 0 to T = 12) before diagnosis. Figures 5, 6

display performance comparisons and statistical evaluations.

The hybrid modeling architecture is further illustrated in 

Additional File 3, where temporal embeddings extracted by the 

RNN are combined with static features before being passed into 

the XGBoost classifier. SHAP analysis was then applied to 

quantify feature contributions.

2.4 Evaluation metrics and experimental 
design

Performance metrics included AUROC, AUPRC, sensitivity, 

specificity, Brier score, and Youden’s index. The XGBoost model 

achieved its highest AUROC (0.915) at T = 0 h, while the RNN 

demonstrated stability at earlier horizons, peaking at 0.902 at 

T = 8 h. Results are detailed in Table 2.

Model explainability was assessed via SHAP (Shapley additive 

explanations) (20). Top-ranked predictors included lactate, pH, 

white blood cell count, Buid balance, and vasopressor usage 

(Figure 7). External validation on the MIMIC-III dataset yielded 

comparable performance trends (Figure 8). While Figure 7

highlights the top contributors to model output as determined 

by SHAP values, a comprehensive statistical comparison of all 

candidates features between sepsis and non-sepsis groups is 

provided in Additional File 4. Extended embedding-level feature 

contributions and temporal heatmaps are further detailed in 

Additional File 5.

2.5 Model deployment

The final system was configured as a real-time clinical decision 

support tool. Prediction scores were stratified into three alert tiers: 

low (0.5≤ score <0.6), medium (0.6≤ score <0.8), and high (≥0.8). 

Each alert level was linked to specific clinical response protocols.

TABLE 1 Size and number of interpolated windows (Guangzhou women and children’s hospital dataset).

Index T HR R BSD AC GCS SO2 MV BG

Window size 5 4 4 22 20 19 14 20 12

Number of windows 1 1 1 2 1 17 1 1 1

Index CRP PO2 INR WBC PT PLT TB LAC Cr

Window size 3 5 24 26 24 28 22 14 32

Number of windows 1 2 1 4 1 2 2 2 2

Index PH AMON ALP K CA Mg DBIL FIB HGB

Window size 10.3 15 21 15 15 27 22 24 3

Number of windows 2 1 1 1 3 1 2 1 3

Index HCT AST SBP DBP MAP HCO3 LAC PCO2 FIB

Window size 4 27 9 10 10 20 20 22 75

Number of windows 3 2 3 1 1 2 1 3 2

This table presents the optimized interpolation window sizes (in hours) and corresponding number of windows across selected clinical variables in the Guangzhou Women and Children’s 

Medical Center dataset. These parameters guided the correlation-assisted time-series imputation strategy. Window size is measured in hours. Variables with >20% missingness were excluded. 

The window number indicates how many historical segments were used for correlation referencing.
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Retrospective validation demonstrated strong agreement 

between predicted alerts and physician-confirmed sepsis 

diagnoses (Cohen’s κ = 0.82). Notably, in high-risk cases, alerts 

preceded treatment initiation by up to 10.41 h, indicating 

meaningful potential for anticipatory intervention (21).

To facilitate reproducibility, we provide pseudocode 

describing the complete pipeline, including data preprocessing, 

feature engineering, model training, validation, and SHAP-based 

interpretability (Additional File 6).

3 Results

3.1 Study population

A total of 1,697 pediatric patients were included in the internal 

cohort from Guangzhou Women and Children’s Medical Center 

(GWCMC), among whom 444 met the Sepsis-III diagnostic 

criteria during hospitalization, accounting for 26.2% of the 

cohort. The median age was 1.88 years [interquartile range (IQR), 

0.3–4.82], and the proportion of male patients was significantly 

higher in the sepsis group than in the non-sepsis group 

(P = 0.035, χ2 test). Baseline demographic and clinical features of 

the internal cohort are summarized in Table 3. The external 

validation cohort comprised 827 pediatric ICU patients extracted 

from the MIMIC-III database, screened using pediatric-adjusted 

Sepsis-III criteria and confirmed independently by two pediatric 

intensivists. Static and dynamic variables were harmonized across 

both datasets. Beyond the sepsis-confirmed validation cohort 

(n = 827), the broader MIMIC-III pediatric ICU dataset 

(n = 3,308) exhibited a wide spectrum of discharge diagnoses, 

including pneumonia (n = 797), fever (n = 479), hypotension 

(n = 326), and sepsis (n = 66). The full distribution of diagnoses is 

provided in Additional File 7, highlighting the heterogeneity of 

the external dataset and supporting the generalizability of our 

model. The distribution of available laboratory and physiological 

indicators within 72 h is summarized in Additional File 8, 

highlighting the heterogeneity and sparsity of EHR data inputs.

FIGURE 3 

Representative examples of frequency distribution of different clinical variables over time in patients from the Guangzhou women and Children’s 

medical center. (a–c) Represent the time interval distributions of three variables, i.e., creatinine (Cr), glucocorticoids (GCS), and Pondus 

Hydrogenii (PH), of three patients, respectively, where the vertical axis represents the time interval in hours. The darker point represents the P1 

quantile (70% quantile) corresponding to this variable. (d) Represents the P1 quantile distribution of the three variables, corresponding to all 

the patients.

Shi et al.                                                                                                                                                                  10.3389/fped.2025.1610187 

Frontiers in Pediatrics 05 frontiersin.org



FIGURE 4 

Correlation performance of different variables obtained from the Guangzhou women and Children’s medical center dataset across different time 

windows. This figure illustrates the temporal autocorrelation for three representative clinical variables—serum creatinine (Cr), pH, and Glasgow 

Coma Scale (GCS)—using scatter plots between reference window T0 and successive windows (T1, T2, T3…). (a) pH shows weak correlation 

beyond one window (r < 0.6), allowing only short-range interpolation (∼20.6 h). (b) Cr retains moderate correlation across three windows, 

supporting interpolation up to 96 h. (c) GCS shows intermediate range stability with a correlation-informed interpolation span of 40 h. 

A correlation coefficient (r) > 0.6 is considered indicative of strong temporal continuity, justifying inclusion in the interpolation window. These 

plots guided the parameterization of the CTWH strategy for different variables. Observed ranges were: pH 7.10–7.55, creatinine 8.84– 

309.4 umol/L, and Glasgow Coma Scale 3–15.

FIGURE 5 

Temporal AUROC performance in external validation (MIMIC-III cohort). This figure illustrates the predictive performance of different machine 

learning models (XGBoost and RNN) applied to the MIMIC-III external validation cohort. The horizontal axis indicates time before sepsis onset (in 

hours), while the vertical axis represents the area under the receiver operating characteristic curve (AUROC). The RNN model showed greater 

stability at longer horizons (T = −12 to −4 h), while XGBoost achieved higher AUROC at shorter intervals, peaking at T = 0 h.
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3.2 Performance of interpolation strategies

We first compared the performance of different data imputation 

strategies. The combination of continuous time-window histogram 

(CTWH) and multivariate Gaussian process (MGP) yielded the 

highest accuracy in imputing sparse variables and led to improved 

downstream model performance. Notably, in early prediction 

windows (≥6 h before diagnosis), CTWH + MGP significantly 

outperformed single-method interpolations. At T = 0 h, the 

CTWH + MGP-based model achieved an AUROC of 0.915, which 

was significantly higher than the baseline method 

(AUROC = 0.882; P < 0.01). The superiority of the CTWH + MGP 

strategy over baseline interpolation methods was confirmed via 

significant improvements in downstream model performance, as 

illustrated in Figure 8. Detailed evaluation metrics of the MGP- 

based model across prediction horizons are presented in Table 4.

In addition to accuracy, computational efficiency was 

evaluated across interpolation methods (Additional File 9). 

CTWH + MGP achieved comparable AUROC to MGP alone 

(0.829 vs. 0.832, p > 0.05), while reducing average input 

dimensionality by two-thirds and training time by 

approximately 68%. This balance of accuracy and efficiency 

further supports the feasibility of CTWH + MGP for real-time 

clinical deployment.

FIGURE 6 

Temporal AUROC performance and confidence intervals for sepsis prediction models. This figure illustrates the area under the receiver operating 

characteristic curve (AUROC) of the XGBoost and recurrent neural network (RNN) models across hourly prediction windows (T = –12 h to 0 h) 

relative to sepsis onset. Both models were trained using features interpolated via the CTWH + MGP method. The XGBoost model showed peak 

performance at T = 0 h (AUROC = 0.915), whereas the RNN model demonstrated more stable long-term predictive ability. Shaded regions 

represent 95% confidence intervals derived from 1,000 bootstrap replicates.

TABLE 2 AUROC performance of different methods using different datasets.

Dataset Method AUROC at 4 h 
(mean ± SD/ 

95% CI)

AUROC at 6 h 
(mean ± SD/ 

95% CI)

AUROC at 8 h 
(mean ± SD/ 

95% CI)

AUROC at 12 h 
(mean ± SD/ 

95% CI)

Guangzhou Women 

and Children’s Medical 

Center

XGB + MGP + correlation 0.769 ± 0.012 (0.745–0.793) 0.769 ± 0.012 (0.745–0.793) 0.769 ± 0.012 (0.745–0.793) 0.769 ± 0.012 (0.745–0.793)

XGB + MGP 0.721 ± 0.013 (0.695–0.747) 0.686 ± 0.012 (0.662–0.710) 0.600 ± 0.014 (0.572–0.628) 0.542 ± 0.015 (0.512–0.572)

RNN + MGP + correlation 0.790 ± 0.011 (0.768–0.812) 0.771 ± 0.010 (0.751–0.791) 0.765 ± 0.009 (0.747–0.783) 0.676 ± 0.012 (0.652–0.700)

MIMIC-III XGB + MGP + correlation 0.857 ± 0.010 (0.837–0.877) 0.830 ± 0.009 (0.812–0.848) 0.796 ± 0.010 (0.776–0.816) 0.728 ± 0.011 (0.706–0.750)

XGB + MGP 0.798 ± 0.012 (0.774–0.822) 0.759 ± 0.011 (0.737–0.781) 0.724 ± 0.010 (0.704–0.744) 0.671 ± 0.012 (0.647–0.695)

RNN + MGP + correlation 0.858 ± 0.009 (0.840–0.876) 0.852 ± 0.010 (0.832–0.872) 0.847 ± 0.009 (0.829–0.865) 0.824 ± 0.008 (0.808–0.840)

COX + Mean 0.840 ± 0.011 (0.818–0.862) 0.820 ± 0.010 (0.800–0.840) 0.820 ± 0.009 (0.802–0.838) 0.790 ± 0.010 (0.770–0.810)
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3.3 Temporal dynamics of predictive 
performance

We assessed the hour-by-hour performance of both models 

over a 12-h forecasting window prior to sepsis diagnosis (T = – 

12 h to T = 0 h). The XGBoost classifier, trained on features 

interpolated using the CTWH + MGP method, achieved its peak 

discriminative performance at T = 0 h, with an AUROC of 

0.915, sensitivity of 0.88, and specificity of 0.84. In contrast, the 

RNN model showed slightly lower AUROC values in short-term 

prediction windows but demonstrated more stable performance 

at longer horizons, maintaining AUROC values above 0.80 

beyond T = –10 h.

Figure 9 presents the AUROC trajectories and corresponding 

95% bootstrapped confidence intervals across time points, 

highlighting the trade-off between short-term accuracy and 

long-term robustness. Additionally, comparative analysis of 

model architectures and interpolation strategies further supports 

the generalizability of the RNN + CTWH + MGP combination 

across both internal and external datasets. Summary statistics for 

AUROC, AUPRC, sensitivity, specificity, accuracy, and Youden’s 

Index at each time point are detailed in Table 5. Extended 

evaluation metrics for the XGBoost model across all prediction 

windows (0–12 h) are provided in Additional File 10, and the 

corresponding full RNN metrics are available in the 

Supplementary Materials. Together, these detailed results 

confirm the temporal dynamics of model performance, with 

extended summary comparisons available in Additional File 7.

As illustrated in Additional File 11, although all models 

achieved comparable AUROC near the time of diagnosis (T = 0– 

2 h), the RNN + PCC + MGP model maintained significantly 

higher predictive stability across longer horizons (>6 h). In 

contrast, XGBoost-based models demonstrated a steep decline in 

AUROC, highlighting the advantage of temporal modeling for 

long-range prediction.

To further evaluate temporal model architectures, we 

compared RNN with more advanced recurrent variants (LSTM 

and GRU). As shown in Additional File 12 and visualized in 

Additional File 13, all three achieved nearly identical AUROC 

values across prediction horizons, with only marginal 

improvements (<0.01 AUROC) for LSTM and GRU compared 

with RNN. Given the negligible performance difference, the 

FIGURE 7 

Top 10 predictors of pediatric sepsis identified by SHAP analysis in the RNN + MGP + correlation model. This figure displays the top 10 most influential 

clinical variables contributing to sepsis risk predictions, as ranked by mean absolute SHAP (Shapley Additive Explanations) values. The analysis was 

based on the recurrent neural network (RNN) model combined with multivariate Gaussian process (MGP) and correlation-enhanced interpolation. 

Lactate, pH, white blood cell (WBC) count, heart rate, respiratory rate, creatinine (Cr), mean arterial pressure (MAP), body temperature, fluid balance, 

and vasopressor administration were the most important features. Higher SHAP values reflect greater influence on model output. Red bars represent 

positive contributions to predicted risk, while blue bars indicate negative associations.
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simpler RNN was adopted for the main analysis due to its 

computational efficiency.

To further evaluate generalizability, we stratified model 

performance by age groups in both internal and external 

cohorts (Additional File 14). In the internal cohort, younger 

patients (<1 year) consistently showed the highest AUROC 

values (0.93 at T = 0 h, remaining >0.79 at T = 12 h), whereas 

older children (>12 years) demonstrated relatively lower 

FIGURE 8 

Performance evaluation of interpolation methods and model architectures for pediatric sepsis prediction. (a) AUROC comparison of MGP vs. 

MGP + Correlation interpolation using the XGBoost model across prediction horizons (T = 0–12 h). The correlation-assisted approach consistently 

outperformed MGP alone, particularly at earlier time points, highlighting the benefit of correlation-aware smoothing. (a) Temporal AUROC 

trajectories of XGBoost and RNN models using CTWH + MGP interpolation. XGBoost achieved AUROC values ranging from 0.558 to 0.915, 

exceeding 0.70 within 7 h prior to diagnosis and peaking at 0.915 at T = 0 h. RNN maintained AUROC >0.74 up to 11 h prior to diagnosis, 

reaching 0.890 at T = 0 h. Comparative sensitivity, specificity, and Youden Index values at T = 0 h were 0.88/0.84 (Youden = 0.72) for XGBoost 

and 0.86/0.82 (Youden = 0.68) for RNN. CTWH, correlation time window hybridization; MGP, multivariable Gaussian process; AUROC, area under 

the receiver operating characteristic curve.
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discrimination. External validation with MIMIC-III revealed more 

heterogeneous patterns across age strata, with peak AUROC 

values observed in the 7–12 year group (0.875 at T = 0 h; 0.860 

at T = 6 h). Importantly, differences in AUROC between internal 

and external datasets remained modest (<0.05 across all 

horizons), supporting the robustness and transportability of the 

proposed framework across age subgroups.

3.4 Feature importance analysis

Feature contribution was assessed using SHAP (Shapley 

additive explanations). Across the 12-h prediction window, 

lactate, pH, white blood cell count (WBC), Buid balance, and 

vasopressor administration consistently emerged as the most 

inBuential predictors of impending sepsis. In longer horizons, 

dynamic physiological indicators such as respiratory rate and 

cumulative Buid intake gained relative importance. Notably, all 

top predictors identified by SHAP analysis (Figure 7) originated 

from the retained 28 features, reinforcing the validity of our 

variable selection strategy (see Additional File 1). Beyond overall 

ranking, we further examined the temporal dynamics of feature 

contributions to better capture evolving clinical signals.

As illustrated in Additional File 15, feature contributions 

demonstrated marked variation across time windows. Lactate 

peaked as the dominant predictor at T = –4 h (SHAP = 0.84) and 

remained highly inBuential at T = –2 h and T = 0 h, while heart 

rate importance increased sharply closer to diagnosis (T = –2 h 

and T = 0 h). In contrast, systolic blood pressure (SBP) and 

WBC showed moderate but Buctuating contributions, and 

respiratory rate and temperature remained relatively minor 

predictors. These temporal patterns highlight lactate and heart 

rate as the most reliable early-warning biomarkers in the hours 

preceding sepsis onset.

In addition, the relative contribution of features varied across 

prediction horizons. As summarized in Additional File 16, short- 

term predictions (0–2 h before onset) were more strongly 

inBuenced by therapeutic interventions (e.g., glucocorticoid use) 

and acute biomarkers (e.g., lactate, creatinine), whereas long- 

term horizons (2–12 h) were dominated by sustained metabolic 

indicators such as lactate and creatinine. Together, these 

findings underscore the dynamic and multi-faceted nature of 

sepsis progression, where both acute hemodynamic changes and 

longer-term metabolic disturbances contribute to the 

discriminative ability of the model.

To further clarify the interpretability pipeline, we provide an 

additional schematic (Additional File 17), illustrating how 

temporal embeddings from the RNN were combined with static 

features for XGBoost classification, followed by SHAP/LIME 

analysis to produce clinically actionable insights. Moreover, 

embedding-level contributions are detailed in Additional File 5, 

where the top 15 latent temporal embeddings are ranked by 

SHAP importance, and a temporal heatmap illustrates how 

clinical variables (e.g., lactate, creatinine, heart rate) dynamically 

vary in predictive weight across the 12-h forecasting horizon. 

These results underscore the complementary role of latent 

embeddings and raw clinical features in shaping the 

discriminative power of the hybrid RNN–XGBoost framework.

3.5 External validation

In the MIMIC-III external validation cohort, the XGBoost 

model retained strong performance, achieving an AUROC of 

0.905 at T = 0 h, while the RNN model exhibited stable 

prediction (AUROC = 0.88 at T = 8 h). These findings were 

consistent with internal results. Figure 8 compares the temporal 

evolution of AUROC and AUPRC across both cohorts.

TABLE 3 Baseline characteristics of patients in the internal cohort.

Characteristic Sepsis group 
(n = 444)

Control group 
(n = 1,253)

P-value

Sex – no. (%) 288 (64.9) male/156 

(35.1) female

812 (64.8) male/441 

(35.2) female

0.96a

Age – median (IQR), 

years

1.78 (0.82–4.92) 1.85 (0.79–5.10) 0.74b

Weight – mean ± SD, 

kg

11.55 ± 3.38 11.62 ± 3.45 0.68b

aP-values for sex were calculated using the χ2 test.
bP-values for age and weight were calculated using the Mann–Whitney U-test.

TABLE 4 MGP model evaluation based on XGBoot (Guangzhou women and children’s hospital dataset).

Forecast ahead of time AUC ACC Sensitivity Specificity Youden index

0 h 0.872 0.831 0.777 0.785 0.562

1 h 0.802 0.771 0.724 0.768 0.492

2 h 0.751 0.752 0.672 0.758 0.43

3 h 0.749 0.725 0.603 0.800 0.403

4 h 0.721 0.691 0.597 0.801 0.398

5 h 0.708 0.753 0.647 0.658 0.305

6 h 0.686 0.602 0.589 0.683 0.272

7 h 0.691 0.651 0.649 0.679 0.328

8 h 0.600 0.585 0.589 0.581 0.17

9 h 0.588 0.623 0.500 0.705 0.205

10 h 0.559 0.578 0.717 0.464 0.181

11 h 0.556 0.560 0.568 0.597 0.165

12 h 0.542 0.567 0.461 0.680 0.141
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Additionally, Table 2 summarizes the cross-dataset AUROC 

performance of both models at various forecast windows. Table 6

presents the deviations in indicator frequency and variable 

importance between the internal (Guangzhou Women and 

Children’s Medical Center) and external (MIMIC-III) cohorts 

across cumulative time windows (2 h, 6 h, 8 h). Notably, features 

like temperature (T), white blood cell count (WBC), C-reactive 

protein (CRP), and direct bilirubin (DBIL) showed low relative 

weights in both datasets, suggesting limited predictive inBuence.

3.6 Real-time alert simulation

Building on these validation results, we next evaluated the 

potential bedside impact through retrospective real-time 

simulation on historical EHR sequences. High-risk patients 

(predicted probability ≥0.80) were identified a median of 6.2 h 

prior to physician-confirmed sepsis recognition. Model alerts 

demonstrated strong concordance with clinical diagnoses 

(Cohen’s κ = 0.82).

Importantly, patients who triggered early alerts exhibited 

lower rates of delayed ICU transfer and reduced incidence of 

respiratory failure, underscoring the clinical relevance of timely 

detection. These findings are summarized in Table 7, which 

details stratified outcome improvements associated with early- 

warning interventions.

3.7 Deployment and clinical integration

To translate these results into practice, we designed a tiered 

alert system to guide clinical escalation (Additional File 18). 

Predicted probabilities were mapped to three levels of response: 

• Tier 1 (P > 0.65): Nurse notification to increase 

bedside vigilance.

• Tier 2 (P > 0.80): ICU team alert for rapid assessment 

and preparation.

• Tier 3 (P > 0.90): Physician escalation with initiation of the 

sepsis management bundle.

This graded framework links predictive thresholds to actionable 

bedside responses, balancing sensitivity with specificity and 

minimizing alarm fatigue. Together, these steps illustrate a 

scalable pathway from robust validation to real-time 

deployment, highlighting the model’s readiness for integration 

into EHR-based clinical decision support systems.

4 Discussion

This study evaluated a clinically oriented, machine learning– 

based approach for early recognition of pediatric sepsis using 

electronic health record (EHR) data. By employing correlation- 

enhanced multivariate Gaussian process interpolation 

FIGURE 9 

AUROC trends across time windows for multiple sepsis prediction models. This figure displays the changes in area under the receiver operating 

characteristic curve (AUROC) across different prediction time windows (ranging from 4 to 12 h prior to sepsis onset) for various models and 

interpolation methods. Model combinations include: •XGB + MGP: XGBoost with multivariate Gaussian process interpolation; •XGB + MGP + Corr: 

XGBoost with correlation-assisted interpolation; •RNN + MGP + Corr: Recurrent neural network with combined MGP and correlation 

interpolation; •COX + Mean: Cox regression model with mean-value imputation (applied only to the MIMIC cohort). Solid lines represent model 

performance in the internal dataset (Guangzhou Women and Children’s Medical Center), and dashed lines represent performance in the external 

validation dataset (MIMIC-III). The RNN-based model demonstrated stable discrimination across extended time horizons, while XGBoost models 

showed higher accuracy at shorter intervals. Performance of the Cox model was limited by imputation simplicity and lack of dynamic features.
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(CTWH + MGP) and combining gradient boosting (XGBoost) 

with a gated recurrent unit (GRU) model, we were able to 

identify high-risk patients with clinically actionable lead times. 

Model performance was consistent across both internal and 

external cohorts, and interpretability was enhanced through 

SHAP-based feature contribution analysis. Notably, 

CTWH + MGP substantially reduced computational load 

compared with MGP alone (3.1× faster training while 

maintaining comparable AUROC, Additional File 9). This 

efficiency advantage is critical for real-time integration into EHR 

systems, where rapid retraining and frequent updating may 

be required.

While LSTM and GRU architectures are theoretically better 

suited to capture long-range dependencies, our comparative 

analysis (Additional File 12) demonstrated only minimal 

performance gains over RNN (<0.01 AUROC). This negligible 

difference supports the use of the more computationally efficient 

RNN model in our study, particularly in real-time clinical 

settings where computational efficiency is critical.

Several aspects of this study merit further discussion. First, the 

interpolation method used (CTWH + MGP) was particularly 

effective in handling irregularly sampled time-series data, which 

are common in pediatric emergency settings. Previous 

applications of Gaussian processes for sepsis detection have 

focused primarily on adult populations (12, 13). In contrast, the 

current approach demonstrated improved predictive accuracy 

and better temporal consistency across multiple lead times, 

which is particularly relevant in pediatric patients, where early 

inBammatory responses may be subtle or delayed.

Second, the combination of GRU-derived representations and 

XGBoost classification provided complementary strengths. GRU 

models captured the temporal evolution of clinical variables, 

while XGBoost allowed for interpretable classification based on 

aggregated features. This dual-stage design achieved a maximum 

AUROC of 0.915 at the time of diagnosis, with consistent 

performance across earlier windows. Similar strategies have 

shown promise in adult cohorts (12, 22), but our study extends 

their utility to pediatric populations, supported by external 

validation using the MIMIC-III database (AUROC = 0.905).

Third, the SHAP-based interpretability analysis identified 

lactate, pH, white blood cell count, and vasopressor use as 

consistent predictors of sepsis risk. These findings are consistent 

with established pediatric sepsis literature (5, 23) and underscore 

the importance of dynamic physiologic indicators. The relative 

contribution of features varied by prediction horizon, 

reinforcing the clinical need for time-sensitive models.

Importantly, simulation of model deployment revealed that 

high-risk alerts were generated a median of 6.2 h prior to 

clinical diagnosis, with strong agreement with physician- 

confirmed sepsis (Cohen’s κ = 0.82). Traditional biomarker- 

TABLE 5 Comparative performance of XGBoost and RNN models across key time windows, including overall AUROC ± SD and 95% CI.

Forecast ahead of time AUC ACC Sensitivity Specificity Youden index XGBoost

0 h 0.886 0.860 0.818 0.828 0.646 XGBoost

1 h 0.842 0.810 0.724 0.834 0.558 XGBoost

2 h 0.817 0.795 0.711 0.743 0.454 XGBoost

3 h 0.784 0.732 0.683 0.781 0.464 XGBoost

4 h 0.769 0.751 0.672 0.842 0.514 XGBoost

5 h 0.767 0.708 0.610 0.835 0.445 XGBoost

6 h 0.734 0.703 0.643 0.744 0.387 XGBoost

7 h 0.702 0.644 0.632 0.679 0.311 XGBoost

8 h 0.622 0.608 0.558 0.667 0.225 XGBoost

9 h 0.588 0.631 0.578 0.623 0.201 XGBoost

10 h 0.558 0.627 0.609 0.526 0.135 XGBoost

11 h 0.525 0.586 0.525 0.592 0.117 XGBoost

12 h 0.522 0.578 0.667 0.467 0.134 XGBoost

Forecast ahead of time AUC ACC Sensitivity Specificity Youden index RNN

0 h 0.878 0.862 0.807 0.816 0.623 RNN

1 h 0.820 0.779 0.714 0.808 0.522 RNN

2 h 0.803 0.823 0.634 0.866 0.5 RNN

3 h 0.796 0.721 0.777 0.719 0.496 RNN

4 h 0.790 0.721 0.757 0.746 0.503 RNN

5 h 0.779 0.716 0.696 0.764 0.46 RNN

6 h 0.771 0.748 0.661 0.752 0.413 RNN

7 h 0.766 0.729 0.741 0.746 0.487 RNN

8 h 0.765 0.703 0.716 0.778 0.494 RNN

9 h 0.736 0.712 0.645 0.727 0.372 RNN

10 h 0.732 0.705 0.693 0.742 0.435 RNN

11 h 0.741 0.689 0.794 0.675 0.469 RNN

12 h 0.676 0.730 0.564 0.736 0.3 RNN

Overall 0.892 ± 0.015 (95% CI: 0.863–0.921) – – – – XGBoost

Overall 0.881 ± 0.018 (95% CI: 0.846–0.916) – – – – RNN

AUROC, area under the receiver operating characteristic curve; ACC, accuracy; SD, standard deviation; CI, confidence interval. Overall AUROC ± SD and 95% CI were calculated from 

aggregated model outputs. AUPRC ± SD/CI were not computed due to lack of fold-level data.
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based models, such as the Pediatric Sepsis Biomarker Risk Model 

(24), focus on molecular indicators, whereas our approach 

integrates dynamic clinical trajectories using real-time data. 

Early identification of deterioration risk may reduce delays in 

antibiotic initiation or ICU transfer, both of which are 

associated with worse outcomes in pediatric sepsis (4, 5, 22). 

Recent studies using temporal deep learning architectures with 

multimodal input have shown promising results in sepsis 

prediction (25), aligning with our CTWH + MGP-RNN 

ensemble framework. These results highlight the potential utility 

of such models in real-world pediatric emergency workBows.

This study has several limitations. The primary dataset was 

obtained from a single-center emergency department in China, 

which may limit generalizability despite external validation. 

Additionally, the retrospective nature of the analysis precludes 

evaluation of provider response or clinical outcomes following 

model deployment. The potential for alert fatigue and 

integration challenges within EHR systems should also be 

considered in future prospective implementations.

In conclusion, this study demonstrates the feasibility and 

performance of an interpretable machine learning approach for 

early detection of pediatric sepsis. By improving temporal signal 

quality and incorporating clinically relevant features, the model 

supports timely risk stratification and holds promise for 

integration into real-time pediatric care pathways.

Data availability statement

The datasets presented in this article are not readily available 

because the datasets used and/or analyzed during the current 

study are available from the corresponding author upon 

TABLE 6 Deviation of the frequency difference and weight of each indicator of the two sets of data in each cumulative time window.

Indicator 2 h 6 h 8 h Weight

T −0.303125523 −0.650700425 −0.802186413 13

R 4.363719369 9.193728116 10.88942356 14

HR 3.680521624 7.929806667 9.510774402 36

MAP 0.348816996 0.641868678 0.766859424 9

DBP 4.032160063 8.602116219 10.41075164 26

SBP 4.017951397 8.590024321 10.38656785 16

INR 0.146608099 0.373933048 0.43392367 22

WBC −0.047619048 −0.080423463 −0.20740759 10

TB 0.086299413 0.213110799 0.193898115 37

Cr 0.243795704 0.579796933 0.689967563 1

LAC 0.251955679 0.753914786 0.93285569 4

PLT 0.229285426 0.539890926 0.614841503 25

CRP −0.075586704 −0.104160326 −0.276800281 38

SO2 0.063322064 0.252101002 0.213538539 31

ALB 0.037931819 0.117584801 0.065874798 11

HCT 0.193453923 0.501786365 0.461844714 20

PCO2 0.168357065 0.498751052 0.382622215 30

ALP 0.086299413 0.2010189 0.18649217 21

HGB 0.210234517 0.561796182 0.600309289 19

K 0.277650278 0.724137458 0.867104278 15

BSD 0.552133631 1.328271736 1.608949102 12

AC 0.593690277 1.424538054 1.732568884 17

GCS 0.354270689 0.881611814 1.063886901 5

DBIL −0.033410381 −0.040819068 −0.139838281 8

FIB 0.003923698 0.059543688 −0.005012243 7

AST 0.085090223 0.20222809 0.183166213 2

PH 0.311362272 0.780525189 0.907931572 18

BG 0.275081092 0.69481529 0.82055184 35

The table shows the difference between the cumulative frequency of MIMIC-III and the Guangzhou Women and Children’s Hospital dataset in 2 h, 4 h, and 6 h. A negative value indicates 

that the corresponding index frequency of the Guangzhou Women and Children’s Hospital dataset is higher than mimic-iii at this point in time and vice versa. For example, T at 2 h is 

−0.303125523, which indicates the difference between the frequency (total number/number of people) of the body temperature within 2 h in the mimic-iii dataset and the frequency of 

body temperature within 2 h in the Guangzhou Women and Children’s Hospital dataset. It can be seen from the table that in the cumulative frequency of indicators in different time 

periods, most of mimic-III is better than the dataset of women and children. Meanwhile, the model weights of several indicators such as T, WBC, CRP, and DBIL are generally low.

TABLE 7 Estimated reduction in mortality with early warning intervention.

Intervention scenario Mortality rate (%) Absolute reduction (%) Relative reduction (%) Evidence source

Standard ICU care 29.7 – – This study

ED early alert 19.6 10.1 33.8 Seymour et al., 2017

p-value <0.001 – – –
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