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Introduction

Respiratory syncytial virus (RSV) remains one of the leading causes of viral acute

lower respiratory tract infections (LRTIs) in all regions of the world, with

elevated burden among children under 2 years of age and the elderly over 65 (1).

Annually, tens of millions of cases of RSV-induced lower respiratory tract infections

in children under 5 years of age occur globally, resulting in more than millions of

hospitalizations and hundreds of thousands of deaths (2, 3). Deaths and hospital stays

owing to RSV show great geographic disparities, most pronounced in low-income and

middle-income countries (LMICs)—limited healthcare infrastructure, a lack of

diagnostic tools, and delayed access to critical care increasing fatalities (4–6).

Historical setbacks in RSV vaccine development highlight the biological complexity of

the pathogen and the ethical challenges of pediatric immunization. The catastrophic 1960s

formalin-inactivated RSV vaccine trial, which induced vaccine-enhanced respiratory

disease (ERD) in seronegative infants, underscored the perils of immunizing

immunologically immature populations (7–10). This failure not only halted pediatric

RSV vaccine research for decades but also instilled caution in regulatory frameworks,

prioritizing safety over speed. Contemporary efforts remain hamstrung by the dual

challenges of ensuring efficacy and avoiding ERD-like outcomes in infants. Infant-

targeted strategies face inherent biological limitations, prompting a paradigm shift

toward immunizing toddlers and school-aged children (2–12 years) as a transmission-

blocking measure. This approach leverages the concept of herd immunity: by reducing

viral circulation among school-aged populations—who serve as primary community

transmitters—indirect protection extends to high-risk groups, including infants and

the elderly.

This article synthesizes interdisciplinary evidence to advocate for accelerated

development of RSV vaccines for toddlers and school-aged children. By bridging

immunological insights, epidemiological trends, and implementation science, it outlines

a roadmap to transform research into equitable global health impact.
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Immunological and epidemiological
rationale

Currently, prophylaxis is with monoclonal antibodies

(Palivizumab, Nirsevimab) and vaccines (RSVpreF, RSVpreF3,

mRNA-1345) (11) and these are given to infants and older adults,

including preterm infants, low-birth-weight infants, and children

with chronic respiratory diseases or congenital heart disease

(12–14). However, since these are high-risk populations, it is

possible to overlook the chances of vaccines for older children.

Immunization of infants is, in theory, ideal, but is hindered by

biological barriers that cannot be overcome. The B cell repertoires

of the newborn are limited in diversity because of reduced somatic

hypermutation and low-affinity antibody responses (15). Moreover,

underdeveloped germinal centers fail to generate long-lived plasma

cells and memory B cells, making the immunity short-lived

(16–19). Maternal antibodies, which are protective in the first few

weeks of life, disappear rapidly, and neutralizing titers against RSV

are less than the protective levels by 3–6 months (20–23). In

addition, the neonatal immune system may be more inclined to the

Th2-type of responses (increased IL-4, IL-5, and IL-13), which

would predispose infants to eosinophilic inflammation, perhaps

one of characteristic of ERD seen in early vaccine trials (24, 25).

By contrast, toddlers and school-aged children have a more fully

developed adaptive immune system. The lymphoid structures,

including lymph nodes and the spleen, become structurally and

functionally equipped for children to generate the germinal center

reaction. This reaction leads to affinity maturation of B cells and

high-titer, high-avidity antibodies to RSV surface glycoproteins.

Furthermore, older children have a balanced Th1/Th17 response

that is crucial for coordinating cytotoxic T cell activity and

mucosal immunity (26–30). The NALT reaches maturity by early

childhood and helps in the maintenance of secretory

immunoglobulin A (sIgA) secretion after vaccination (31). SIgA is

the first line of defense that works by neutralizing viral particles at

the respiratory mucosal surfaces; this is lacking with systemic

antibody-based therapies (32, 33). Tissue-resident memory T cells

(TRMs) that reside in the respiratory epithelium also contribute to

protection (34). Antigen design innovations in prefusion F protein

vaccines, exemplified by GSK’s Arexvy, effectively exploit these

immunological advantages (35, 36). Vaccines utilizing the prefusion

conformation of the F protein as an antigen have demonstrated

superior induction of neutralizing antibodies by exposing key

neutralizing epitopes that are lost in the postfusion state. This

specifically engineered design can elicit broad immune responses

through efficient engagement of diversified B-cell receptors (BCRs)

in older children, thus providing enhanced protection—as

evidenced by clinical data showing significantly higher neutralizing

antibody titers compared to postfusion F vaccines (37). Adjuvant

systems such as AS01 (a TLR4 agonist) interact with dendritic cells

to enhance cross presentation and priming of CD8+ T cells to

combine innate and adaptive immunity (38–41).

Epidemiologically, school-aged children are pivotal drivers of

RSV transmission due to their high viral loads, prolonged

shedding (7–10 days), and dense social networks (42–46). Cohort

studies in Kenya demonstrated that 73% of infant RSV infections
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originated from school-aged siblings, with 91% of transmission

events involving school-aged individuals (47). Similarly, European

surveillance data linked 10% of acute respiratory infections in the

elderly to contact with preschool-aged children outside their

households (48). Sibling transmission studies reveal stark

gradients in risk: infants with ≥3 older siblings face a threefold

higher likelihood of RSV hospitalization compared to those with

one sibling, with 45% of infections attributable to sibling

transmission (49). These dynamics position school-aged children

as critical nodes in RSV transmission networks. Vaccination of

these populations may indirectly protect high-risk groups by

reducing viral load and the number of susceptible individuals,

thereby lowering the risk of virus transmission to others (50). This

requires further verification through real-world testing. Such

indirect protection is particularly important in LMICs.
Overcoming challenges and future
directions

The development of RSV vaccines for toddlers and school-aged

children is fraught with scientific, logistical, and sociopolitical

challenges that require novel approaches. Although the

immunological and epidemiological basis for this approach is

attractive, the theory needs to be unpacked to reflect on the

complex barriers specific to biology, infrastructure, and public

perception to realize.

The main problem is the perception of the low clinical

importance of RSV in school age children. While infants have

high hospitalization rates, older children generally have mild or

asymptomatic disease. This discrepancy has in the past adversely

influenced research funding and regulatory priorities directed

towards high-risk groups, and hence school-aged vaccine

development has been under-resourced.

This poses a major hurdle to the development of the vaccine

because of antigenic diversity. The main vaccine antigen of RSV is

the fusion protein in the surface of the virus, but it has strain

variation in its pre-fusion and post-fusion conformations. Current

pre-F stabilized vaccines like Pfizer’s RSVpreF generate potent

neutralizing antibodies to dominant strains. The conformational

diversity of antigenic site Ø is an intrinsic property of pre-F, with

conformational differences centered on the conserved Pro205

residue (Figure 5D) (51, 52). Amino acid variations in this region

may affect the recognition efficiency of neutralizing antibodies

(51). Although there is currently no direct evidence that such

variations have led to reduced efficacy of existing vaccines, from a

structural biology perspective, it is inferred that if the virus

accumulates mutations at this site, it may increase the risk of

immune escape. To this end, the next-generation platforms must

incorporate mRNA technology. The use of mRNA platforms for

pediatric use—with dose optimization to decrease reactogenicity—

may be the key to building RSV vaccines that can withstand the

virus’ evolutionary capabilities.

The mucosal immune deficit poses another challenge.

Although systemic IgG responses are important in preventing

viremia, they fail to prevent completely upper respiratory tract
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disease or transmission. Mucosal IgA and tissue resident memory

T cells (TRMs) in the nasopharynx inhibit the transmission

chain by significantly reducing viral load (rather than complete

clearance) (53, 54). Intranasal vaccines such as trivalent live

attenuated intranasal influenza vaccine (CAIV-T) appear to

mimic natural infection in order to induce mucosal immunity

(55). It should be noted that natural RSV infection fails to

induce sterilizing immunity, whereas optimized vaccine design is

expected to overcome this limitation and achieve more long-term

and effective immune protection.

In LMICs, where the vast majority of RSV mortality occurs,

cold-chain dependency is a key bottleneck. Vaccines should

always be stored at 2°C–8 °C during the period of manufacture

until administered to the beneficiary. More than 25% of vaccines

are discarded each year. One of the main reasons for this is the

absence of a continuous cold chain in low-income areas where

electricity is scarce (56, 57). Attempts could be made to develop

freeze-dried RSV vaccines suitable for distribution in rural areas.

Furthermore, patches that have been tested to be effective for

measles and polio can provide needle free, cold chain

independent administration of the vaccine (58–60).

Vaccine hesitancy and sociocultural perceptions further

impede uptake. In LMICs, RSV is often misclassified as “mild

flu” or paired with malaria, which reduces the demand for

prevention (61). A survey conducted in Kenya in 2021 showed

that only 39.4% of non-KENITAG (not the members of the

Kenya National Immunization Technical Advisory Group)

Health Care Workers had heard of RSV disease, and only 1.9%

were aware of RSV prevention products because of cost and

unawareness (62). To this end, combining with existing platforms

such as combining RSV vaccines with routine measles or Human

papillomavirus (HPV) immunization could help improve coverage.

Mechanisms for funding have also to change. Sustainable funding

needs Public-Private-Partnership (PPP). The African Vaccine

Manufacturing Accelerator (AVMA) launched in 2024 to build

capacity in the region for vaccine manufacturing, which expected to

provide up to $1.2 billion in funding over 10 years (63). At the

same time, tiered pricing models, under which high income

countries pay more to make the vaccine available to LMICs at

lower prices, could help achieve equity while fulfilling profit motives.

The COVID-19 pandemic accelerated the development of

infrastructure and technological innovations that can be applied

to RSV: The mRNA manufacturing hubs launched in South

Africa can be adapted for RSV vaccine production; Artificial

intelligence-based surveillance systems provide real time RSV

epidemic surveillance (64–66).
Discussion

The push to create vaccines for RSV in children is driven by a

paradox. The most at risk (infants and older adults) are not easily

vaccinated directly which leads to a focus on indirect protection

using methods that block transmission of the virus instead. School-

aged children play a role in spreading RSV within households and

communities due to their extended period of shedding the virus
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and close interactions with others. Immunizing this group could

help stop the circulation of the virus to how flu vaccination

programs, for kids have been successful (67, 68).

This change in approach encounters obstacles on scientific

grounds as well as in terms of practicality and public perception.

An important issue revolves around the necessity of safeguarding

non-targeted groups from harm. Although vaccinating school age

children is mainly intended to protect infants and senior citizens, it

involves procedures for a demographic that receives minimal direct

advantages. This situation prompts discussions about obtaining

consent through information and ensuring fair distribution of

healthcare resources especially in regions, with limited resources

where parental decisions may clash with government health

directives. The experiences gained from HPV vaccination initiatives

offer insights: in Rwandas case study demonstrated that reaching a

93% coverage rate was possible through school based distribution

by highlighting vaccines as essential for “community well-being”

rather than just individual prevention measures (69, 70). With RSV

campaign aiming to resonate with cultural values should focus

more on the altruistic aspect such as promoting protection for

younger siblings, like baby brothers or sisters.

Building trust and dispelling myths are crucial for gaining

approval in this matter. To address this issue effectively, approaches

like the Centers for Disease Control and Prevention’s (CDC’s)

“Vaccinate with Confidence” campaign, which operates in three

dimensions—Protecting Communities, Empowering Families, and

Stopping Myths—working collaboratively with local partners and

trusted messengers to increase confidence in vaccines (71). In

LMICs, incorporating RSV education into maternal healthcare

initiatives could foster better acceptance of vaccinations.

In addition to advancing policies in the realm of healthcare

accessibility and innovation is paramount well. Drafting school

regulations reminiscent of those implemented for measles control

in the United States could significantly boost vaccination rates

for children. Tax breaks offered to firms engaged in research and

development for pediatric RSV could spur creative solutions and

breakthrough discoveries. The European expediting the approval

process, for vaccines targeting overlooked diseases (72, 73).

Despite nirsevimab achieving high coverage rates and significantly

reducing hospitalization rates in infants, its protective effect is limited

by an age window (≤1 year) and duration (single dose provides ∼5–6
months of protection) (74, 75). Additionally, targeting a single epitope

(the F protein) poses a risk of viral escape (76). Real-world data from

Spain showed that after the introduction of nirsevimab in infants

<6-months-old, children admitted to Catalan hospitals were older

than in the previous season, indicating a shift in viral transmission to

older children (77). Therefore, active immunization of school-aged

children remains a critical strategy to bridge protective gaps and

address viral evolution. Developing RSV vaccines for infants and

older children are complementary rather than competitive.

The development of RSV vaccines reflects the evolution of

health—from facing crises to embracing opportunities and moving

towards inclusivity and fairness in healthcare access for all people

worldwide. The experiences gained from dealing with the COVID-

19 pandemic shed light on how we can progress in the future by

learning from both successes and setbacks. As mRNA vaccines
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revolutionized vaccination schedules, RSV immunization has the

potential to transform the way we control diseases. It is a decision

to make: either vaccinate school-age children now or continue to

witness unnecessary loss of life in the future.
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