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Introduction: Evoked potentials have been suggested as potential biomarkers 

for predicting neurodevelopment. This study aimed to investigate the 

relationship between evoked potentials (EP) and neurodevelopmental 

outcomes in preterm infants.

Methods: Premature infants admitted to the neonatal intensive care unit of a 

tertiary referral hospital between March 2020 and March 2023 were included 

in the study. Among them, only those with EP at a corrected age of 40 weeks 

were included, meanwhile, infants who did not undergo the test or had 

abnormal results were excluded. Additionally, patients with follow-up 

developmental outcomes such as the Hammersmith Infant Neurological 

Examination (HINE) at 3 months corrected age or the Gross Motor Function 

Measure (GMFM) at 6 months corrected age were included.

Results: A total of 24 participants were included in this study. No significant 

differences in the clinical factors and results of the EP studies were observed 

between the two groups divided by a HINE score of 60. Hierarchical logistic 

regression analysis revealed that visual EP was the only factor that correlated 

with the lying and rolling domains of the GMFM (P = 0.028).

Discussion: A significant association was observed between the GMFM and 

visual EP. Integrating the visual EP latency with other parameters may 

improve clinical assessments to predict developmental outcomes, possibly 

improving the accuracy of medical interventions and patient outcomes.
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evoked potential, preterm birth, gross motor function measure, neurodevelopmental 
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Introduction

In recent years, the incidence of preterm births has been increasing in high-income 

countries. The increase may be due to advances in neonatal intensive care, subsequently 

leading to a positive impact on the survival rates of preterm infants (1, 2) and an increase 

in multiple gestations along with in vitro fertilization (3). However, the fact that these 

preterm infants are at risk of a range of serious disabilities and adverse 

neurodevelopmental outcomes is well known (4). There is therefore a need for greater 

attention to methods of assessment of neurodevelopment in preterm infants.

With the development of different diagnostic techniques and assessment methods, 

previous studies have confirmed that the combination of imaging tests such as brain 

magnetic resonance imaging (MRI) and ultrasonography along with clinical assessment 
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including Hammersmith Infant Neurological Examination 

(HINE) and general movement at an early age can predict the 

risk of cerebral palsy (CP) with an accuracy of over 90% (5). 

Despite the high accuracy demonstrated by previous assessment 

methods, there has been continued interest in the development 

of additional tests that are safe, practical and applicable to 

preterm infants.

Evoked potentials (EPs) have also been considered useful in 

predicting such outcomes, as confirmed by previous studies (6, 

7). In some studies, visual EPs (VEPs) and somatosensory EPs 

(SEPs) were identified to predict outcomes in newborns with 

asphyxia (8, 9). An association between Auditory EPs (AEPs) 

and clinical apnea in preterm babies has been strongly 

confirmed. When AEPs conduction time was prolonged, 

moderate to severe apnea was observed in preterm infants; 

conversely, when conduction time was short, no such apnea was 

observed (10). EPs are classified as normal or abnormal 

according to their waveform characteristics and latency 

parameters. Abnormal VEPs reports are associated with 

neurodevelopmental outcome including CP (7), whereas normal 

SEP reports are associated with normal neurodevelopmental 

outcome (9). In patients with multiple sclerosis, AEPs may, at 

times, exhibit greater sensitivity than MRI in the assessment of 

brainstem function. However, MRI scans can also show high 

signal intensity lesions even when EP findings are normal (11). 

These findings suggest that it is important to consider EP 

latency as a continuous variable, rather than dividing it into 

normal and abnormal categories based on standard reference 

values. Therefore, this study aimed to investigate whether results 

without “no response” helped predict outcomes and to further 

investigate the relationship between EPs and neurodevelopment, 

focusing on the continuous relationship between EP latency and 

neurodevelopment. In this context, our hypothesis was that even 

among preterm infants whose EP results fall largely within the 

conventional “normal” range, subtle variations in EP latency 

would be significantly associated with neurodevelopmental 

outcomes. We further hypothesised that analysing EP measures 

as continuous variables, rather than dichotomising them, would 

allow us to detect early vulnerabilities that may not be captured 

by a simple normal/abnormal classification.

Methods

Participants

Electronic medical records and EP data of preterm infants 

(gestational age <37 weeks) admitted to the neonatal intensive 

care unit at Chung-Ang University Hospital (CAUH) between 

March 2020 and March 2023 were retrospectively reviewed. In 

CAUH, preterm infants who underwent EP assessment at 

approximately 40 weeks of corrected age were included. Preterm 

infants who did not undergo an EP assessment were excluded 

for reasons including other medical problems, a lack of parental 

consent, or transfer to another hospital. In total, 36 infants 

underwent EP assessment, and after excluding cases with “no 

response,” 30 infants were included. Of these 30 infants, 20 

underwent HINE evaluation and 22 underwent GMFM 

assessment. Patients with a follow-up HINE assessment at 3 

months of corrected age or a Gross Motor Function Measure 

(GMFM) at 6 months of corrected age were included in this study.

Clinical information

Clinical information in electronic medical records of the 

infants during the perinatal and postnatal periods was obtained 

including (1) infantile characteristics: gestational age, sex, birth 

weight, HINE, GMFM; (2) neonatal morbidities: 1- and 5-min 

Apgar scores, intraventricular hemorrhage, periventricular 

leukomalacia, seizure, patent ductus arteriosus, respiratory 

distress syndrome, bronchopulmonary dysplasia, duration of 

invasive ventilator, retinopathy of prematurity, and history of 

sepsis; (3) maternal characteristics in electronic medical records: 

maternal pre-eclampsia, gestational diabetes mellitus, maternal 

chorioamnionitis and administration of prenatal steroid.

EP assessment

EP assessment was performed in preterm infants admitted to 

the CAUH ICU, unless the presence of severe seizures or 

significant neurological impairment was contraindicated, and 

was performed in preterm infants at a corrected age of 

approximately 40 weeks. Owing to the difficulty of performance, 

the test was performed in the morning while the infant was 

sleeping to prevent movement during the procedure. The study 

was conducted using a NICOLET EDX SYNERGY machine 

(Natus Medical, Inc., Pleasanton, California), and the test was 

performed by a single clinical pathologist.

SEP

The test was performed using the posterior tibial nerve SEP 

method. The reference electrode was placed on the midline 

frontal (Fz), and the recording electrode was placed on the 

midline central (Cz) to record the EP by applying electrical 

stimulation between the medial malleolus and Achilles tendon. 

The stimulus intensity was adjusted until a clear waveform was 

visible, and the stimulation was repeated three times per second 

for at least 30 trials (12, 13).

AEP

For auditory stimulation, headphones were used to deliver 

broadband clicks at an intensity of 60–70 dB and a stimulation 

rate of 12 clicks per second. The reference electrode was placed 

on Fz, and the recording electrodes were placed on the left and 

right earlobes (A1 and A2, respectively) (14).
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VEP

The reference electrode was placed on the occipital electrode, 

and the recording electrode was placed on Cz. The Jash stimuli 

were presented at a distance of approximately 20 cm in front of 

the infant’s eyes. Each trial consisted of at least 30 responses, 

two times per second, and three trials were performed to obtain 

VEP values (15, 16).

HINE assessment

HINE was assessed by a single experienced physician in an 

outpatient setting at a corrected age of 3 months. The HINE 

consists of five sections, (1) cranial nerve function, (2) 

posture, (3) movement, (4) tone, and (5) reJexes and 

reactions, with points ranging from 0 to 78. The global score 

at a corrected age of 3–4 months ranges from 62.5 to 69 (17). 

Study participants were then divided into the following 

two groups according to their HINE scores: HINE <60 

and ≥60 (17).

GMFM assessment

The GMFM was assessed by a single physiotherapist in an 

outpatient setting at the corrected age of 6 months. The 

GMFM-88 was applied in our study and consists of five 

assessment sections: (1) lying and rolling, (2) sitting, (3) 

crawling and kneeling, (4) standing, and (5) walking, running, 

and jumping (18). Certain assessment items in the GMFM-88 

were not applicable for scoring in our study because of the 

developmental process at a corrected age of 6–7 months. In 

addition, lower scores were often obtained in the second section. 

Therefore, as the main target of the assessment, we focused on 

the first section, “lying and rolling.”

Statistical analysis

The latency of EPs was compared between infants with 

HINE < 60 and those with HINE ≥ 60 using the Student’s t-test 

or Mann–Whitney U-test. Multiple hierarchical regression 

analyses were performed for all participants, with the lying 

and rolling score domains of the GMFM as the dependent 

variables. In step one, maternal demographic and clinical 

characteristics, including maternal pre-eclampsia, gestational 

diabetes mellitus, and multiple gestations, were included as 

independent variables. Furthermore, infant characteristics such 

as birth weight, gestational age, and sex were included in step 

two. Step three extended the analysis by adding neonatal 

morbidities, including a history of sepsis, periventricular 

leukomalacia, seizures, respiratory distress syndrome, 

bronchopulmonary dysplasia, and retinopathy of prematurity 

to those included in step two. In step four, additional variables 

obtained from the EPs were added to the factors considered in 

step three. All statistical analyses were performed using IBM 

SPSS 24 (IBM@SPSS, Armonk, NY, USA), and statistical 

significance was set at P < 0.05.

Results

Study participants

Thirty participants were initially included in the study. Among 

them, six individuals were excluded because they did not undergo 

the GMFM and HINE assessments at the study time point. 

Consequently, 20 participants underwent the HINE assessment, 

while 22 participants underwent the GMFM assessment 

(Figure 1).

Baseline characteristics of the participants

The baseline clinical characteristics of the study participants 

are displayed in Table 1. The study population consisted of 17 

females (70.8%). The mean gestational age of all participants 

was 28 weeks and 4 days, with a mean birth weight of 1,086.2 g. 

Additionally, EP assesment was performed at an average 

corrected age of 40 weeks and 2 days. The analysis focused 

primarily on the latency of left-sided EPs in the current study. 

This decision was based on the observation that the latency of 

the left-hemisphere EPs tended to be faster than the right- 

hemisphere. No significant differences in the clinical 

characteristics were observed between the HINE > 60 and 

HINE < 60 groups.

Comparisons evoked potential latencies of 
HINE < 60 and HINE ≥ 60 groups

The EP latencies were compared between the two groups 

based on a HINE score of 60 (Table 2). No significant 

differences in any of the EP measurements, including SEP, AEP, 

or VEPs, between the two groups were observed.

Hierarchical logistic regression analysis of 
the lying and rolling domain of GMFM

In the hierarchical logistic regression analysis (Table 3), only 

the VEP exhibited a significant relationship with the lying and 

rolling domains of the GMFM (P = 0.028). The R2 value in step 

four was 0.932, indicating a high explanatory power of 93.2% 

for the lying and rolling domains of the GMFM. Furthermore, 

significant associations were identified for VEP P2 (P = 0.005) 

and VEP N3 (P = 0.023) when examining the association of each 

independent variable in step four. Except for sex (P = 0.012), no 

variables displayed significant associations.
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Discussion

In this study, VEP demonstrated a strong correlation with 

GMFM at 6 months of corrected age, with the significance 

remaining high when compared with other clinical 

characteristics using hierarchical regression analysis. However, 

the association between the HINE results and EPs has not 

been confirmed.

In the hierarchical logistic regression analysis, VEP had 

significant associations that were distinct from those of AEP and 

SEP, particularly with GMFM scores, compared to other factors. 

The timing of synaptogenesis in different brain areas may 

account for their unique association with VEP. According to a 

study by Huttenlocher and Dabholkar on the maturation of the 

brain, the visual areas reach their peak of synaptogenesis earlier 

than the auditory and sensory areas (19). Therefore, these 

results suggest that the observed associations, particularly in 

VEP, may be due to the different maturation processes that 

occur in different regions of the brain. The aforementioned 

findings are consistent with the results of a previous study that 

established that the auditory and visual areas of the brain 

develop more rapidly than the sensory areas during the first 

year after birth (20). This study demonstrated that the EPs can 

be a valuable diagnostic technique for the assessment of 

neurodevelopment in preterm and term infants, which is in line 

with previous research. This highlights the usefulness of EPs in 

assessment and reaffirms the association between EPs and 

neurodevelopmental outcomes (21).

This study only included preterm infants with “normal VEP 

reports.” Previous studies that compared VEP with 

neurodevelopmental outcomes displayed that VEP was very 

useful in predicting neurodevelopmental outcomes in preterm 

infants, with a specificity of 94% but a relatively lower sensitivity 

of 78% (22). This suggests that the possibility of neurological 

deficits could not be completely excluded, even in cases where 

the VEP reports were within the normal range. Therefore, in 

this study, significant associations between latency differences 

within the normal range of VEP reports and 

neurodevelopmental outcomes were confirmed using 

hierarchical logistic regression analysis. This highlights the need 

FIGURE 1 

Overview of the participant selection and recruitment procedure.
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for continuous interpretation of VEP reports rather than binary 

normal/abnormal interpretations. In addition, the P2 component 

of the VEP showed a negative correlation with the lying and 

rolling domain of the GMFM in the hierarchical logistic 

regression analysis. Conversely, the N3 component demonstrated 

a positive correlation (Table 3). This suggests that the latency of 

the P2 component is not delayed as the score of the lying and 

rolling domain of the GMFM increases, whereas, in contrast, the 

N3 component appears to be increasingly delayed. According to 

previous studies, the N3 component is associated with the sleep- 

wake cycle and has a longer latency during sleep (23). In the 

present study, EP assessments were conducted while the preterm 

infants were asleep. This may have inJuenced the N3 

component. Therefore, the P2 component, which is unaffected 

by the sleep-wake cycle, may be considered a more 

reliable indicator.

Although no significant differences in the EP latencies 

between the two study groups divided by HINE scores were 

identified, noting that the study’s limited sample size and the 

early timing of HINE assessment may have contributed to these 

results is important. Therefore, to draw definitive conclusions 

regarding the prediction of developmental status at 3 months 

using EPs based on the results obtained in this study is difficult. 

The P-value for AEP wave three was 0.052, indicating a 

relatively closer statistical significance compared with the other 

SEP and VEP measures. A previous study by Wang et al. 

demonstrated a strong association between AEP and 

neurodevelopmental outcomes in preterm infants using the 

Bayley Scale (24). Although this study did not demonstrate a 

statistically significant correlation between AEP and HINE, 

previous studies have reported significant associations between 

AEP and the Bayley Scales. Therefore, the potential importance 

of conducting EP studies within the first three months of life in 

preterm infants should not be underestimated.

In this study, the focus of the analysis was on the values of the 

left-hemisphere EPs. This decision was based on the observation 

that in the actual data from the participants, the measurements 

obtained from the left hemisphere generally demonstrated faster 

responses than those from the right hemisphere. Differences 

between the left and right hemispheres have been observed in 

neuroimaging techniques such as Neurite Orientation 

Dispersion and Density Imaging or Neurite Orientation 

Dispersion (25). This indicates that asymmetry exists in brain 

development between the left and right hemispheres. 

Furthermore, other studies in healthy adults have confirmed a 

significant difference in amplitude between the left and right 

hemispheres in VEP testing (26, 27). Therefore, the EP results 

exhibiting differences between the left and right hemispheres, as 

TABLE 1 Baseline characteristics of the participants.

Clinical factor / statistical value

Total 
(n = 24)

Total (n = 20)

HINE < 60 
(n = 10)

HINE ≥ 60 
(n = 10)

Infantile characteristic

Gestational age 

(weeks:days)

28:4.12 ± 3:1.41 28:1.20 ± 3:5.14 29:1.30 ± 2:5.92

Corrected age at EP 

study (weeks:days)

40:2 40:2 40:2

Birth weigh (g) 1,086.21 ± 163.9 960.2 ± 236.52 1,201.9 ± 284.23

Global score of HINE 53.2 ± 3.86 65.6 ± 2.32

Corrected age at HINE 

(weeks:days)

59:2 55:3

Sex

Male 7 (29) 4 (40) 2 (20)

Female 17 (71) 6 (60) 8 (80)

Neonatal morbidities

APGAR scroe 1 min 3.71 ± 0.69 3.6 ± 1.21 4 ± 1.09

APGAR scroe 5 min 6.46 ± 0.59 6 ± 0.88 6.9 ± 0.99

Intraventricular 

hemorrhage

4 (16.7) 1 (10) 2 (20)

Periventricular 

leucomalacia

3 (12.5) 1 (10) 0

Seizure 2 (8.3) 1 (10) 0

PDA 21 (87.5) 8 (80) 10 (100)

RDS 18 (75) 9 (90) 6 (60)

BPD 16 (66.7) 6 (60) 3 (30)

Duration of invasive 

ventilator (days)

16.13 ± 6.73 23.73 ± 11.63 10.5 ± 6.28

ROP 6 (33.3) 5 (50) 2 (20)

Sepsis 3 (12.5) 1 (10) 0

Maternal factor

Preeclampsia 5 (20.8) 3 (30) 1 (10)

GDM 1 (2.1) 0 1 (10)

Chorioamnionitis 6 (25) 3 (30) 3 (30)

Prenatal steroid 22(91.7) 10(100) 9(90)

Data are presented as the mean ± SD or n (%). Total participants (n = 24) are those who had 

at least one assessment, either HINE (Hammersmith Infant Neurological Examination) at 

corrected age 3 months or GMFM (Gross Motor Function Measure) at corrected age 6 

months.

EP, evoked potential; HINE, Hammersmith infant neurological examination; GDM, 

gestational diabetes mellitus; RDS, respiratory distress syndrome; BPD, 

bronchopulmonary dysplasia; ROP, retinopathy of prematurity; PDA, patent 

ductus arteriosus.

TABLE 2 Comparisons evoked potential latencies of HINE < 60 and 
HINE ≥ 60 groups.

EP wave form / statistical value

Total 
(n = 20)

HINE < 60 
(n = 10)

HINE ≥ 60 
(n = 10)

P-value

SEP P0 30.98 ± 1.48 31.93 ± 2.2 29.93 ± 1.83 0.195

SEP P1 36.19 ± 1.43 37.04 ± 2.09 35.23 ± 1.84 0.224

SEP N1 44.88 ± 2.04 44.88 ± 2.86 44.89 ± 3.09 0.996

AEP 1 1.59 ± 0.1 1.54 ± 0.1 1.64 ± 0.18 0.353

AEP 3 4.33 ± 0.2 4.12 ± 0.13 4.53 ± 0.34 0.052

AEP 5 6.15 ± 0.15 6.14 ± 0.11 6.16 ± 0.282 0.909

VEP N2 60.68 ± 6.09 61.58 ± 10.11 59.78 ± 7.31 0.781

VEP P2 102.97 ± 3.02 102.54 ± 5.5 103.39 ± 2.86 0.792

VEP N3 146.03 ± 4.35 146.71 ± 6.31 145.34 ± 6.3 0.767

Data are presented as the mean ± SD.

SEP, somatosensory evoked potential; AEP, auditory evoked potential; VEP, visual evoked 

potential; SEP P0, the first significant positive deJection in the waveform; SEP P1, a 

positive peak in the waveform after P1; SEP N1, a negative peak in the waveform.
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observed in this study, suggest that such asymmetry was not 

unique to this study particularly, but rather a common feature.

The limitation of this study are the small sample size and 

retrospective nature, which may have led to a lack of power in the 

analysis. However, as the participants in this study are at high risk 

and the incidence itself is low, it could be considered that the 

sample size is enough given this situation in South Korea (28). 

Another limitation of this study is that the follow-up period for 

evaluating neurological outcomes following the EP study was 

relatively short at only a few weeks. Moreover, incorporating 

parental socioeconomic status into the analysis might have helped 

to better explore its potential association with the EP study (29). 

The value of this study is significant given the inherent difficulties 

in conducting research specifically on preterm births. The results 

of this study should be re-evaluated in future studies that have 

large sample sizes and long-term follow-ups, and also are 

prospective in nature. This is an important step in validating and 

extending the results of this study.

In conclusion, by combining VEP latency with other relevant 

factors, clinicians may increase the accuracy of their predictions. 

This integrated approach has the potential to improve the 

precision of clinical interventions, aid in the early detection of 

neurodevelopmental abnormalities in preterm infants and 

ultimately reduce the risk of long-term neurological damage and 

associated complications through timely and proactive management.
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