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Background: We used an algorithm to determine age- and sex-specific 

reference intervals (RIs) for copper, zinc, calcium, magnesium, iron, and lead 

in blood. Data were collected from three health screening centers.

Methods: The data were obtained from the trace element test results of 3933 

outpatients aged <18 years at three health examination centers in Lincang 

City between June 2014 and May 2024. Atomic absorption spectrometry was 

employed to measure the trace element. Participants were divided into 

subgroups at 1-year intervals according to age and gender. Decision trees 

were constructed by the Classification and Regression Tree method to 

determine the optimal age segmentation point. Harris-Boyd and Lahti 

methods were used to assess the appropriateness of age segmentation.

Results: After the appropriate segmentation points are determined, the refineR 

algorithm is applied to calculate RIs. After data cleaning, 3933 samples were 

analyzed for age subgroup partitioning of trace elements from 1 month 

through 18 years. The difference between the age sub-groups was statistically 

significant according to the Harris-Boyd method and the Lahti method. 

Blood copper and calcium levels gradually decreased with months and blood 

zinc and iron concentration gradually increased with months. After gradually 

decreasing with months, blood pb levels in boys and girls tended to peak at 

15 years and beyond. Blood magnesium levels remained stable.

Conclusions: We have established RIs for six trace elements for children, and 

the methods we use provide reference for laboratories around the world.
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1 Introduction

Essential trace elements such as calcium (Ca), iron (Fe), copper (Cu), magnesium 

(Mg), and zinc (Zn) are involved as metal cofactors in the function of many enzymes 

and proteins, and they are essential in maintaining the metabolism (1, 2). As key 

components of metalloenzymes, essential elements are involved in vital biological 

functions, such as oxygen transport, free radical scavenging, and hormonal activity (3). 

The animal and human studies have suggested that Ca, Fe, Cu, Mg, and Zn are 

associated with hypochromia, febrile seizure, rickets, in(ammatory processes, 

cardiovascular diseases, anemia, and other essential elements of metabolism (1, 2). 
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Therefore, the assessment of trace element levels is helpful for 

understanding the body’s nutritional status and assisting in the 

diagnosis of clinical diseases.

Every laboratory test needs a reference limit to properly assess 

the diagnosis. Approximately 80% of clinical decisions rely on 

reference intervals (RIs), which usually indicate the central 95% 

distribution within a healthy population (4). Generally, the 

lower reference limit and the upper reference limit correspond 

to the 2.5th to 97.5th percentiles of the distribution of test 

results (although there are exceptions in specific cases) (5). The 

International Federation of Clinical Chemistry (IFCC) and the 

Clinical Laboratory Standards Institute (CLSI) of the United 

States point out that the method of establishing RIs by 

establishing exclusion criteria and selecting appropriate reference 

individuals is the standard method for establishing RIs (6). 

However, its establishment process is cumbersome, expensive, 

and difficult to promote. Therefore, most hospitals refer to the 

RIs recommended by the kit instructions or textbooks (7). The 

indirect method uses the existing data in the laboratory 

information system and uses mathematical-statistical models to 

establish RIs. It can obtain similar results to the direct method, 

avoid the cumbersome process, and greatly optimize the cost- 

effectiveness. The defect of the indirect method to establish RIs 

is the inclusion of abnormal data of pathological conditions; 

however, through the collection and extraction of big data, 

normality transformation, appropriate outlier elimination rules, 

and mathematical-statistical models, most outliers can be 

identified and eliminated. The RIs obtained by this method have 

a high degree of credibility. Previously, using the data of the 

physical examination population, the RIs obtained by the BOX- 

COX transformation-interquartile range method-outlier 

elimination-Hoffmann linear fitting approach was almost 

consistent with the national standard results (8). This shows that 

the indirect method is feasible and reliable to establish RIs. At 

present, the majority of clinical laboratories in China utilize RIs 

derived from manufacturer package inserts, textbooks, or 

literature (9). Nevertheless, the robustness of these reference 

limits is open to question. A number of population features, 

including age, sex, and ethnicity, contribute to changes in 

analyte concentrations. It is, therefore, important to consider 

them when defining reference limits (4). Pediatric RIs 

specifically re(ect the physiological states of children and 

adolescents throughout their growth and development. As a 

result, age and sex stratification are critical consideration in 

establishing pediatric RIs.

It is a challenge for clinical laboratories to establish RIs for 

infants and children based on the local population. The 

determination of pediatric RIs requires a significant investment 

of resources, as well as at least 120 healthy individuals in each 

subgroup (10). Despite the establishment of pediatric RIs based 

on healthy children and adolescents by several national and 

international initiatives, there are still discrepancies in 

population, sampling technique, and analytical procedure. It is, 

therefore, imperative to establish pediatric RIs that are suitable 

for the Chinese population. We established age-based and sex- 

based RIs using data collected at three health screening centers.

2 Materials and methods

2.1 Study population

The hospital population can be considered as a main 

population consisting of patients with normal laboratory 

findings and a small disordered population with pathology. They 

can be separated mathematically if the main population 

distribution is known (parametric approach) and the sample 

size is large enough, either by exclusion criteria or both. A total 

of 4,868 individuals from the three health screening centers 

were included, with 540, 2,728, and 1,600 participants from each 

center, respectively. Patients with clearly diagnosed 

micronutrient deficiencies or increases and participants lacking 

micronutrient reports were excluded. The project was approved 

by the Ethics Committee. Ethic approval code: 2024002.

2.2 Method and instruments

We examined the levels of trace elements by analyzing whole 

blood samples. Throughout the collection and processing of 

samples, we took every precaution to prevent contamination. 

Atomic absorption spectrometry was employed to measure the 

blood concentrations of Cu, Zn, Ca, Mg, Fe, and Pb. The 

BOHUI 5100 analyzer was utilized for detecting concentrations 

of Cu, Zn, Ca, Fe, and Mg, whereas the BOHUI 2100 analyzer 

was used specifically for Pb detection. Relevant reagents and 

calibration standards were sourced from Bohui Innovation 

Technology Co., Ltd (Beijing, China). Blood Pb concentrations 

were traceable to the national reference materials for Pb 

(GBW08619). Blood Cu, Zn, Ca, Mg, and Fe concentrations 

were traceable to the following national reference materials: 

GBW08615 (Cu), GBW08620 (Zn), GBW(E)080118 (Ca), 

GBW(E)080126 (Mg), and GBW08616 (Fe). Intra-assay and 

inter-assay coefficients of variation for trace element 

determination were presented in Table 1.

2.3 Statistical analysis

Continuous variables are presented as medians (interquartile 

range, IQR), and categorical variables are reported as numbers 

and percentages. Tukey’s method was used to examine and 

TABLE 1 Intra-assay and inter-assay coefficients of variation for trace 
element determination.

Variables Intra-assay 
coefficients of 

variation

Inter-assay 
coefficients of 

variation

Cu 1.27%–6.50% 3.27%–8.51%

Zn 1.42%–11.49% 3.39%–13.50%

Ca 1.54%–2.03% 2.65%–3.77%

Mg 1.32%–3.02% 1.69%–3.87%

Fe 0.38%–1.42% 0.91%–2.69%

Pb 7.43%–11.46% 8.29%–12.55%
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remove outliers, and this process was repeated until no outliers were 

identified (11). We divided the participants into subgroups 

according to age and sex, with an interval of 1 year. We used the 

CART method to construct a decision tree to determine the 

optimal cutoff point for age the fundamental concept behind 

CART involves recursively partitioning the input space into 

smaller regions based on the values of various features or 

attributes of the data. Throughout this partitioning process, CART 

seeks optimized cutting criteria to form tree-shaped decision rules 

that minimize prediction errors (12, 13). The maximum depth of 

the decision tree was set to 2, and two methods were used to 

assess the appropriateness of the age cutoff. Differences between 

continuous subgroups were compared with the Z test according to 

the Harris–Boyd method. The value of z was formulated by the 

equation: Z ¼ X1�X2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s12
n1ð Þþ s22

n2ð Þ
p . The critical value compared to z was 

calculated by the equation of Z� ¼ 3
ffiffiffiffiffiffiffiffiffiffi

n1þn2
240

q

. if the Z value 

exceeds Z*, division is recommended. In addition, if the larger SD 

in one subgroup is more than 1.5 times the smaller SD in the 

next subgroup, the Harris-Boyd approach recommends splitting 

subgroups. The other approach to statistical testing means 

differences between subgroups are based on Lahti’s 

proportionality criterion (14). In this method, data from two 

neighboring subgroups are used to calculate the lower limits 

(2.5th percentile) and upper limits (97.5th percentile). The out-of- 

range value is then calculated as the proportions of the 

distribution of the sub-groups outside the reference limits, which 

are determined by the combination of the neighboring sub- 

groups. If at least one of the four proportions of the subgroups 

outside the common reference limits is greater than or equal to 

4.1% or less than or equal to 0.9%, a split will be advised (14). If 

all three methods above show that node division is unreasonable, 

adjacent subsets are merged. Otherwise, we will use the decision 

tree to subdivide the subset further and repeat the above steps.

Once the appropriate segmentation points had been identified, 

the refineR algorithm was used to calculate the RIs. This algorithm 

uses an inverse approach to identify the model that best explains 

the non-pathological distribution. R packages are obtained from 

CRAN (https://CRAN.Rproject.org/pack-age=refineR). We 

calculated the lower, upper, and median reference values for 

each age subgroup and the subset divided by the best-dividing 

point, as well as their respective 95% confidence intervals (CI). 

Finally, the Q value is clarified based on the relationship 

between trace elements and age.

Data were analyzed using SPSS (26.0 SPSS, IBMCorp) 

and R4.3.1, and a two-tailed P < 0.05 was considered 

statistically significant.

3 Results

3.1 General characteristics

Of the 4,868 people included, 935 were excluded because of the 

definite diagnosis of the lack or increase of trace elements. In total, 

3,933 samples were analyzed to investigate the distribution of trace 

elements in age groups from birth to age 18. The number of boys 

was 2,215 and the number of girls was 1,718. The median blood 

concentrations of Cu, Zn, Ca, Mg, Fe and Pb were 19.74 μmol/L, 

74.80 μmol/L, 1.60 mmol/L, 1.52 mmol/L, 7.84 mmol/L and 

126.09 mmol/L, respectively (Tables 2, 3).

3.2 Age- and sex-specific RIs

Box plots (Figure 1) show a visual examination of the 

distribution of trace elements. There are differences in trace 

element test results depending on age and gender. Decision trees 

were constructed by CART to determine the optimal age 

segmentation point (Supplementary Figure S1–S6). Supplementary 

Table S4 shows the statistical test using the Harris-Boyd method 

for age subgroups by sex. Z does not exceed z∗, and the division 

is reasonable. Furthermore, the Lahti method was also used to test 

the validity of age partitioning for the estimation of RIs. 

Supplementary Table S2 shows that at least one of the observed 

proportions in two subgroups is greater than 4.1% or less than 

0.9%, indicating that the age partitioning is reasonable. Age- and 

sex-specific RIs were obtained by refineR calculation (Table 4).

TABLE 2 Distribution characteristics of trace elements by age subgroup.

Group Total Female Male

0 to <1 year 189 (4.81%) 97 (51.32%) 92 (48.68%)

1 to <2 years 698 (17.75%) 307 (43.98%) 391 (56.02%)

2 to <3 years 430 (10.93%) 183 (42.56%) 247 (57.44%)

3 to <4 years 400 (10.17%) 169 (42.25%) 231 (57.75%)

4 to <5 years 382 (9.71%） 160 (41.88%) 222 (58.12%)

5 to <6 years 278 (7.07%) 125 (44.96%) 153 (55.04%)

6 to <7 years 269 (6.84%) 127 (47.21%) 142 (52.79%）

7 to <8 years 265 (6.74%) 112 (42.26%) 153 (57.74%)

8 to <9 years 226 (5.75%) 108 (47.79%) 118 (52.21%)

9 to <10 years 231 (5.87%) 88 (38.10%) 143 (61.90%)

10 to <11 years 188 (4.78%) 76 (40.43%) 112 (59.57%)

11 to <12 years 146 (3.71%) 55 (37.67%) 91 (62.33%)

12 to <13 years 132 (3.36%） 59 (44.70%） 73 (55.30%)

13 to <14 years 76 (1.93%) 35 (46.05%) 41 (53.95%)

14 to <15 years 16 (0.41%) 11 (68.75%) 5 (31.25%)

15 to <16 years 7 (0.18%) 6 (85.71%) 1 (14.29%)

Total 3,933(100%) 1,718(43.68%) 2,215(56.32%)

TABLE 3 Characteristics of participants included.

Variables Median (25th, 75th)

Age, years 4.00 (2.00, 8.00)

Copper (Cu), μmol/L 19.74 (15.77, 23.54)

Zinc (Zn), μmol/L 74.80 (65.48, 83.42)

Calcium (Ca), mmol/L 1.60 (1.54, 1.71)

Magnesium (Mg), mmol/L 1.52 (1.42, 1.63)

Iron (Fe), mmol/L 7.84 (7.36, 8.35)

Lead (Pb), mmol/L 126.09 (64.73, 203.74)
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FIGURE 1 

Box-plots of trace element for age and gender in different stages.
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3.2.1 Cu

Visual examination showed a significant decrease in content 

after the age of 15 years. An assessment by the Harris and Boyd 

method found the age partitions for Cu were 3 months to 11 

months, 1 year, 2 years to 5 years, 6 years to 8 years, 9 years, 10 

years and above in male children, and were 2 months to 

11months, 1 year, 2 years, 3 years to 6 years, 7 years and above 

in female children. For trace element Cu, the RIs of boys at the 

age of 3–11 months, 1–8 years, 9 years, 10 years, and above are 

13.52–20.9 μmol/L, 12.46–30.62 μmol/L, 15.96–25.98 μmol/L and 

13.48–25.66 μmol/L, respectively. The RIs of girls aged 2–1 

years, 2 years, and above are 15.99–24.37 μmol/L and 8.61– 

30.39 μmol/L.

3.2.2 Zn

Visual examination showed the contents of Zn increased 

slightly with age, and in female infants and children, it was 

slightly lower than in men. The age partitions for Zn were 3 

months to 1 year, 2 years, 3 years, 5 years, 5 years and above in 

male children and were 2 months to 11 months, 1 year, 2 years, 

3 years, 4 years, 5 years to 8 years, 9 years to 11 years, 12 years, 

13 years and above in female children. For trace element Zn, the 

RIs of boys at the age of 3–11 months, 1 year, 2 years, 3–4 

years, 5 years, and above are 46.25–60.57 μmol/L, 54.52– 

79.94 μmol/L, 55.85–82.56 μmol/L, 55.23–90.71 μmol/L, and 

61.12–100.32 μmol/L, respectively. The RIs of girls at the age of 

2–11 months, 1 year, 2 years, 3–11 years, 12 years and above are 

47.76–61.12 μmol/L, 63.20–82.87 μmol/L, 60.95–86.28 μmol/L, 

58.36–100.21 μmol/L, and 78.14–84.88 μmol/L, respectively.

3.2.3 Ca

Visual examination of the distribution for trace elements is 

shown in box plots (Figure 1). There are differences in trace 

element test results depending on age and gender. The contents 

of Ca decreased slightly, and in female infants and children, 

were slightly lower than those in men. The age partitions for Ca 

were 3 months to 1 year, 2 years, 3 years to 5 years, 6 years to 

11 years, 12 years and above in male children and were 2 

months to 11 months, 1 year, 2 years to 3 years, 4 years to 11 

years, 12 years and above in female children. For trace element 

TABLE 4 Medians and lower and upper reference limits for in age- and sex- specific groups divided by the adjusted optimal segmentation points.

Variables Gender Age Total Median  
(95%CI)

Lower limit  
(95%CI)

Upper limit  
(95%CI)

Cu Males 3 mths–11 mths 92 16.84 (15.58, 24.56) 13.52 (8.68, 22.80) 20.93 (18.25, 30.91)

1 yrs–8 yrs 1,657 20.29 (19.35, 20.93) 12.46 (8.59, 14.85) 30.62 (26.84, 31.43)

9 yrs 143 21.23 (17.10, 24.14) 15.96 (9.36, 21.94) 25.98 (21.48, 30.76)

10 yrs– 323 18.70 (14.37, 23.24) 13.18 (6.33, 20.10) 25.66 (18.32, 31.76)

Females 2 mths–1 yrs 404 20.32 (17.66, 21.29) 15.99 (9.12, 17.79) 24.37 (21.96, 31.01)

2 yrs– 1,314 19.87 (19.16, 20.01) 8.61 (7.06, 12.44) 30.39 (28.78, 31.19)

Zn Males 3 mths–11 mths 92 53.17 (46.68, 61.30) 46.25 (29.83, 56.64) 60.57 (54.22, 71.29)

1 yrs 391 66.89 (60.13, 77.64) 54.52 (47.84, 70.74) 79.94 (68.73, 87.24)

2 yrs 247 68.01 (63.98, 77.99) 55.85 (53.70, 71.33) 82.56 (70.95, 87.76)

3 yrs–4 yrs 453 74.06 (72.19, 77.08) 56.23 (54.73, 66.42) 90.71 (85.41, 94.95)

5 yrs– 1,032 78.91 (75.85, 81.19) 61.12 (56.38, 63.38) 100.32 (91.38, 103.08)

Females 2 mths–11 mths 97 54.07 (51.49, 60.29) 47.76 (43.71, 57.23) 61.12 (56.48, 67.46)

1 yrs 307 73.29 (63.20, 75.12) 63.20 (44.51, 67.94) 82.87 (76.32, 88.40)

2 yrs 183 72.77 (59.82, 79.02) 60.95 (45.62, 69.50) 86.28 (67.86, 96.95)

3 yrs–11 yrs 1,020 76.73 (73.29, 83.41) 58.36 (52.98, 66.75) 100.21 (93.11, 111.89)

12 yrs– 111 81.43 (78.16, 98.59) 78.14 (71.42, 91.60) 84.88 (81.67, 106.99)

Ca Males 3 mths–1 yrs 483 1.68 (1.63, 1.73) 1.52 (1.50, 1.61) 1.86 (1.74, 1.89)

2 yrs–5 yrs 853 1.58 (1.57, 1.58) 1.48 (1.47, 1.49) 1.67 (1.65, 1.70)

6 yrs– 897 1.52 (1.50, 1.53) 1.41 (1.39, 1.44) 1.63 (1.56, 1.66)

Females 2 mths–11 mths 97 1.70 (1.69, 1.76) 1.60 (1.55, 1.65) 1.81 (1.76, 1.90)

1 yrs– 1,621 1.57 (1.56, 1.59) 1.44 (1.41, 1.47) 1.70 (1.66, 1.78)

Mg Males 3 mths– 2,215 1.52 (1.50, 1.55) 1.27 (1.22, 1.33) 1.77 (1.75, 1.83)

Females 3 mths– 1,718 1.52 (1.48, 1.54) 1.27 (1.17, 1.36) 1.77 (1.71, 1.79)

Fe Males 3 mths–11 mths 92 6.52 (6.35, 7.42) 6.24 (6.12, 7.26) 6.79 (6.44, 7.58)

1 yrs 391 7.70 (6.81, 7.85) 7.02 (6.47, 7.27) 8.36 (7.08, 8.77)

2 yrs–6 yrs 995 7.80 (7.72, 7.95) 6.75 (6.59, 7.00) 9.01 (8.76, 9.16)

7 yrs– 737 8.27 (7.99, 8.50) 7.24 (6.96, 7.57) 9.30 (9.05, 9.48)

Females 2 mths–1 yrs 404 7.54 (6.77, 7.67) 6.81 (6.32, 7.15) 8.31 (7.16, 8.51)

2 yrs–7 yrs 876 8.08 (7.53, 8.26) 7.05 (6.73, 7.45) 9.04 (8.31, 9.37)

8 yrs– 438 8.22 (7.93, 8.36) 7.16 (6.76, 7.52) 9.30 (8.95, 9.54)

Pb Males 3 mths– 2,215 27.72 (22.49, 33.07) 2.79 (1.44, 10.55) 85.75 (55.53, 106.84)

Females 2 mths–11 mths 97 10.53 (8.89, 17.24) 5.91 (2.13, 12.87) 16.16 (12.09, 29.92)

1 yrs– 1,621 25.39 (21.32, 34.18) 1.55 (1.23, 11.46) 68.62 (50.28, 82.74)

Cu, copper; Zn, zinc; Ca, calcium; Mg, magnesium; Fe, iron; Pb, lead; mths, months; yrs, years.
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Ca, the RIs of boys at the age of 3 months −1 year, 2–5 years, 6 

years and above are 1.52–1.86 mmol/L, 1.48–1.67 mmol/L, and 

1.41–1.63 mmol/L, respectively. The RIs of girls at the age of 2 

months-11 months, 1 year, and above are 1.60–1.81 mmol/L and 

1.44–1.70 mmol/L.

3.2.4 Mg
Visual examination showed the contents of Mg were relatively 

stable, and in female infants and children, they were slightly lower 

than those in men. The age partitions for Mg were 3 months to 3 

years, 4 years to 7 years, 8 years and above in male children and 

were 2 months to 11 months, 1 year to 3 years, 4 years to 8 

years, and 9 years and above in female children. For trace 

element Mg, the RIs of boys and girls at 3 months and above 

are 1.27–1.77 mmol/L.

3.2.5 Fe
Visual examination showed the contents of Fe increased 

slightly with age, and in female infants and children, were 

slightly lower than those in men. The age partitions for Fe were 

3 months to 11 months, 1 year, 2 years, 3 years, 4 years to 6 

years, 7 years and above in male children and were 2 months to 

11 months, 1 year, 2 years to 3 years, 4 years to 7 years, 8years, 

9 years and above in female children. For trace element Fe, the 

RIs of boys at the age of 3 months-11 months, 1 year, 2–6 

years, and 7 years and above are 6.24–6.79 mmol/L, 7.02– 

8.36 mmol/L, 6.75–9.01 mmol/L and 7.24–9.30 mmol/L, 

respectively. The RIs of girls at the age of 2 months—1 year, 

2–7 years, 8 years, and above are 6.81–8.31 mmol/L, 7.05– 

9.04 mmol/L, and 7.16–9.30 mmol/L, respectively.

3.2.6 Pb
Visual examination showed a significant decrease in content 

after the age of 15 years. The age partitions for Pb were 3 

months to 11 months, 1 year to 3 years, 4 years to 8 years, 9 

years and above in male children and were 2 months to 11 

months, 1 year, 2 years, 3 years to 7 years, 8 years and above in 

female children. For trace element Pb, the RIs of boys aged 3 

months and above are 13.48–414.25 mmol/L. The RIs of girls 

aged 2 months-11 months, 1 year, and above are 28.55– 

78.07 mmol/L and 7.49–331.50 mmol/L, respectively.

4 Discussion

Infants and children represent a fascinating demographic since 

they grow much faster than adults and require more significant 

amounts of nutrients, including the trace elements. Nevertheless, 

an overabundance of essential elements may cause health issues. 

This research determined the RIs for blood levels of Cu, Zn, Ca, 

Mg, Fe, and Pb, tailored by age and sex, based on a generally 

healthy cohort of infants and children. These RIs offer a more 

accurate interpretation for diagnosing and prognosticating 

pediatric clinical conditions.

The interpretation of clinical results relies significantly on the 

utilization of RIs (15). Nevertheless, the reporting of RIs for 

infants and children is infrequent. It is noteworthy that 

considerable variation was observed in this population, as blood 

concentrations of trace elements are susceptible to in(uence by 

environmental exposures and physiological parameters (16). 

Therefore, it is essential for clinical laboratories to establish age- 

and sex-specific RIs for trace elements in infants and children.

The most critical aspect of establishing RIs is the size of the 

study population. To determine the 90% confidence intervals for 

the central 95% RIs, a minimum of 120 participants was 

necessary (17). Nonetheless, acquiring a sample of healthy 

infants and children presents significant challenges. Walton’s 

study proposed that hospital-based RIs were the most 

appropriate for interpretation, as they were measured under 

conditions that were analogous to those experienced by the 

majority of patients (18). In total, 3,933 healthy infants and 

children (2,215 boys and 1,718 girls) were selected from the 

three health examination centers in Lincang.

The discrepancies between the findings of various studies can 

be attributed to differences in the methodologies employed, the 

instruments utilized, the reagents used, and the timing of 

sample collections. The RIs for blood Cu, Zn, Ca, and Pb were 

found to be lower than those reported by other studies (19–21). 

Conversely, the RIs for blood Mg were found to be higher than 

those reported by other studies (19–21).The impact of age and 

gender on blood element concentrations was investigated. 

Noteworthy differences in zinc levels were observed between 

girls and boys beyond the age of 15, which aligns with the 

findings reported by Dongarra et al. (19). Additionally, we 

identified a trend of decreasing blood calcium levels with 

advancing age, resembling the results shared by Marwaha et al. 

(22). However, a separate study did not report any changes in 

this regard (20). In the present study, there was little difference 

in Ca levels between boys and girls before the age of 14 years, 

whereas other studies (22, 23) have found significantly higher 

Ca levels in boys than in girls. The study also found that blood 

lead levels gradually decreased with age between 1 and 13 years 

old. Nevertheless, an increase in blood Pb levels with age was 

documented in other studies (19). Another study conducted in 

China, which employed the same instrumentation, reported 

results similar to ours. However, a notable difference was 

observed in blood Pb levels, which may be attributed to their 

use of a substitution value of 10 for data below 10 µg/L (24). 

Our study’s findings reinforce the critical importance of 

delineating groups based on age and gender in establishing RIs 

in infants and children. Partitioning by age and sex is a 

commonly encountered issue in the context of pediatric RIs and 

other clinical laboratory indexes (4, 25).

The data from the clinical laboratory, which exclusively enrolls 

outpatients, could be utilized for research on age and sex 

partitioning. In previous studies (26, 27), the cutoff age was 

typically estimated through visual examination, which may be 

subject to subjectivity. Indeed, the application of data mining 

techniques could facilitate the generation of more precise 

decision-making processes. For instance, a decision tree 

methodology has been employed for the assessment and 

forecasting of conditions (28, 29). In the present study, a 
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decision tree method was carried out to investigate the cut-off age 

when the trace elements showed a tendency to be age-dependent. 

Compared with visual examination, decision tree analysis can 

present not only the cut-off age but also the mean difference 

between the two subgroups, which may contribute to adjusting 

the age division for RIs estimation. However, the age cut-off 

point suggested by the decision tree analysis was only a 

preliminary suggestion of possible partitioning, and the Harris- 

Boyd and Lahti methods were used to assess the appropriateness 

of the age partitioning.

We recognize that our study has at least two limitations. 

Firstly, we relied solely on atomic absorption spectrometry to 

analyze the blood elements. As a result, these RIs may not be as 

applicable to clinical laboratories employing alternative detection 

methods. Secondly, the adolescent RIs for certain elements were 

not provided due to the insufficient number of subjects in that 

age category (15 years and older).

5 Conclusions

We have presented age- and sex-specific RIs for blood 

concentrations of Cu, Zn, Ca, Mg, Fe, and Pb in infants and 

children, as recommended by the CLSI and the IFCC guidelines. 

The RIs achieved for Cu, Zn, Ca, Mg and Fe may provide a 

guideline for appropriately supplementing infants with trace and 

essential elements. The RIs for Pb may also have a role to play 

in monitoring and diagnosing overexposure to Pb in 

the environment.
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