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Trichuris trichiura remains a major global public health concern, particularly in
low-resource settings where standard anthelmintic regimens are limited. This
study evaluated the diagnostic performance of real-time PCR (qPCR) compared
to the Kato-Katz (KK) method in assessing the efficacy of a fixed-dose
combination (FDC) of albendazole and ivermectin versus albendazole for the
treatment of T. trichiura. The study was embedded within the ALIVE clinical trial
(NCT05124691), a phase 2/3 trial conducted in Kenya, Mozambique, and
Ethiopia. Stool samples were collected at baseline and 21 + 7 days post-
treatment, with KK performed on fresh samples and gPCR on ethanol-
preserved aliquots. In total 534 participants were selected based on positive KK
and gPCR at baseline and complete data post-treatment. The primary endpoint
was cure rate (CR) by KK and gPCR; secondary endpoints included egg reduction
rate (ERR) and cycle threshold (Ct) value incrementation rate (CtIR). Additionally,
machine learning algorithms were used to predict infection intensity from gPCR
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Ct-values and demographic variables. gPCR confirmed the superior efficacy of
FDC compared to albendazole as previously shown by KK, but discrepancies
were observed in CRs between gPCR and KK, particularly lower gPCR CRs for
FDCx1 and FDCx3. Concordance between stool egg counts and Ct-value
decreased post-treatment, likely due to reduced KK sensitivity in low-intensity
infections. ERR and CtIR showed parallel patterns of efficacy across treatment
arms. Machine learning models showed good performance for predicting
baseline infection intensity. While not interchangeable, gPCR complements KK
and enhances the precision of drug efficacy evaluation in helminth clinical trials.

KEYWORDS

diagnostics, qPCR, Kato-Katz, Trichuris trichiura, albendazole ivermectin fixed-

dose efficacy

1 Introduction

Trichuris trichiura is a soil-transmitted helminth (STH) that
affects an estimated 460 million individuals worldwide, particularly
in tropical and subtropical regions with inadequate sanitation
(Pullan et al, 2014). Transmission occurs through the ingestion
of embryonated eggs in contaminated soil or food (Jourdan et al,
2018). Chronic infections cause significant morbidity, including
anemia, diarrhea, and cognitive and physical impairments,
especially in children (Jourdan et al., 2018).

The current standard for controlling T. trichiura infections
involves mass drug administration (MDA) using benzimidazole
derivatives such as albendazole or mebendazole. While these drugs
are effective against other STHs like Ascaris lumbricoides and
hookworms, their efficacy against T. trichiura is suboptimal, with
cure rates as low as 40% (Moser et al, 2017). This limitation
necessitates exploration of alternative treatment strategies, such as
combination therapies. Fixed-dose combination tablets (FDC) of
albendazole and ivermectin have emerged as promising candidates,
demonstrating superior efficacy to single-dose albendazole against T.
trichiura (Krolewiecki et al., 2025). However, robust efficacy
evaluations using sensitive diagnostic tools are essential to determine
true drug efficacy. Evaluating antihelmintic efficacy requires diagnostic
methods that reliably detect changes in parasite burden pre- and post-
treatment. The World Health Organization recommends the Kato-
Katz method (KK) for detecting STH eggs in stool samples due to its
ability to quantify eggs per gram (EPG) of stool, measure infection
intensity, simplicity, low cost and field applicability (Chammartin et al.,
2013). Nevertheless, KK has significant limitations in low-intensity
infections, including post-treatment scenarios. Its sensitivity decreases
with diminishing egg counts, leading to potential overestimation of
efficacy in clinical trials (Nikolay et al., 2014).

Real-time polymerase chain reaction (qQPCR) provides a more
sensitive alternative to KK, especially in low-prevalence areas or low-
intensity infections, by detecting helminth DNA in stool (Verweij and
Stensvold, 2014; Cools et al, 2019). qPCR can also differentiate
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between helminth species with morphologically similar eggs (e.g.
hookworms) and significantly improves the detection of Strongyloides
stercoralis compared to conventional microscopic methods, which are
limited by low sensitivity, and labor-intensive methods like the
Baermann technique (Becker et al, 2015). However, interpreting
qPCR results to assess infection intensity requires careful
consideration. The quantity of parasite DNA detected does not
directly correspond to egg counts due to biological variables (e.g.,
egg maturation and developmental stage) that can lead to variation in
genomic DNA copy number per egg (Papaiakovou et al., 2019; Cools
et al, 2021). Additionally, some qPCR targets may be present in
multiple copies or as tandem repeats in the genome, further
complicating quantitative interpretation. Consequently, while lower
cycle threshold (Ct) values generally correlate with higher parasite
loads, the relationship between Ct-values and true infection intensity
remains complex and incompletely characterized (Papaiakovou et al,,
2019; Cools et al., 2021).

qPCR serves as a powerful complement to KK for assessing drug
efficacy, and their combined use provides a more comprehensive
and accurate evaluation of anthelmintic treatment efficacy. In this
study, we aimed to assess the diagnostic value of qPCR relative to
KK within a clinical trial evaluating the efficacy of FDC compared to
albendazole monotherapy for the treatment of T. trichiura.
Additionally, we explored the potential of using machine learning
algorithms to predict infection intensity based on qPCR results,
addressing the current challenges in translating qPCR output into
standardized intensity measures and advancing the utility of
molecular diagnostics in helminth control programs.

2 Materials and methods

2.1 Study design

This study corresponds to Exploratory Objective 2 of the ALIVE
clinical trial, an adaptive, phase 2/3, single-blinded (outcome
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assessor-blinded), randomized, multicenter, parallel-group, active-
controlled, superiority trial. This objective focuses on evaluating the
detection of parasite-specific DNA using qPCR to assess the primary
efficacy outcome and compare it with conventional stool microscopy
(Krolewiecki et al., 2022). The main objectives and primary findings
of the clinical trial have already been published (Krolewiecki et al,
2025). The trial evaluated the safety and efficacy of an orodispersible
fixed-dose co-formulation (FDC) of albendazole (400 mg) and
ivermectin (9 mg or 18 mg) for the treatment of T. trichiura,
hookworms, and S. stercoralis. The FDC was administered as either
a single dose (FDCx1) or three consecutive daily doses (FDCx3) and
compared with a single dose of albendazole (400 mg) as the control
group, reflecting standard public health practices (Krolewiecki et al.,
2022). Recruitment was conducted in schools across Kwale
County (Kenya), Bahir Dar Zuria (Ethiopia), and Manhica
District (Mozambique).

To measure the efficacy of the treatment arms, stool samples
were collected at baseline and 21 + 7 days after treatment. Fresh
samples were analyzed in duplicate using the KK method, while
qPCR analysis was performed on ethanol-preserved samples. This
study only includes the analysis of the diagnosis by KK thick smears
and qPCR for T. trichiura infection. A summary of the qPCR
findings for A. duodenale, A. lumbricoides, S. stercoralis and
Schistosoma spp. is presented in Supplementary Tables S1, S2 of
the Supplementary Material.

Ethical approvals were obtained from the respective national
and institutional ethics committee in each participating country.
The trial was registered at ClinicalTrials.gov (NCT05124691).
Parents or legal guardians of participating children provided
written informed consent, while participants aged 12 years or
older also provided written assent.

2.2 Laboratory procedures

One aliquot of ethanol-preserved samples (baseline and post-
treatment) from all three ALIVE trial sites was shipped to the
KEMRI-Wellcome Trust Laboratories in Kilifi, Kenya where all
qPCR-related experiments were conducted.

2.2.1 Nucleic acid extraction

Genomic DNA was extracted from ALIVE study stool samples
in batches of 24, each including a negative extraction control
consisting of phosphate-buffered saline (PBS; Sigma-Aldrich, cat.
D8537). Extractions were performed using the QIAamp DNA Mini
Kit (Qiagen, Hilden, Germany; cat. 51306), following the
manufacturer’s protocol with minor modifications to enhance
inhibitor removal. Briefly, 250 pL of ethanol-preserved stool
suspension was transferred into 2 mL PowerBead tubes (Qiagen,
cat. 13113050) containing 1.4 mm ceramic beads. Tubes were
centrifuged at 14,000 x g for 1 minute, and the ethanol
supernatant was discarded. The resulting pellet was washed with
1,000 pL of PBS, centrifuged again, and the supernatant removed.
To reduce PCR inhibitors, 200 puL of 2% polyvinylpolypyrrolidone
(PVPP; Supelco, cat. 77627) was added to each tube. Samples were
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then subjected to bead-beating for 10 minutes using the TissueLyser
II (Qiagen, Hilden, Germany), followed by freezing at —-80°C for 30
minutes. Tubes were returned to room temperature, vortexed
briefly, and incubated at 100°C for 10 minutes. After a quick
centrifugation, DNA extraction proceeded according to the
QIAamp DNA Mini Kit protocol, except that 400 uL of AL buffer
spiked with Phocine Herpesvirus-1 (PhHV; EVAg, cat. 011V-
00884) was used as an internal control for extraction and to
assess amplification efficiency. A final elution volume of 200 pL
was obtained, and DNA was stored at 2-8°C until gPCR analysis,
which was conducted within the same calendar year (2023).

2.2.2 Real-time PCR

DNA samples from the ALIVE trial were analyzed in duplicate
using two multiplex qPCR panels: the ST panel targeting
Schistosoma spp. and T. trichiura and the ANAS panel targeting
Ancylostoma duodenale, Necator americanus, A. lumbricoides, and
S. stercoralis. The N. americanus qQPCR was excluded from further
analysis due to technical challenges during the ALIVE study period,
likely due to the design of two probes for N. americanus and
potential incompatibility issues between the fluorophores of the
probes and the real-time PCR system used in this study. Briefly, two
N. americanus probes designed as BHQ™ probes were non-
functional in the multiplex design and further optimization is
required for this target ie. the N. americanus probes can be
procured as minor groove binding (MGB) detection probes that
use a specific molecule combined with a 3’quencher to increase the
melting temperature of the probes which is required to bind before
the primers bind.

Both multiplex qPCR included primers and probes for Phocine
Herpesvirus-1 (PhHV) as an internal control to monitor extraction
and amplification efficiency. The ST multiplex panel was performed
in both Phase II and Phase III of the ALIVE study, whereas the ANAS
multiplex panel was conducted exclusively in Phase III. This design
reflects the study’s objectives: treatment efficacy against T. trichiura
was evaluated in both phases, while efficacy against hookworms and
S. stercoralis was assessed only in Phase III (Krolewiecki et al., 2022).

The oligonucleotide sequences and concentrations for soil-
transmitted helminth detection and the internal control have
been previously described (Kaisar et al, 2017). qPCR reactions
were performed on a QuantStudioTM 5 real-time PCR System and
an Applied Biosystems 7500 real-time PCR System (Applied
Biosystems, Foster City, CA, USA). A sample was considered
positive for a given target if both replicates showed amplification
curves with Ct-values <35. Samples were classified as negative when
both replicates had Ct-values >35. Reactions were repeated in cases
of discordant results between replicates or if the Ct difference
between replicates exceeded 3.3 cycles. For all samples with a
negative qPCR result, the Ct-value was recorded as 36.

2.3 Statistical analysis

The study population consisted of a per-protocol population
from the ALIVE clinical trial, defined as participants who were
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randomized, not withdrawn, not lost to follow-up, and confirmed to
be infected with T. trichiura at baseline by both KK and qPCR.

The association between EPG obtained by the KK and the Ct-
values from qPCR was assessed using Spearman’s rank correlation
coefficient. This analysis was conducted separately for the baseline
population and the post-treatment population, including only
participants who tested positive by KK or qPCR.

The concordance between KK and qPCR results was assessed
using Cohen’s kappa coefficient.

The primary efficacy outcome was the cure rate (CR), defined as
the percentage of participants cured 21 + 7 days post-treatment. For
the KK thick smear method, cure was determined by the absence of T.
trichiura eggs in stool samples collected 21 + 7 days after treatment
among participants who were positive at baseline. For qPCR, cure
was defined as a Ct-value equal to 36 at 21 days post-treatment in
participants with confirmed infection at baseline. The cure rate was
calculated for both KK and qPCR, along with the corresponding 95%
confidence intervals (Cls), assuming a binomial distribution.
Comparisons of cure rates between treatment arms for each
diagnostic method were conducted using the Cochran-Mantel-
Haenszel test, accounting for the effect of study sites. Fisher’s exact
test was used to compare the cure rates obtained by KK and qPCR.

As a secondary efficacy measure, the egg reduction rate (ERR)
was calculated to assess the decrease in T. trichiura egg burden
following treatment. The ERR was determined by the following
formula, using the arithmetic mean of EPG:

FRR=1— Mean of egg count posttreatment

Mean of egg count at baseline

ditionally, as an exploratory efficacy measure, the mean Ct-
value incrementation rate (CtIR), analogous to the ERR, was
calculated to assess changes in Ct-values. The CtIR was
determined by the following formula, using the arithmetic mean
of Ct-values:

36 —mean of Ct values posttreatment

CtIR=1-
36 —mean of Ct values at baseline

th the ERR and CtIR, along with their corresponding 95%
confidence intervals for the means, were estimated using bootstrap
resampling techniques.

To compare differences in ERR and CtIR between treatment
groups, we employed an ANCOVA. For ERR, the logarithm of egg
counts post-treatment was used as the dependent variable, with site
and treatment included as fixed factors, and the logarithm of
baseline egg counts as a covariate. Similarly, for CtIR, the post-
treatment Ct-values served as the dependent variable, with site and
treatment as fixed factors, and baseline Ct-values as a covariate. All
descriptive and statistical analyses were performed with R software
version 4.1.2 (R Core Team, 2013).

2.4 Machine learning

We assessed the potential of machine learning techniques to
predict infection intensity using qPCR Ct-values in combination
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with demographic variables, such as age and body mass index
(BMI). The incorporation of the demographic variables was done to
improve the predictive ability of the machine learning models, as
these variables are known to be associated with infection intensity.

Baseline data from study participants were utilized, with
infection intensity classified as mild (EPG < 1000) or moderate to
high (EPG > 1000). The dataset was split into training (70%) and
testing (30%) subsets. Ten machine learning models were evaluated:
Logistic Regression, Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Decision Tree, Random Forest, Gradient
Boosting, AdaBoost, XGBoost, Naive Bayes, and Neural
Networks. Stratified 10-fold cross-validation was used to assess
model performance, with metrics including the area under the
receiver operating characteristic curve (AUC-ROC). The model
achieving the best cross-validation performance underwent
hyperparameter tuning to optimize predictive accuracy. Following
optimization, the selected model was applied to the test set, where
its predictive performance was evaluated using AUC-ROC,
sensitivity, and specificity for infection intensity classification. In
addition, the model was applied to predict the intensity of post-
treatment infection. All machine learning analyses were conducted
using Python, leveraging libraries such as Scikit-learn, and pandas
for model development and evaluation.

3 Results
3.1 T. trichiura per-protocol population

The per-protocol population consisted of 534 participants,
representing 84% of the intention-to-treat population from the
ALIVE clinical trial (Figure 1). The primary reason for exclusion
was a negative qPCR result at baseline.

The baseline characteristics are shown in Supplementary
Table S3. The majority of participants were from Kenya (75%)
and Mozambique (25%), with only a single case reported in
Ethiopia. Furthermore, 90% of the infections were classified as
mild in intensity.

3.2 Efficacy of albendazole and FDC for T.
trichiura infection measured by KK and
gPCR

At baseline (n=534), a moderate inverse correlation was observed
between EPG and Ct-values (Spearman’s p = -0.48; p < 0.001),
consistent with the expected relationship whereby higher egg counts
correspond to lower Ct-values. In contrast, among participants who
remained positive by either KK or qPCR following treatment (n =
188), a weak positive correlation emerged (Spearman’s p = 0.18; p =
0.013), indicating a disruption of the baseline pattern. This is because
the agreement between the two diagnostic methods in this group was
poor, with a negative kappa coefficient (k = -0.487; p < 0.001),
suggesting systematic disagreement and a tendency toward divergent
classification of infection status post-treatment.
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n=636
ITT population infected with T. trichiura by
Kato-Katz in the
ALIVE clinical trial
n=102
Excluded from qPCR analysis
14 Baseline gPCR not performed (Non-aliquoted stool
sample for qPCR)
¢ 17 Posttreatment qPCR not performed (3 lost to follow
up, 8 Non-aliquoted stool sample for qPCR, and 6
withdrawal)
¢ 71negative by qPCRin Baseline
n=534
Population infected with T. trichiura by Kato-
Katz and qPCR at baseline in the
ALIVE clinical trial
n=110 n=203 n=221
Albendazole FDCx1 FDCx3
FIGURE 1

Flowchart of the per-protocol population.

Agreement between qPCR and KK for assessing post-treatment
infection status also varied across treatment arms. In the FDCx1
group, agreement was classified as fair (x = 0.229, p = 0.003). In
contrast, the albendazole group showed only slight agreement (x =
0.127, p = 0.159), and the FDCx3 group demonstrated poor
agreement (K = 0.050, p = 0.300). However, in both of these
arms, the observed agreement was not statistically different from
what would be expected by chance.

The efficacy results are summarized in Table 1, while variations
in EPG and Ct-values between baseline and post-treatment for each
treatment arm are illustrated in Figure 2. Cure rates measured by
both KK and qPCR were significantly higher for FDCx1 (83.7% by
KK, 74.9% by qPCR) and FDCx3 (99.5% by KK, 85.1% by qPCR)
compared to albendazole (35.5% by KK, 50.0% by qPCR) (p < 0.001

TABLE 1 Efficacy result by KK and qPCR.

Efficacy outcome

ALB (n=110)

for all comparisons within the same diagnostic method).
Additionally, FDCx3 demonstrated a higher cure rate compared
to FDCx1, as measured by both KK and qPCR (p < 0.001 for both
comparisons). However, discrepancies were observed between cure
rates measured by qPCR and KK within the same treatment arms.
In the albendazole group, qPCR yielded higher cure rates compared
to KK (p = 0.041). Conversely, for both FDCx1 (p = 0.037) and
FDCx3 (p < 0.001), qPCR reported lower cure rates than those
measured by KK.

Consistent with cure rate patterns, ERRs demonstrated
significantly greater efficacy for both FDCx1 (96.4%) and FDCx3
(99.9%) compared to albendazole (42.9%) (p < 0.001 for both
comparisons). Similarly, CtIRs mirrored these findings, with
higher values observed for FDCx1 (79.3%) and FDCx3 (88.8%)

FDCx1 (n=203) FDCx3 (n=221)

Cured by Kato-Kats (n) 39

Cured by qPCR (n) 55
Cure rate by KK (95%CI) 35.5 (26.7, 45.2)
Cure rate by qPCR (95%CI) 50.0 (40.8, 59.2)
Baseline median EPG (IQR) 120 (48, 285)
Baseline median Ct-values (IQR) 30.2 (28.8, 31.7)
Post-treatment median EPG (IQR) 24 (0, 168)
Post-treatment median Ct-values (IQR) 35.0 (30.6, 50.0)
Arithmetic mean ERR 42.9 (2.5, 59.2)

Arithmetic mean CtIR 53.0 (42.5, 63.3)
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05

170 220

152 188
83.7 (77.8, 88.4) 99.5 (97.1, 99.9)
74.9 (68.2, 80.6) 85.1 (79.5, 89.4)
108 (48, 324) 108(48, 348)
30.6 (29.1, 32.2) 30.6 (29.1, 32.1)
0 (0, 0) 0 (0, 0)
50.0 (35.0, 50.0) 50.0 (50.0, 50.0)
96.4 (94.3, 98.0) 99.9 (99.9, 100.0)

79.3 (73.0, 84.5) 88.8 (84.0,92.2)
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relative to albendazole (53.0%) (p < 0.001 for both comparisons).
These parallel trends between ERRs and CtIRs support the
robustness of the efficacy estimates across KK and qPCR.

3.3 Machine learning modeling to identify
T. trichiura infection intensity

Among the ten models evaluated, logistic regression achieved
the highest performance in stratified 10-fold cross-validation, with a
mean AUC-ROC of 0.84 (IC 95%: 0.77, 0.92) (Supplementary
Figure S1, Supplementary Material). The optimized model
demonstrated an AUC-ROC of 0.76 on the test set, along with a
sensitivity, for detecting moderate or heavy infections, of 0.83 (IC
95%: 0.71, 0.90) and a specificity of 0.66 (IC 95%: 0.62, 0.69).

Comparison between the model and KK for post-treatment
infection classification revealed that the model identified a higher
proportion of moderate-to-high intensity infections across all
treatment arms. Specifically, the model classified 21.8% of
albendazole-treated participants, 4.9% of those receiving FDCx1,
and 2.3% of the FDCx3 group as having moderate-to-high
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infections after treatment, compared to 7.3%, 0.5%, and 0.5%,
respectively, using KK (Figure 3).

4 Discussion

This study highlights important discrepancies between KK and
qPCR in evaluating the efficacy of albendazole and FDC therapy
against T. trichiura. While both methods confirmed the superior
efficacy of FDC compared to albendazole, qPCR yielded lower cure
rates for FDCx1 and FDCx3 but a higher cure rate for albendazole.
Although qPCR exhibited near-perfect agreement with KK at
baseline (Supplementary Table S1, Supplementary Material), post-
treatment agreement diminished to fair, resulting in poor agreement
among participants classified as cured in the per-protocol population.
These differences extended to infection intensity classification, with
the model identifying a higher proportion of moderate/high-infection
intensity post-treatment compared to KK. Collectively, these findings
highlight fundamental differences in how each diagnostic tool
captures treatment outcomes and underscore important
considerations for interpreting drug efficacy results in clinical trials.
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FIGURE 3

Comparison of post-treatment infection intensity classifications between Kato-Katz and the predictive model across treatment arms. The bars
represent the proportion of participants classified as having no infection (blue), light infection (yellow), and moderate-to-high infection (red) intensity
by each method. The Sankey-style flow visualization depicts reclassification trends, highlighting discrepancies between KK and the model.

For T. trichiura infections, anthelmintic efficacy estimates vary
substantially across study sites and diagnostic methods (Vlaminck
et al., 2019). While some studies report lower efficacy with qPCR
versus KK, others have found similar or even higher cure rates using
molecular diagnostics (Vlaminck et al, 2019; Keller et al., 2020;
Matamoros et al., 2024). These discrepancies may reflect variations
in local infection intensity, methodological differences, and inherent
differences in diagnostic sensitivity and specificity between the two
methods. Nevertheless, in our study, the majority of participants
infected with T. trichiura were from Kenya, and the efficacy results
for albendazole aligned with prior regional findings (Kepha
et al., 2024).

A critical consideration for qPCR-based efficacy assessment is
the potential persistence of non-viable parasite DNA post-
treatment, which could lead to false-positive results. In our study,
efficacy was assessed between 14 and 28 days post-treatment,
aligning with the WHO guidelines for evaluating anthelmintic
drug efficacy against soil-transmitted helminths (Levecke et al,
2014). Recent evidence suggests that efficacy should be evaluated
between 18 and 24 days post-treatment, although the WHO
recommended window still leads to adequate efficacy results
(Welsche et al., 2024). Therefore, the positive qPCR results
observed at 21 + 7 days post-treatment in our study are unlikely
to be due to residual DNA from non-viable parasites, supporting
qPCR reliability in assessing treatment efficacy within
this timeframe.

Several studies have explored the use of QPCR-derived Ct-values
or genome equivalents per ml of stool DNA extract to quantify the
intensity of STH infections (Kaisar et al., 2017; Cools et al., 2019;
Barda et al., 2020). While some correlation has been found between
molecular measures and egg counts by microscopy, there is no
consensus on translating molecular measures into microscopy
defined intensity categories (Papaiakovou et al., 2019; Cools et al.,
2021). We applied machine learning to improve qPCR-based
intensity predictions. Although the model demonstrated good
predictive performance at baseline among participants who were
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positive by both KK and qPCR, its post-treatment performance was
less consistent, primarily due to the low agreement observed
between qPCR and KK classifications after treatment. The decline
in agreement is likely driven by the decreased sensitivity of KK in
detecting low-intensity infections, which become more common
following treatment. As a result, KK may fail to identify cases that
are still detectable by qPCR, leading to fewer microscopy-positive
cases and diminished agreement between the two diagnostic
methods. Machine-learning models can serve as a valuable
complementary tool for estimating infection intensity in
moderate- and high-burden settings, integrating features such as
Ct values and other available variables, without relying on KK.
However, their utility is limited in low-intensity infections, where
the weak correlation between KK egg counts and qPCR signals
diminishes model accuracy and interpretability. In our view, there is
a clear need to establish dedicated metrics for qPCR-based
assessment of STH infection intensity that are independent of
traditional microscopy-based standards.

Although the cure rate is widely used as a measure of efficacy in
clinical trials, its application is debated due to dependence on
baseline infection intensity and the sensitivity of the diagnostic
method employed (Montresor, 2011). Thus, WHO recommends
ERR as the primary efficacy metric (World Health Organization,
2013). However, qPCR-based ERR faces similar challenges to
intensity quantification, as DNA quantification cannot be directly
translated into egg counts. To address this, we used ACt-values as an
egg-reduction proxy, allowing us to assess differences in drug
efficacy across treatment arms. The CtIR calculated with qPCR,
analogous to the ERR calculated via KK, demonstrated the same
significant differences between treatment groups and supported
similar conclusions regarding efficacy. Thus, using CtIR provides
a straightforward and practical method to evaluate reductions in
parasite load without the need for complex DNA-to-egg
conversions. Moreover, it is important to recognize that no
parasitological method has produced ERR results identical to KK
(Vlaminck et al., 2019), nevertheless, alternative diagnostic
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techniques, including qPCR, have shown substantial agreement in
assessing drug efficacy. Therefore, while qQPCR may not replicate
KK’s quantitative outputs, its ability to support comparable efficacy
conclusions underscores its value as a complementary diagnostic
tool in the evaluation of anthelmintic treatments.

One limitation of this study is that efficacy results were only
evaluated in participants who tested positive on both the Kato-Katz
test and gPCR at baseline. As a result, individuals with discordant
results at baseline were excluded from the efficacy analysis, which may
limit the generalizability of the findings to this population. Also, our
study was limited by the fact that only one stool sample was used at
each time point, and qPCR results may vary between samples (Keller
et al,, 2020), suggesting that multiple samples per individual could
provide more reliable data. Although hookworms were a secondary
endpoint in the ALIVE trial for efficacy assessment, QPCR optimization
was only successful for A. duodenale and not for N. americanus, due to
the use of probes with incompatible chemistry relative to the original
assay design. As a result, we were unable to evaluate treatment efficacy
for hookworm infections using gPCR.
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