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Myofascial pain syndrome (MPS) is a leading cause of chronic musculoskeletal 

pain, yet its mechanisms remain debated. Traditional models emphasized 

muscle contracture or central sensitization, but growing evidence highlights 

fascia as a biologically active, pain-relevant tissue. Pathological alterations such 

as densification, fibrosis, and inflammation may generate nociceptive input and 

sustain persistent symptoms. To explore this perspective, we conducted a 

conceptual narrative review of studies published between 2000 and 2025 in 

PubMed, Embase, Scopus, and Google Scholar. Eligible publications included 

anatomical, histological, imaging, biomechanical, and clinical investigations, and 

evidence was synthesized narratively into an integrative model of mechanisms. 

This mini-review followed the SANRA guidelines for narrative reviews. The 

literature demonstrates that fascia is richly innervated by nociceptors and 

sympathetic fibers and undergoes pathological changes in patients with MPS. 

Imaging and histological studies confirm fibrosis, densification, and 

inflammatory activity in symptomatic fascia. Mechanistic pathways linking fascia 

to pain include impaired sliding, abnormal mechanotransduction, and 

neuroinflammatory sensitization. Clinically, patients exhibit tenderness on fascial 

palpation, imaging evidence of stiffness, and symptomatic improvement after 

fascia-focused therapies. These findings suggest that fascia functions as a key 

peripheral driver in MPS. This concept was first formalized as the ‘integrated 

hypothesis’ by Simons in 2004. Integrating fascia into existing frameworks 

reconciles muscle-based and central sensitization models, providing a plausible 

substrate that initiates nociceptive signaling, perpetuates central adaptations, and 

interacts with psychosocial influences. This integrative model may explain the 

heterogeneity of MPS and supports multimodal treatment strategies that 

combine fascial therapies with central and psychosocial interventions. Although 

current evidence remains preliminary and heterogeneous, recognizing fascia as 

a central but interconnected contributor to MPS offers a more comprehensive 

understanding of this syndrome and a clinically relevant framework for future 

diagnostic and therapeutic innovation in pain medicine.
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1 Introduction

Myofascial pain syndrome (MPS) is one of the most common chronic musculoskeletal 

disorders worldwide, with prevalence estimates ranging from 10% to 20% in the general 

population and up to 50% in specialized pain clinics (1, 2). Clinically, it is characterized by 

localized or regional pain, taut bands, and myofascial trigger points (MTrPs) that reproduce 

referred pain when palpated (3). Although first described in the mid-20th century, MPS 
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remains a controversial entity, with considerable debate regarding its 

diagnostic criteria, underlying mechanisms, and optimal 

management (4, 5).

Historically, pathophysiological models of MPS focused primarily 

on muscle tissue. Early theories attributed symptoms to ischemia, 

energy crisis, and localized contracture knots caused by dysfunctional 

motor endplates (6, 7). Electromyographic studies identified 

spontaneous electrical activity at trigger points, interpreted as 

abnormal endplate noise (8). These findings supported the view that 

MPS was primarily a muscle-based disorder. However, treatments 

targeting muscles directly, such as massage or intramuscular 

injections, have produced inconsistent outcomes (9).

This early understanding culminated in the formulation of the 

“integrated hypothesis,” which proposed that persistent endplate 

dysfunction and localized energy crisis could sustain trigger 

point activity and pain generation (10).

Later models incorporated central sensitization and psychosocial 

factors, suggesting that peripheral nociceptive input interacts with 

the central nervous system to amplify pain (11). Psychological 

stress, mood disturbances, catastrophizing, and maladaptive coping 

strategies have been shown to worsen symptom severity and 

functional impact (12, 13). This biopsychosocial understanding 

explains some variability in clinical presentations, but does not 

fully clarify the structural basis of peripheral nociception in MPS.

In the past decade, attention has increasingly shifted toward fascia 

as a potential primary pain generator (14). Once thought to be merely 

a passive supportive tissue, fascia is now recognized as a dynamic 

sensory and mechanometabolic organ (15). Histological and 

neuroanatomical studies demonstrate that fascia contains dense 

networks of nociceptors, sympathetic fibers, and mechanoreceptors 

(16). Moreover, pathologic fascia exhibits fibrosis, densification, 

altered viscoelasticity, and in9ammatory mediator expression-all of 

which may produce nociceptive input (17, 18).

Clinical and imaging evidence reinforces this perspective. 

Ultrasound elastography has revealed altered stiffness and 

reduced sliding between fascial layers in patients with chronic 

low back pain and neck pain (19). Biopsies of thoracolumbar 

fascia in chronic pain patients show increased expression of 

in9ammatory cytokines and extracellular matrix remodeling 

(20). Cadaveric dissections confirm that fascial compartments 

are richly innervated and capable of transmitting pain signals 

(21). These findings suggest that fascia is not only involved in 

force transmission but may itself be a source of pain in MPS.

Fascial dysfunction contributes to pain through multiple potential 

mechanisms. First, mechanical densification-resulting from impaired 

hyaluronan metabolism and collagen cross-linking-reduces fascial 

sliding, leading to stiffness and nociceptor activation (15). Second, 

fibrosis and thickening increase mechanical stress on embedded 

sensory nerves (22). Third, neuroin9ammatory signaling within fascia 

amplifies nociceptive drive and may sustain peripheral sensitization 

(23). Finally, chronic fascial changes may feed into central 

sensitization, reinforcing pain chronification (24). Thus, fascia 

provides a unifying peripheral substrate that integrates with muscle 

and neural processes in MPS.

The therapeutic implications of this shift are significant. 

Traditional approaches such as trigger point injections (TPI) and 

dry needling have demonstrated mixed and often modest results in 

clinical trials (25, 26). However, more recent randomized 

controlled trials and systematic reviews have reported clinically 

meaningful pain and disability reductions with dry needling in 

selected conditions (e.g., neck and low-back myofascial pain), 

while the mechanistic rationale—including potential fascial 

contributions—remains debated (27–29). One possible explanation 

is that these techniques, while effective in some cases, primarily 

target muscle fibers and may not adequately address pathological 

fascia. Emerging fascial interventions-including ultrasound-guided 

hydrorelease (small-volume saline or anesthetic injections into 

thickened fascia) and hydrodissection (9uid separation of fascial 

planes, sometimes decompressing nerves)-aim to directly restore 

fascial mobility and reduce nociceptive signaling (30–32). 

Although evidence is preliminary, these techniques exemplify a 

broader conceptual shift toward fascia-focused management of MPS.

Importantly, fascia’s role should not be viewed in isolation. 

Rather, fascia interacts with muscle fibers, peripheral nerves, and 

central processes in a complex network. This integrative 

perspective supports a multilevel model of MPS in which fascial 

changes act as both initiators and perpetuators of pain, 

synergizing with neural and psychosocial factors (33). Such a 

model helps explain the heterogeneity of clinical presentations 

and variable treatment responses observed the purpose of this 

conceptual review is to explore fascia as a central but 

interconnected component in the pathophysiology of MPS. By 

synthesizing anatomical, physiological, and clinical evidence, and 

by situating fascia within a biopsychosocial framework, we aim 

to provide an integrative model of mechanisms that may guide 

both future research and more targeted therapeutic strategies.

2 Methods

This mini-review followed the SANRA (Scale for the Assessment 

of Narrative Review Articles) guidelines for narrative reviews (34). It 

was conducted as a conceptual narrative review with the aim of 

integrating current knowledge about fascia into the broader 

understanding of MPS. The methodology was guided by best 

practices for literature-based reviews and emphasizes transparency 

of sources and synthesis.

Search strategy: A comprehensive literature search was 

performed in PubMed/MEDLINE, Embase, Scopus, and Google 

Scholar from January 2000 through July 2025. Search terms 

included “myofascial pain syndrome,” “fascia,” “fascial 

innervation,” “fascial pathology,” “connective tissue pain,” 

“biomechanics,” and “chronic musculoskeletal pain.” Additional 

relevant publications were identified through manual searching 

of reference lists from key articles and narrative reviews.

Eligibility criteria: Both basic science and clinical studies were 

considered eligible. This included anatomical, histological, 

imaging, and biomechanical investigations of fascia, as well as 

clinical reports and reviews examining fascia in relation to 

musculoskeletal pain and MPS. Articles exclusively focused on 

muscle physiology without reference to fascia were excluded. Only 

peer-reviewed studies published in English were included.
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Data synthesis: Findings were synthesized narratively, with a 

focus on fascia as an innervated, mechanosensitive, and 

metabolically active structure contributing to MPS. Evidence was 

integrated into an original conceptual model that situates fascia 

within a multifactorial biopsychosocial framework of pain. 

Given the heterogeneity and descriptive nature of the literature, 

no quantitative pooling of results was attempted.

Ethics and funding: As this article is a literature-based 

conceptual review, no ethics approval was required. No external 

funding was received.

3 Fascial contributions to myofascial 
pain syndrome

3.1 Anatomy and innervation of fascia

3.1.1 Structural organization and innervation 
patterns

Fascia forms a continuous three-dimensional matrix 

surrounding muscles, vessels, and organs, integrating local and 

global biomechanics (35). Recent meta-analytic evidence 

demonstrates that connective tissue lesions frequently extend 

beyond the muscle belly, emphasizing the integral involvement of 

extramuscular fascia in musculoskeletal injury and repair processes 

(36). It consists of collagen fibers, elastin, and ground substance 

rich in hyaluronan, allowing gliding between fascial planes (9).

Fascia is not inert but richly innervated. Thoracolumbar fascia 

contains free nerve endings, Ruffini corpuscles, and sympathetic 

fibers (37). Immunohistochemical studies confirm dense nociceptive 

innervation in both superficial and deep fascial layers (38). Deep 

fasciae harbor a rich and heterogeneous innervation comprising free 

nerve endings and low-threshold mechanoreceptors (Ruffini/ 

Pacini), with regional differences across anatomical sites. Histologic 

evidence indicates increased innervation in pathological fascia. 

Fascia-resident fibroblasts exhibit mechano-responsiveness mediated 

by the Yes-associated protein (YAP) and transcriptional coactivator 

with PDZ-binding motif (TAZ) signaling pathway, which links 

mechanical strain to fibroblast activation, extracellular matrix 

remodeling, and transcriptional programs relevant to nociception 

and tissue stiffness (39, 40).

The abundance of nociceptors explains why fascial palpation 

reproduces localized and referred pain in MPS (41). This supports 

fascia as a sensory organ and potential generator of 

musculoskeletal pain.

4 Fascial pathology in myofascial pain 
syndrome

4.1 Fibrosis, densification and inflammatory 
changes

Pathological fascia demonstrates collagen cross-linking, fiber 

thickening, and densification, reducing mobility and elasticity 

(42). These changes impair tissue mechanics and sensitize 

embedded nociceptors (43). Emerging mechanobiological data 

suggest that fascial fibrosis, adhesions and impaired layer gliding 

contribute to nociception. In cadaveric models, fascial 

hydrorelease reduces gliding resistance between aponeurotic and 

epimysial layers, offering a plausible mechanism for symptom 

relief in selected patients (15).

Biopsies of painful fascia reveal upregulation of cytokines (IL- 

6, TNF-α) and extracellular matrix remodeling enzymes (44). Such 

biochemical changes perpetuate a cycle of in9ammation and 

pain (45). Recent translational work identified increased 

expression of YAP/TAZ, TGF-β1 within painful fascia, 

supporting a chronic in9ammatory–fibrotic cascade that alters 

gliding and nociception (46, 47).

Ultrasound elastography and MRI confirm reduced sliding 

and increased stiffness of fascial planes in chronic low back and 

neck pain (13, 48). These findings strengthen the link between 

structural fascial pathology and clinical symptoms.

5 Mechanisms linking fascia and pain

5.1 Mechanical mechanisms

Densification of hyaluronan increases the viscosity of the 

ground substance, impairing gliding between fascial layers and 

enhancing tissue stiffness (49). Fibrotic remodeling transmits 

abnormal tension to embedded sensory endings, facilitating 

peripheral nociceptive drive (50). Mechanotransductive signaling 

within fascia, mediated by mechanosensitive pathways such as 

YAP/TAZ and TGF-β1, alters extracellular matrix organization 

and the local nociceptor milieu, thereby promoting sustained 

peripheral input that fuels central sensitization (10, 40).

In addition, neurovascular specializations within fascia, 

including sympathetic fibers and small vessels, provide a 

structural substrate for persistent nociception and neurogenic 

in9ammation (51–53). Repetitive mechanical loading, impaired 

sliding, or local ischemia may further upregulate in9ammatory 

gene expression and nociceptor sensitization, linking 

biomechanical dysfunction to sustained pain (54, 55).

5.2 Neuroinflammatory and central 
mechanisms linking fascia and pain

In9ammatory mediators released within fascial tissues—such as 

prostaglandins, cytokines, neurotrophins, and growth factors— 

activate and sensitize nociceptors embedded in the connective 

tissue matrix, contributing to sustained peripheral sensitization 

(10, 51, 56). Persistent activation of local fibroblasts and immune 

cells amplifies cytokine and chemokine release, alters extracellular 

matrix composition, and increases mechanical stiffness, 

reinforcing a self-sustaining in9ammatory–fibrotic cycle (52, 54).

Mechanotransductive and neuroimmune cross-talk further 

integrate peripheral and central components of pain processing. 

Prolonged nociceptive input from fascia may trigger dorsal horn 

hyperexcitability, alter descending inhibitory control, and induce 
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cortical reorganization of somatosensory maps (53, 57). This 

cascade underlies central sensitization and the expansion of 

receptive fields observed in patients with widespread myofascial 

pain (55, 58, 59).

These converging neuroin9ammatory and central 

mechanisms explain how local fascial pathology can evolve 

into regional or generalized pain and contribute to associated 

autonomic and affective manifestations. The multiple 

pathways through which fascia contributes to both peripheral 

and central sensitization are summarized in the integrative 

9ow diagram (Figure 1).

6 Clinical evidence supporting fascia’s 
role

6.1 Palpation and clinical examination

Palpation of densified fascial tissue elicits local tenderness and 

referred pain patterns, distinct from purely muscular trigger 

points (60).

Recent ultrasound-based studies have confirmed the 

correspondence between palpable fascial densifications and 

sonographic findings, supporting fascia-targeted assessment in 

clinical practice (59).

6.2 Rehabilitation and injection-based 
approaches

Interventions targeting fascial mobility (e.g., myofascial 

release, stretching, instrument-assisted soft tissue mobilization) 

improve pain and function in clinical and pilot trials (61, 62).

Recent randomized and meta-analytic data support fascial- 

oriented manual therapy as one of the most effective 

conservative approaches for MPS (63–65).

Beyond manual interventions, ultrasound-guided fascial 

hydrorelease and hydrodissection techniques have also shown 

promising biomechanical and clinical outcomes, improving fascial 

plane gliding and reducing entrapment-related pain (16, 66).

6.3 Imaging-guided findings and 
interventions

Ultrasound and MRI studies show fascial abnormalities 

improve after manual therapy or injection-based interventions 

(67). These findings suggest that fascial change, not just muscle 

treatment, may underlie clinical benefit. Ultrasound (including 

shear-wave elastography) increasingly documents fascial 

thickening and reduced sliding in pain phenotypes. Preliminary 

interventional evidence—ranging from fascial hydrorelease/ 

FIGURE 1 

Pathophysiological cascade of fascia-related mechanisms in myofascial pain syndrome. Proposed pathophysiological model linking fascial 

alterations to peripheral and central sensitization, clinical manifestations, and whole-person impact. Fascial changes (fibrosis, densification, 

molecular mediators, and myofibroblast activation) drive peripheral nociception and contribute to nerve fiber sensitization, neuropeptide release, 

and sensory afferent hyperexcitability. These processes result in regional manifestations, local and systemic symptoms, which, together with 

central sensitization, culminate in widespread pain and whole-person impact. Chronicity and disability arise from maladaptive feedback loops 

and dysautonomia. ASICs, acid-sensing ion channels; α-SMA, alpha-smooth muscle actin; BDNF, brain-derived neurotrophic factor; CGRP, 

calcitonin gene-related peptide; EMG, electromyography; HA, hyaluronan; HPA, hypothalamic–pituitary–adrenal axis; IL, interleukin; NGF, nerve 

growth factor; NMDA, N-methyl-D-aspartate receptor; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; ROS, reactive 

oxygen species; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha; QoL, quality of life; ADL, activities of daily living; 

TRPV1, transient receptor potential vanilloid 1.
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hydrodissection to fascia-oriented manual approaches—suggests 

that targeting fascial layers can yield clinically meaningful 

improvements, although higher-quality trials are required (15). 

Ultrasound-guided hydrodissection techniques have also shown 

promising results in neuropathic and myofascial entrapment 

syndromes, emphasizing the clinical value of fascial plane 

restoration (66). Modern ultrasonography enables visualization 

of fascial densifications and altered gliding, bridging palpation 

with objective assessment (59).

7 Toward an integrative conceptual 
model

Fascial pathology (densification, fibrosis, in9ammation) 

generates nociceptive input that contributes to the peripheral 

pain source (68).

Beyond a single pathway, MPS may emerge from at least two 

partially distinct etiopathophysiological routes: a predominantly 

myogenic route (motor end-plate dysfunction, local metabolic crisis) 

and a fascial-neurogenic route (innervation-rich fascia, impaired 

gliding, mechanotransduction). These mechanisms likely co-exist 

and interact, shaping heterogeneous clinical phenotypes (47, 69).

Persistent peripheral drive facilitates central sensitization, 

explaining hyperalgesia, referred pain, and chronicity (70).

Psychological and social factors (stress, catastrophizing, 

inactivity) further amplify pain through neuroimmune and 

central pathways (71). Fascial dysfunction therefore must be 

understood as part of an integrative biopsychosocial model (72).

8 Discussion

8.1 Summary of key findings

The present review highlights fascia as an essential but often 

overlooked contributor to the pathophysiology of MPS. 

Integrating recent anatomical, histological, neurophysiological, 

and clinical research, current evidence supports the view that 

fascial tissues actively participate in nociception, 

mechanotransduction, and pain modulation rather than serving 

merely as passive connective scaffolds (15, 39, 46, 66).

Contrary to classical descriptions of MPS as primarily a 

muscular disorder, fascial changes such as densification, fibrosis, 

and altered hyaluronan viscosity are now recognized as key 

peripheral drivers of pain. These changes impair gliding between 

fascial layers, elevate local stiffness, and directly stimulate 

embedded nociceptors (10, 49, 50). Mechanotransductive 

signaling within fascia—particularly via YAP and TGF-β1—links 

mechanical strain to fibroblast activation and extracellular- 

matrix remodeling, reinforcing chronic peripheral input (40, 46).

Fascial in9ammation further amplifies nociceptive signaling. 

Cytokines, prostaglandins, and neurotrophins released from 

fascia-resident fibroblasts and immune cells sustain a low-grade 

in9ammatory-fibrotic loop that perpetuates peripheral 

sensitization (51, 52). Prolonged nociceptive drive from fascia to 

the dorsal horn and higher centers produces neuronal 

hyperexcitability and reorganization of somatosensory maps, 

core features of central sensitization (53, 55, 57, 59). 

Sympathetic and neurovascular networks within fascia may 

further contribute to sustained nociception and autonomic 

dysregulation (52, 53).

Clinically, multiple recent randomized controlled trials and 

meta-analyses support the efficacy of fascial-oriented 

interventions in restoring mobility and reducing pain. Dry 

needling, myofascial release, and hydrorelease have demonstrated 

measurable analgesic and functional benefits in MPS and tension- 

type headache (27–29). Myofascial and manipulative approaches 

also show consistent benefit across musculoskeletal pain 

conditions (64, 65). Diagnostic imaging techniques—including 

high-resolution ultrasound and elastography—can visualize 

fascial thickening, densification, and restricted gliding (59, 73).

Recent conceptual and clinical reviews advocate the inclusion 

of fascia-focused diagnostics and therapies within multimodal 

pain-management frameworks (47, 69, 74, 75). Collectively, 

these data establish fascia as a dynamic sensory and 

biomechanical interface integrating mechanical, neural, and 

immune pathways of pain. Recognizing its role redefines the 

etiopathological understanding of MPS and provides a rationale 

for developing standardized diagnostic and therapeutic protocols 

that explicitly target the fascial system (15, 47, 59, 65, 66, 69, 75).

8.2 Controversies and different schools of 
thought

Muscle-centric models, while historically important, lack the 

capacity to explain why some patients with MPS exhibit 

pronounced fascial stiffness or why palpation of fascial layers 

reproduces pain (76). Similarly, central sensitization models 

explain pain amplification but not its initial peripheral drivers. 

By overlooking fascia, both models risk oversimplification.

In contrast, an integrative model situates fascia as a peripheral 

initiator of nociceptive input, which interacts with muscle 

dysfunction and central sensitization. This alignment bridges the 

gap between local pathology and systemic pain amplification, 

supporting a biopsychosocial understanding that is clinically 

relevant (77). The concept echoes other conditions where 

peripheral tissue changes drive central changes, such as knee 

osteoarthritis or tendinopathy (78).

Recent work suggests that these models should not be viewed 

as mutually exclusive but rather complementary, with fascia 

providing a peripheral driver that interacts with both muscular 

dysfunction and central sensitization (79).

8.3 Added value of a fascia-centered 
perspective

Recognizing fascia’s role has several advantages. First, it 

clarifies why some interventions traditionally aimed at muscles 

(e.g., dry needling, TPI) provide inconsistent outcomes-these 
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treatments may not adequately address fascial pathology (80). 

Second, it validates clinical observations of stiffness, restricted 

sliding, and pain reproduction upon fascial palpation. Third, it 

aligns with imaging and histological findings that consistently 

demonstrate abnormalities in fascia in chronic pain conditions 

(81, 82). These insights resonate with recent frameworks that 

position fascia not only as a pain source but as a broader 

regulatory system interacting with neuroimmune and systemic 

processes (83).

Furthermore, fascia as a pain source helps explain the 

heterogeneity of MPS. Some patients present with localized pain 

and clear MTrPs, while others develop diffuse, persistent pain 

resistant to conventional therapies. In the integrative model, 

fascia acts as both a generator of local nociceptive input and a 

perpetuator of central sensitization (84).

8.4 Clinical implications

Clinical implications of fascial dysfunction include the need 

for improved diagnostic sensitivity and multimodal approaches.

Recent advances highlight the value of ultrasound imaging for 

visualizing fascial thickness, echotexture, and gliding alterations, 

which can guide both diagnosis and treatment (59).

Rehabilitation strategies emphasizing fascial mobility— 

through manual therapy, stretching, and movement retraining— 

have demonstrated measurable functional gains and pain 

reduction in controlled trials (63–65).

Moreover, clinician education on the biomechanical and 

sensory properties of fascia is increasingly recognized as a key 

element for improving patient outcomes and interdisciplinary 

management (47, 69).

8.4.1 Diagnosis
Incorporating fascia into diagnostic frameworks means 

clinicians should not only palpate muscle trigger points but also 

evaluate fascial layers for stiffness, reduced sliding, or 

tenderness. Advanced ultrasound techniques such as shear-wave 

elastography may help identify pathological fascia (85).

8.4.2 Conservative therapies
Manual therapies, stretching, and instrument-assisted fascial 

release techniques may be particularly effective when fascial 

densification predominates. Evidence shows improvements in 

mobility and pain with interventions that specifically target 

fascia (86, 87).

8.4.3 Interventional approaches
Emerging ultrasound-guided techniques, such as fascial 

hydrorelease and hydrodissection, aim to restore fascial glide 

and reduce nociceptive input. While evidence remains 

preliminary, these procedures embody the shift toward fascia- 

focused interventions (88, 89).

These insights emphasize that fascia should be considered a 

therapeutic target in pain medicine, alongside neural and 

muscular mechanisms (90, 91).

8.5 Multimodal integration

Because fascia interacts with neural and psychosocial 

mechanisms, treatment should be multimodal-combining fascial 

interventions with exercise, psychological strategies, and central 

desensitization therapies. This integrative approach aligns with 

modern pain medicine principles (92). Recent high-level reviews 

emphasize the need for standardized diagnostic criteria and 

multimodal treatment strategies integrating fascial assessment 

(47, 69, 75). Network meta-analyses confirm the efficacy of 

manipulative and fascial release interventions for MPS, 

highlighting their role within precision pain management 

frameworks (65).

8.6 Current research gaps

Despite promising insights, the evidence base remains limited 

and methodologically heterogeneous. Most studies of fascia in 

MPS are small-scale, observational, or descriptive. Randomized 

controlled trials investigating fascial interventions are rare, with 

only isolated examples available (30). Imaging studies 

demonstrate correlations between fascial stiffness and pain, but 

causality remains unproven (25). In addition, the absence of 

validated imaging biomarkers and the lack of longitudinal 

studies limit the ability to establish causal links between fascial 

pathology and clinical outcomes (93, 94). Histological studies 

often rely on small sample sizes and post-mortem tissue, 

limiting generalizability (95).

Another limitation is the lack of standardized terminology. 

Terms such as “myofascial pain,” “fasciopathy,” and “fascial 

dysfunction” are used inconsistently, making it difficult to 

synthesize findings across studies (96). Moreover, many clinical 

interventions studied under the label of “myofascial therapy” do 

not clearly define whether fascia or muscle is the primary target, 

further complicating interpretation (97). A recent 2025 

consensus proposal for a unified definition of the human fascial 

system underlines the importance of consistent terminology and 

highlights the urgency of standardization in both research and 

clinical practice (98).

Finally, psychosocial dimensions of MPS remain 

underexplored in fascia-focused literature. While fascia provides 

a compelling peripheral substrate, chronic pain invariably 

involves central and psychosocial contributions. Ignoring these 

domains risks replacing one reductionist model with another (99).

8.7 Future developments

Future studies are encouraged to address these limitations. 

Potential research directions include: 

1) Standardization of terminology: Clear definitions of fascia- 

targeted interventions and diagnostic criteria.

2) Mechanistic studies: Using elastography, MRI, and molecular 

assays to elucidate fascial changes in vivo.
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3) Large-scale RCTs: Testing fascial therapies against sham or 

conventional treatments.

4) Multimodal trials: Assessing how fascial interventions 

integrate with exercise and psychological care.

5) Safety data: Establishing registries for fascial injections and 

other interventional procedures.

By pursuing these directions, the field can transition from 

intriguing hypotheses to evidence-based clinical practice (70, 100).

8.8 Toward an integrative conceptual 
model

We propose a model in which fascia is positioned alongside 

muscle, nerve, and psychosocial factors as a co-equal 

contributor to MPS. In this framework: 

* Fascial pathology (densification, fibrosis, in9ammation) 

generates localized nociceptive input.

* Muscular dysfunction contributes additional peripheral input 

through contracture and ischemia.

* Central sensitization amplifies pain perception and promotes 

widespread symptoms.

* Psychosocial in9uences (stress, catastrophizing, maladaptive 

coping) sustain and exacerbate pain.

Together, these domains form a multifactorial, integrative model 

that accounts for both localized trigger point pain and chronic 

widespread MPS. By situating fascia within this model, clinicians 

and researchers gain a more comprehensive understanding that 

may improve diagnostic accuracy, therapeutic targeting, and 

ultimately patient outcomes (101).

These findings collectively suggest that fascia must be 

understood as an integral contributor to myofascial pain 

syndrome. To illustrate these interactions, we propose an 

integrative conceptual model summarizing peripheral, central, 

and psychosocial mechanisms (Figure 2).

Emerging technologies such as artificial intelligence and 

machine learning applied to ultrasound elastography and MRI 

texture analysis may accelerate biomarker discovery. 

International initiatives, including those of the International 

Association for the Study of Pain and the European Pain 

Federation, could facilitate consensus on terminology and 

methodological standards (79, 93).

Fascia is not a passive tissue but a biologically active 

contributor to pain in MPS. Integrating fascia into existing 

models reconciles historical muscular theories with central 

sensitization and psychosocial frameworks. While evidence 

remains preliminary, fascia-centered approaches open promising 

avenues for diagnosis and therapy. A clear, standardized, and 

multidisciplinary research agenda is now required to validate 

and operationalize these concepts.

9 Conclusions

MPS continues to challenge clinicians and researchers due to 

its heterogeneous presentation and lack of universally accepted 

mechanisms. Traditional models emphasizing muscle 

contracture and central sensitization provide valuable insights 

but remain incomplete. This review highlights fascia as a crucial, 

though often overlooked, component of MPS pathophysiology.

Evidence from anatomical, histological, imaging, and 

clinical studies demonstrates that fascia is richly innervated, 

capable of nociceptive signaling, and subject to pathological 

changes such as densification, fibrosis, and in9ammation. 

These alterations not only generate local pain but also interact 

with central and psychosocial factors, sustaining chronicity 

and amplifying symptoms. Integrating fascia into the 

conceptual framework of MPS offers a more comprehensive 

model that unites peripheral and central processes within a 

biopsychosocial context.

Clinically, this perspective suggests that assessment and 

treatment of MPS should extend beyond muscle fibers to 

include fascial evaluation and targeted interventions. 

Manual therapies, rehabilitation strategies, and emerging 

ultrasound-guided techniques aimed at restoring fascial mobility 

FIGURE 2 

Biopsychosocial model of myofascial pain syndrome. Peripheral mechanisms encompass not only muscular dysfunction and trigger point activity but 

also fascial pathology, including densification, fibrosis, and impaired sliding properties. These inputs provide nociceptive drive to central sensitization, 

which is amplified through neuroimmune pathways, maladaptive coping strategies, and sustained pain, leading to widespread symptoms and 

amplified pain perception. The biopsychosocial model highlights the interplay between fascial, muscular, and central mechanisms, together with 

psychosocial contributors such as stress, catastrophizing, and inactivity. Feedback loops between these domains perpetuate symptom chronicity, 

reduced function, and disability in myofascial pain syndrome.
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may provide benefit, particularly when combined with multimodal 

care addressing central and psychosocial dimensions.

However, the current evidence remains preliminary. Most 

available studies are small, descriptive, and methodologically 

heterogeneous, underscoring the need for standardized 

terminology, rigorous mechanistic research, and adequately 

powered randomized controlled trials. Only through such efforts 

can the true role of fascia in MPS be determined and integrated 

into evidence-based clinical guidelines.

In summary, fascia should be recognized as a central but 

interconnected contributor to MPS. By embracing an integrative, 

fascia-informed model, clinicians and researchers may advance 

understanding, improve patient outcomes, and shape the next 

generation of therapeutic approaches in chronic musculoskeletal pain.
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