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Myofascial pain syndrome (MPS) is a leading cause of chronic musculoskeletal
pain, yet its mechanisms remain debated. Traditional models emphasized
muscle contracture or central sensitization, but growing evidence highlights
fascia as a biologically active, pain-relevant tissue. Pathological alterations such
as densification, fibrosis, and inflammation may generate nociceptive input and
sustain persistent symptoms. To explore this perspective, we conducted a
conceptual narrative review of studies published between 2000 and 2025 in
PubMed, Embase, Scopus, and Google Scholar. Eligible publications included
anatomical, histological, imaging, biomechanical, and clinical investigations, and
evidence was synthesized narratively into an integrative model of mechanisms.
This mini-review followed the SANRA guidelines for narrative reviews. The
literature demonstrates that fascia is richly innervated by nociceptors and
sympathetic fibers and undergoes pathological changes in patients with MPS.
Imaging and histological studies confirm fibrosis, densification, and
inflammatory activity in symptomatic fascia. Mechanistic pathways linking fascia
to pain include impaired sliding, abnormal mechanotransduction, and
neuroinflammatory sensitization. Clinically, patients exhibit tenderness on fascial
palpation, imaging evidence of stiffness, and symptomatic improvement after
fascia-focused therapies. These findings suggest that fascia functions as a key
peripheral driver in MPS. This concept was first formalized as the ‘integrated
hypothesis’ by Simons in 2004. Integrating fascia into existing frameworks
reconciles muscle-based and central sensitization models, providing a plausible
substrate that initiates nociceptive signaling, perpetuates central adaptations, and
interacts with psychosocial influences. This integrative model may explain the
heterogeneity of MPS and supports multimodal treatment strategies that
combine fascial therapies with central and psychosocial interventions. Although
current evidence remains preliminary and heterogeneous, recognizing fascia as
a central but interconnected contributor to MPS offers a more comprehensive
understanding of this syndrome and a clinically relevant framework for future
diagnostic and therapeutic innovation in pain medicine.

KEYWORDS

fascia, myofascial pain syndrome, trigger points, chronic pain, connective tissue,
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Myofascial pain syndrome (MPS) is one of the most common chronic musculoskeletal
disorders worldwide, with prevalence estimates ranging from 10% to 20% in the general
population and up to 50% in specialized pain clinics (1, 2). Clinically, it is characterized by
localized or regional pain, taut bands, and myofascial trigger points (MTrPs) that reproduce
referred pain when palpated (3). Although first described in the mid-20th century, MPS
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remains a controversial entity, with considerable debate regarding its
diagnostic ~ criteria, underlying mechanisms, and optimal
management (4, 5).

Historically, pathophysiological models of MPS focused primarily
on muscle tissue. Early theories attributed symptoms to ischemia,
energy crisis, and localized contracture knots caused by dysfunctional
motor endplates (6, 7). Electromyographic studies identified
spontaneous electrical activity at trigger points, interpreted as
abnormal endplate noise (8). These findings supported the view that
MPS was primarily a muscle-based disorder. However, treatments
targeting muscles directly, such as massage or intramuscular
injections, have produced inconsistent outcomes (9).

This early understanding culminated in the formulation of the
“integrated hypothesis,” which proposed that persistent endplate
dysfunction and localized energy crisis could sustain trigger
point activity and pain generation (10).

Later models incorporated central sensitization and psychosocial
factors, suggesting that peripheral nociceptive input interacts with
the central nervous system to amplify pain (11). Psychological
stress, mood disturbances, catastrophizing, and maladaptive coping
strategies have been shown to worsen symptom severity and
functional impact (12, 13). This biopsychosocial understanding
explains some variability in clinical presentations, but does not
fully clarify the structural basis of peripheral nociception in MPS.

In the past decade, attention has increasingly shifted toward fascia
as a potential primary pain generator (14). Once thought to be merely
a passive supportive tissue, fascia is now recognized as a dynamic
sensory and mechanometabolic organ (15). Histological and
neuroanatomical studies demonstrate that fascia contains dense
networks of nociceptors, sympathetic fibers, and mechanoreceptors
(16). Moreover, pathologic fascia exhibits fibrosis, densification,
altered viscoelasticity, and inflammatory mediator expression-all of
which may produce nociceptive input (17, 18).

Clinical and imaging evidence reinforces this perspective.
Ultrasound elastography has revealed altered stiffness and
reduced sliding between fascial layers in patients with chronic
low back pain and neck pain (19). Biopsies of thoracolumbar
fascia in chronic pain patients show increased expression of
inflammatory cytokines and extracellular matrix remodeling
(20). Cadaveric dissections confirm that fascial compartments
are richly innervated and capable of transmitting pain signals
(21). These findings suggest that fascia is not only involved in
force transmission but may itself be a source of pain in MPS.

Fascial dysfunction contributes to pain through multiple potential
mechanisms. First, mechanical densification-resulting from impaired
hyaluronan metabolism and collagen cross-linking-reduces fascial
). Second,

fibrosis and thickening increase mechanical stress on embedded

sliding, leading to stiffness and nociceptor activation (
sensory nerves (22). Third, neuroinflammatory signaling within fascia
amplifies nociceptive drive and may sustain peripheral sensitization
(23). Finally, chronic fascial changes may feed into central
sensitization, reinforcing pain chronification (24). Thus, fascia
provides a unifying peripheral substrate that integrates with muscle
and neural processes in MPS.

The therapeutic implications of this shift are significant.
Traditional approaches such as trigger point injections (TPI) and
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dry needling have demonstrated mixed and often modest results in

clinical trials (25, ). However, more recent randomized
controlled trials and systematic reviews have reported clinically
meaningful pain and disability reductions with dry needling in
selected conditions (e.g., neck and low-back myofascial pain),
fascial

while the mechanistic rationale—including potential

contributions—remains debated (27-29). One possible explanation
is that these techniques, while effective in some cases, primarily
target muscle fibers and may not adequately address pathological
fascia. Emerging fascial interventions-including ultrasound-guided
hydrorelease (small-volume saline or anesthetic injections into
thickened fascia) and hydrodissection (fluid separation of fascial
planes, sometimes decompressing nerves)-aim to directly restore
(30-32).

Although evidence is preliminary, these techniques exemplify a

fascial mobility and reduce nociceptive signaling
broader conceptual shift toward fascia-focused management of MPS.

Importantly, fascia’s role should not be viewed in isolation.
Rather, fascia interacts with muscle fibers, peripheral nerves, and
central processes in a complex network. This integrative
perspective supports a multilevel model of MPS in which fascial
changes act as both initiators and perpetuators of pain,
). Such a

model helps explain the heterogeneity of clinical presentations

synergizing with neural and psychosocial factors (

and variable treatment responses observed the purpose of this
conceptual review is to explore fascia as a central but
interconnected component in the pathophysiology of MPS. By
synthesizing anatomical, physiological, and clinical evidence, and
by situating fascia within a biopsychosocial framework, we aim
to provide an integrative model of mechanisms that may guide
both future research and more targeted therapeutic strategies.

This mini-review followed the SANRA (Scale for the Assessment
of Narrative Review Articles) guidelines for narrative reviews (34). It
was conducted as a conceptual narrative review with the aim of
integrating current knowledge about fascia into the broader
understanding of MPS. The methodology was guided by best
practices for literature-based reviews and emphasizes transparency
of sources and synthesis.

Search strategy: A comprehensive literature search was
performed in PubMed/MEDLINE, Embase, Scopus, and Google
Scholar from January 2000 through July 2025. Search terms
included “myofascial “fascia,” “fascial

pain  syndrome,”

innervation,” “fascial pathology,” “connective tissue pain,”
“biomechanics,” and “chronic musculoskeletal pain.” Additional
relevant publications were identified through manual searching
of reference lists from key articles and narrative reviews.
Eligibility criteria: Both basic science and clinical studies were
This

imaging, and biomechanical investigations of fascia, as well as

considered eligible. included anatomical, histological,
clinical reports and reviews examining fascia in relation to
musculoskeletal pain and MPS. Articles exclusively focused on
muscle physiology without reference to fascia were excluded. Only

peer-reviewed studies published in English were included.
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Data synthesis: Findings were synthesized narratively, with a

focus on fascia as an innervated, mechanosensitive, and
metabolically active structure contributing to MPS. Evidence was
integrated into an original conceptual model that situates fascia
within a multifactorial biopsychosocial framework of pain.
Given the heterogeneity and descriptive nature of the literature,
no quantitative pooling of results was attempted.

Ethics and funding: As this article is a literature-based
conceptual review, no ethics approval was required. No external

funding was received.

3.1 Anatomy and innervation of fascia

3.1.1 Structural organization and innervation
patterns

Fascia forms a continuous three-dimensional matrix
surrounding muscles, vessels, and organs, integrating local and
global biomechanics (35). Recent meta-analytic evidence
demonstrates that connective tissue lesions frequently extend
beyond the muscle belly, emphasizing the integral involvement of
extramuscular fascia in musculoskeletal injury and repair processes
(36). It consists of collagen fibers, elastin, and ground substance
rich in hyaluronan, allowing gliding between fascial planes (9).

Fascia is not inert but richly innervated. Thoracolumbar fascia
contains free nerve endings, Ruffini corpuscles, and sympathetic
fibers (37). Immunohistochemical studies confirm dense nociceptive
innervation in both superficial and deep fascial layers (38). Deep
fasciae harbor a rich and heterogeneous innervation comprising free
nerve endings and low-threshold mechanoreceptors (Ruffini/
Pacini), with regional differences across anatomical sites. Histologic
evidence indicates increased innervation in pathological fascia.
Fascia-resident fibroblasts exhibit mechano-responsiveness mediated
by the Yes-associated protein (YAP) and transcriptional coactivator
with PDZ-binding motif (TAZ) signaling pathway, which links
mechanical strain to fibroblast activation, extracellular matrix
remodeling, and transcriptional programs relevant to nociception
and tissue stiffness (39, 40).

The abundance of nociceptors explains why fascial palpation
reproduces localized and referred pain in MPS (41). This supports
fascia as a sensory

organ and potential generator of

musculoskeletal pain.

4.1 Fibrosis, densification and inflammatory
changes

Pathological fascia demonstrates collagen cross-linking, fiber

thickening, and densification, reducing mobility and elasticity
(42). These changes impair tissue mechanics and sensitize
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embedded nociceptors (43). Emerging mechanobiological data
suggest that fascial fibrosis, adhesions and impaired layer gliding
contribute to nociception. In cadaveric models, fascial
hydrorelease reduces gliding resistance between aponeurotic and
epimysial layers, offering a plausible mechanism for symptom
relief in selected patients (15).

Biopsies of painful fascia reveal upregulation of cytokines (IL-
6, TNF-a) and extracellular matrix remodeling enzymes (44). Such
biochemical changes perpetuate a cycle of inflammation and
pain  ( identified

expression within  painful

). Recent translational work increased
of YAP/TAZ, TGE-f1

supporting a chronic inflammatory-fibrotic cascade that alters

fascia,

gliding and nociception (46, 47).

Ultrasound elastography and MRI confirm reduced sliding
and increased stiffness of fascial planes in chronic low back and
neck pain (13, 48). These findings strengthen the link between

structural fascial pathology and clinical symptoms.

5.1 Mechanical mechanisms

Densification of hyaluronan increases the viscosity of the
ground substance, impairing gliding between fascial layers and
enhancing tissue stiffness (49). Fibrotic remodeling transmits
abnormal tension to embedded sensory endings, facilitating
peripheral nociceptive drive (50). Mechanotransductive signaling
within fascia, mediated by mechanosensitive pathways such as
YAP/TAZ and TGF-B1, alters extracellular matrix organization
and the local nociceptor milieu, thereby promoting sustained
peripheral input that fuels central sensitization (10, 40).

In addition, neurovascular specializations within fascia,
including sympathetic fibers and small vessels, provide a
structural substrate for persistent nociception and neurogenic
inflammation (51-53). Repetitive mechanical loading, impaired
sliding, or local ischemia may further upregulate inflammatory
gene expression and sensitization,

nociceptor linking

biomechanical dysfunction to sustained pain (54, 55).

5.2 Neuroinflammatory and central
mechanisms linking fascia and pain

Inflammatory mediators released within fascial tissues—such as
prostaglandins, cytokines, neurotrophins, and growth factors—
activate and sensitize nociceptors embedded in the connective
tissue matrix, contributing to sustained peripheral sensitization

( > >

cells amplifies cytokine and chemokine release, alters extracellular

). Persistent activation of local fibroblasts and immune

matrix composition, and increases mechanical stiffness,
reinforcing a self-sustaining inflammatory-fibrotic cycle (52, 54).
Mechanotransductive and neuroimmune cross-talk further
integrate peripheral and central components of pain processing.
Prolonged nociceptive input from fascia may trigger dorsal horn

hyperexcitability, alter descending inhibitory control, and induce
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cortical reorganization of somatosensory maps (53, 57). This
cascade underlies central sensitization and the expansion of
receptive fields observed in patients with widespread myofascial
pain (55, 58, 59).

These
mechanisms explain how local fascial pathology can evolve

converging neuroinflammatory and central
into regional or generalized pain and contribute to associated
The

pathways through which fascia contributes to both peripheral

autonomic and affective manifestations. multiple
and central sensitization are summarized in the integrative

flow diagram (Figure 1).

6 Clinical evidence supporting fascia’s
role

6.1 Palpation and clinical examination

Palpation of densified fascial tissue elicits local tenderness and
referred pain patterns, distinct from purely muscular trigger
points (60).
the

correspondence between palpable fascial densifications and

Recent ultrasound-based studies have confirmed

sonographic findings, supporting fascia-targeted assessment in
clinical practice (59).

10.3389/fpain.2025.1712242

6.2 Rehabilitation and injection-based
approaches

Interventions targeting fascial mobility (e.g., myofascial
release, stretching, instrument-assisted soft tissue mobilization)
improve pain and function in clinical and pilot trials (61, 62).

Recent randomized and meta-analytic data support fascial-
oriented manual therapy as one of the most -effective
conservative approaches for MPS (63-65).

Beyond manual interventions, ultrasound-guided fascial
hydrorelease and hydrodissection techniques have also shown
promising biomechanical and clinical outcomes, improving fascial

plane gliding and reducing entrapment-related pain (16, 66).

6.3 Imaging-guided findings and
interventions

Ultrasound and MRI studies show fascial abnormalities
improve after manual therapy or injection-based interventions
(67). These findings suggest that fascial change, not just muscle
treatment, may underlie clinical benefit. Ultrasound (including
shear-wave elastography) increasingly ~documents fascial
thickening and reduced sliding in pain phenotypes. Preliminary

interventional evidence—ranging from fascial hydrorelease/

FIGURE 1
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hydrodissection to fascia-oriented manual approaches—suggests
that targeting fascial layers can vyield clinically meaningful
improvements, although higher-quality trials are required (15).
Ultrasound-guided hydrodissection techniques have also shown
promising results in neuropathic and myofascial entrapment
syndromes, emphasizing the clinical value of fascial plane
restoration (66). Modern ultrasonography enables visualization
of fascial densifications and altered gliding, bridging palpation
with objective assessment (59).

Fascial pathology (densification, fibrosis, inflammation)
generates nociceptive input that contributes to the peripheral
pain source (68).

Beyond a single pathway, MPS may emerge from at least two
partially distinct etiopathophysiological routes: a predominantly
myogenic route (motor end-plate dysfunction, local metabolic crisis)
and a fascial-neurogenic route (innervation-rich fascia, impaired
gliding, mechanotransduction). These mechanisms likely co-exist
and interact, shaping heterogeneous clinical phenotypes (47, 69).

Persistent peripheral drive facilitates central sensitization,
explaining hyperalgesia, referred pain, and chronicity (70).

Psychological and social factors (stress, catastrophizing,
inactivity) further amplify pain through neuroimmune and
central pathways (71). Fascial dysfunction therefore must be

understood as part of an integrative biopsychosocial model (72).

8.1 Summary of key findings

The present review highlights fascia as an essential but often
the
Integrating recent anatomical, histological, neurophysiological,

overlooked contributor to pathophysiology of MPS.
and clinical research, current evidence supports the view that

fascial ~ tissues  actively  participate in  nociception,
mechanotransduction, and pain modulation rather than serving
merely as passive connective scaffolds (15, 39, 46, 66).

Contrary to classical descriptions of MPS as primarily a
muscular disorder, fascial changes such as densification, fibrosis,
and altered hyaluronan viscosity are now recognized as key
peripheral drivers of pain. These changes impair gliding between
fascial layers, elevate local stiffness, and directly stimulate
embedded nociceptors (10, R ). Mechanotransductive
signaling within fascia—particularly via YAP and TGF-f1—links
mechanical strain to fibroblast activation and extracellular-
matrix remodeling, reinforcing chronic peripheral input (40, 46).

Fascial inflammation further amplifies nociceptive signaling.
Cytokines, prostaglandins, and neurotrophins released from
fascia-resident fibroblasts and immune cells sustain a low-grade
that

). Prolonged nociceptive drive from fascia to

inflammatory-fibrotic  loop perpetuates  peripheral

sensitization (51,
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the
hyperexcitability and reorganization of somatosensory maps,

dorsal horn and higher centers produces neuronal

core features of central sensitization (53, R R ).
Sympathetic and neurovascular networks within fascia may
further contribute to sustained nociception and autonomic
dysregulation (52, 53).

Clinically, multiple recent randomized controlled trials and
the of

interventions in restoring mobility and reducing pain. Dry

meta-analyses  support efficacy fascial-oriented
needling, myofascial release, and hydrorelease have demonstrated
measurable analgesic and functional benefits in MPS and tension-

type headache ( ). Myofascial and manipulative approaches

also show consistent benefit across musculoskeletal pain

conditions (64, 65). Diagnostic imaging techniques—including
high-resolution ultrasound and elastography—can visualize
fascial thickening, densification, and restricted gliding (59, 73).
Recent conceptual and clinical reviews advocate the inclusion
of fascia-focused diagnostics and therapies within multimodal
pain-management frameworks (47, 69, 74,
these data establish fascia as a dynamic sensory and

biomechanical interface integrating mechanical, neural, and

). Collectively,

immune pathways of pain. Recognizing its role redefines the
etiopathological understanding of MPS and provides a rationale
for developing standardized diagnostic and therapeutic protocols
that explicitly target the fascial system (15, 47, 59, 65, 66, 69, 75).

8.2 Controversies and different schools of
thought

Muscle-centric models, while historically important, lack the
capacity to explain why some patients with MPS exhibit
pronounced fascial stiffness or why palpation of fascial layers
reproduces pain (76). Similarly, central sensitization models
explain pain amplification but not its initial peripheral drivers.
By overlooking fascia, both models risk oversimplification.

In contrast, an integrative model situates fascia as a peripheral
initiator of nociceptive input, which interacts with muscle
dysfunction and central sensitization. This alignment bridges the
gap between local pathology and systemic pain amplification,
supporting a biopsychosocial understanding that is clinically
relevant (77). The concept echoes other conditions where
peripheral tissue changes drive central changes, such as knee
osteoarthritis or tendinopathy (78).

Recent work suggests that these models should not be viewed
as mutually exclusive but rather complementary, with fascia
providing a peripheral driver that interacts with both muscular
dysfunction and central sensitization (79).

8.3 Added value of a fascia-centered
perspective

Recognizing fascia’s role has several advantages. First, it
clarifies why some interventions traditionally aimed at muscles
(e.g., dry needling, TPI) provide inconsistent outcomes-these
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treatments may not adequately address fascial pathology (80).
Second, it validates clinical observations of stiffness, restricted
sliding, and pain reproduction upon fascial palpation. Third, it
aligns with imaging and histological findings that consistently
demonstrate abnormalities in fascia in chronic pain conditions
(81, 82). These insights resonate with recent frameworks that
position fascia not only as a pain source but as a broader
regulatory system interacting with neuroimmune and systemic
processes (83).

Furthermore, fascia as a pain source helps explain the
heterogeneity of MPS. Some patients present with localized pain
and clear MTrPs, while others develop diffuse, persistent pain
resistant to conventional therapies. In the integrative model,
fascia acts as both a generator of local nociceptive input and a
perpetuator of central sensitization (84).

8.4 Clinical implications

Clinical implications of fascial dysfunction include the need
for improved diagnostic sensitivity and multimodal approaches.

Recent advances highlight the value of ultrasound imaging for
visualizing fascial thickness, echotexture, and gliding alterations,
which can guide both diagnosis and treatment (59).

Rehabilitation
through manual therapy, stretching, and movement retraining—

strategies emphasizing fascial mobility—
have demonstrated measurable functional gains and pain
reduction in controlled trials (63-65).

Moreover, clinician education on the biomechanical and
sensory properties of fascia is increasingly recognized as a key
element for improving patient outcomes and interdisciplinary

management (47, 69).

8.4.1 Diagnosis

Incorporating fascia into diagnostic frameworks means
clinicians should not only palpate muscle trigger points but also
evaluate fascial layers for stiffness, reduced sliding, or
tenderness. Advanced ultrasound techniques such as shear-wave

elastography may help identify pathological fascia (85).

8.4.2 Conservative therapies

Manual therapies, stretching, and instrument-assisted fascial
release techniques may be particularly effective when fascial
densification predominates. Evidence shows improvements in
mobility and pain with interventions that specifically target
fascia (86, 87).

8.4.3 Interventional approaches

Emerging ultrasound-guided techniques, such as fascial
hydrorelease and hydrodissection, aim to restore fascial glide
While
preliminary, these procedures embody the shift toward fascia-

and reduce nociceptive input. evidence remains
focused interventions (88, 89).

These insights emphasize that fascia should be considered a
therapeutic target in pain medicine, alongside neural and

muscular mechanisms (90, 91).
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8.5 Multimodal integration

Because fascia interacts with neural and psychosocial
mechanisms, treatment should be multimodal-combining fascial
interventions with exercise, psychological strategies, and central
desensitization therapies. This integrative approach aligns with
modern pain medicine principles (92). Recent high-level reviews
emphasize the need for standardized diagnostic criteria and
multimodal treatment strategies integrating fascial assessment

( > >

manipulative

). Network meta-analyses confirm the efficacy of
MPS,
highlighting their role within precision pain management

and fascial release interventions for

frameworks (65).

8.6 Current research gaps

Despite promising insights, the evidence base remains limited
and methodologically heterogeneous. Most studies of fascia in
MPS are small-scale, observational, or descriptive. Randomized
controlled trials investigating fascial interventions are rare, with
available (30).
demonstrate correlations between fascial stiffness and pain, but

only isolated examples Imaging studies
causality remains unproven (25). In addition, the absence of
validated imaging biomarkers and the lack of longitudinal
studies limit the ability to establish causal links between fascial
pathology and clinical outcomes (93, 94). Histological studies
often rely on small sample sizes and post-mortem tissue,
limiting generalizability (95).

Another limitation is the lack of standardized terminology.
Terms such as “myofascial pain,” “fasciopathy,” and “fascial
dysfunction” are used inconsistently, making it difficult to
synthesize findings across studies (96). Moreover, many clinical
interventions studied under the label of “myofascial therapy” do
not clearly define whether fascia or muscle is the primary target,
further 2025

consensus proposal for a unified definition of the human fascial

complicating interpretation (97). A recent
system underlines the importance of consistent terminology and
highlights the urgency of standardization in both research and
clinical practice (98).

MPS

underexplored in fascia-focused literature. While fascia provides

Finally, psychosocial ~dimensions of remain
a compelling peripheral substrate, chronic pain invariably
involves central and psychosocial contributions. Ignoring these

domains risks replacing one reductionist model with another (99).

8.7 Future developments

Future studies are encouraged to address these limitations.
Potential research directions include:

1) Standardization of terminology: Clear definitions of fascia-
targeted interventions and diagnostic criteria.

2) Mechanistic studies: Using elastography, MRI, and molecular
assays to elucidate fascial changes in vivo.
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3) Large-scale RCTs: Testing fascial therapies against sham or
conventional treatments.

4) Multimodal trials: Assessing how fascial interventions
integrate with exercise and psychological care.

5) Safety data: Establishing registries for fascial injections and
other interventional procedures.

By pursuing these directions, the field can transition from

intriguing hypotheses to evidence-based clinical practice (70, 100).

8.8 Toward an integrative conceptual
model

We propose a model in which fascia is positioned alongside

muscle, nerve, and psychosocial factors as a co-equal
contributor to MPS. In this framework:
* Fascial pathology (densification, fibrosis, inflammation)

generates localized nociceptive input.
* Muscular dysfunction contributes additional peripheral input
through contracture and ischemia.
* Central sensitization amplifies pain perception and promotes
widespread symptoms.
Psychosocial influences (stress, catastrophizing, maladaptive
coping) sustain and exacerbate pain.

Together, these domains form a multifactorial, integrative model
that accounts for both localized trigger point pain and chronic
widespread MPS. By situating fascia within this model, clinicians
and researchers gain a more comprehensive understanding that
may improve diagnostic accuracy, therapeutic targeting, and
ultimately patient outcomes (101).

These findings collectively suggest that fascia must be
understood as an integral contributor to myofascial pain
syndrome. To illustrate these interactions, we propose an
integrative conceptual model summarizing peripheral, central,
and psychosocial mechanisms (Figure 2).

Emerging technologies such as artificial intelligence and
machine learning applied to ultrasound elastography and MRI

10.3389/fpain.2025.1712242

texture analysis may accelerate  biomarker  discovery.
International initiatives, including those of the International
Association for the Study of Pain and the European Pain
Federation, could facilitate consensus on terminology and
methodological standards (79, 93).

Fascia is not a passive tissue but a biologically active
contributor to pain in MPS. Integrating fascia into existing
models reconciles historical muscular theories with central
sensitization and psychosocial frameworks. While evidence
remains preliminary, fascia-centered approaches open promising
avenues for diagnosis and therapy. A clear, standardized, and
multidisciplinary research agenda is now required to validate

and operationalize these concepts.

9 Conclusions

MPS continues to challenge clinicians and researchers due to
its heterogeneous presentation and lack of universally accepted
mechanisms.  Traditional =~ models emphasizing  muscle
contracture and central sensitization provide valuable insights
but remain incomplete. This review highlights fascia as a crucial,
though often overlooked, component of MPS pathophysiology.

Evidence from anatomical, histological, imaging, and
clinical studies demonstrates that fascia is richly innervated,
capable of nociceptive signaling, and subject to pathological
changes such as densification, fibrosis, and inflammation.
These alterations not only generate local pain but also interact
with central and psychosocial factors, sustaining chronicity
the

conceptual framework of MPS offers a more comprehensive

and amplifying symptoms. Integrating fascia into

model that unites peripheral and central processes within a
biopsychosocial context.

Clinically, this perspective suggests that assessment and
treatment of MPS should extend beyond muscle fibers to

include fascial evaluation and targeted interventions.

Manual therapies, rehabilitation strategies, and emerging

ultrasound-guided techniques aimed at restoring fascial mobility

reduced function, and disability in myofascial pain syndrome.

PSYCHOSOCIAL
FACTORS
TN Neuroimmune Widespread Stress
MECHANISMS - p
Nociceptive Contal S PatWRY Symptoms
Fascial —inpUt Sensitization \ Maladaptive Integrative
Pathology coping Biopsychosocial i
; odel b Catastrophizing
’ Sustained
pain - "N2. Amplified Pain
Muscular ey AULANIEE L
‘ Dysfunction \ Peripheral J Perception
I e Inactivity
 —
FIGURE 2

Biopsychosocial model of myofascial pain syndrome. Peripheral mechanisms encompass not only muscular dysfunction and trigger point activity but
also fascial pathology, including densification, fibrosis, and impaired sliding properties. These inputs provide nociceptive drive to central sensitization,
which is amplified through neuroimmune pathways, maladaptive coping strategies, and sustained pain, leading to widespread symptoms and
amplified pain perception. The biopsychosocial model highlights the interplay between fascial, muscular, and central mechanisms, together with
psychosocial contributors such as stress, catastrophizing, and inactivity. Feedback loops between these domains perpetuate symptom chronicity,
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may provide benefit, particularly when combined with multimodal
care addressing central and psychosocial dimensions.

However, the current evidence remains preliminary. Most
available studies are small, descriptive, and methodologically
heterogeneous, underscoring the need for standardized
terminology, rigorous mechanistic research, and adequately
powered randomized controlled trials. Only through such efforts
can the true role of fascia in MPS be determined and integrated
into evidence-based clinical guidelines.

In summary, fascia should be recognized as a central but
interconnected contributor to MPS. By embracing an integrative,
fascia-informed model, clinicians and researchers may advance
understanding, improve patient outcomes, and shape the next

generation of therapeutic approaches in chronic musculoskeletal pain.
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