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The potential application of
electrophysiological indicators in
TMS treatment for MOH
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Medication Overuse Headache (MOH) can lead to central sensitization (CS),
habituation deficits (HD), shortened cortical silent period duration (CSPD),
and increased pre-activation levels (PAL), all of which are quantifiable
electrophysiological objective indicators related to MOH. Transcranial
magnetic stimulation (TMS) is a treatment method for MOH and is primarily
divided into three types: single-pulse TMS (sTMS), repetitive TMS (rTMS), and
quadruple-pulse TMS (qTMS). Among these, sTMS is convenient for patients
of self-administration, gTMS significantly improves the effectiveness of TMS
treatment, and rTMS is suitable for widespread use in developing countries.
Numerous studies have reported clinical symptom improvements in MOH
patients treated with TMS, with statistically significant results. However, only a
few studies have observed electrophysiological changes in MOH patients
before and after treatment. Whether quantifiable objective indicators can be
reversed requires further investigation.

KEYWORDS
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1 Introduction

Medication Overuse Headache (MOH) is a secondary headache that develops as a
consequence of acute headache medication(s) overuse in headache sufferers. According
to the International Classification of Headache Disorders, MOH is defined as headache
occurring on 15 or more days/month for at least three months in a patient with a pre-
existing headache disorder as a consequence of overuse of acute symptomatic
medication (1). It typically results from the overuse of triptans, the combined use of
two or more opioid analgesics for at least 10 days per month for more than 3 months,
or the use of nonsteroidal anti-inflammatory drugs (NSAIDs) or acetaminophen
(paracetamol) for at least 15 days per month for more than 3 months (1). Specific
drugs such as triptans, ergotamine, and non-specific drugs like NSAIDs, codeine,
tramadol, and pethidine can all lead to MOH (2). Among these, triptans, ergotamine,
and opioid analgesics are more likely to trigger MOH, while the risk of developing
MOH with NSAIDs and acetaminophen is the lowest (3, 4).

MOH can arise from, but is not limited to chronic migraine (CM) (5, 6) and tension-
type headache (TH) (7). The estimated prevalence of MOH in the general population is
1%-2%, while in chronic migraine (CM) patients, approximately 30%-50% suffer from
MOH (8, 9). This figure can rise to as high as 80% in tertiary headache treatment
centers (10). Patient education, withdrawal of overused medications, preventive therapy
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(including oral calcitonin gene-related peptide receptor antagonists
or botulinum toxin type A), and occipital nerve blocks are the
primary treatments for MOH (3, 4, 11, 12). However, some
patients do not respond to medication treatment (11), and more
than a quarter of MOH patients relapse within the first year (3).
Moreover, pharmacological treatments are associated with
numerous adverse effects, including gastrointestinal disturbances,
dizziness, drowsiness, fatigue, and memory impairment (13).
hold

Alternative  therapies,

significant potential for development (11, 13).

particularly  physical therapy,

Transcranial Magnetic Stimulation (TMS) may be an excellent
option for MOH treatment, offering the advantage of avoiding
drug adverse effects and demonstrating a favorable safety profile
(13-16). The mechanisms of action and methods of use have
gradually been revealed in recent research, demonstrating its
unique therapeutic potential.

In 1997, Chen first introduced the term “low-frequency” after
observing a 20% reduction in the amplitude of motor evoked
potentials (MEPs) recorded from muscle following 15 min of
0.9 Hz rTMS applied to the left motor cortex (17). Later, in a
2000 review, Chen formally classified TMS frequencies as “high-
frequency” (>5Hz) and “low-frequency” (<1 Hz) (18). The
distinctions between high- and low-frequency rTMS in headache
treatment are summarized in Table 1.

2 TMS treatment targets

The selection of TMS targets is crucial for therapeutic efficacy.
Commonly used targets include the primary motor cortex (M1),
dorsolateral prefrontal cortex (DLPFC), and occipital lobe cortex
(OC). These regions have demonstrated therapeutic potential,
although underlying mechanisms require further investigation.

2.1 Primary motor cortex (M1)

The primary motor cortex, also known as the M1 region in TMS
literature, is one of the most commonly targeted areas in TMS
applications (21). It is in the precentral gyrus of the cerebral
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cortex and is primarily responsible for motor functions. The
motor hotspot method is the most frequently used Ml
localization technique in TMS treatment studies. This method
involves delivering single-pulse TMS to the left or right M1 region
to activate motor neurons, thereby inducing muscle contractions
in the target muscle. The corresponding motor-evoked potentials
(MEPs) are recorded via electromyography (EMG), and the M1
target cortical region is determined by identifying the site that
consistently produces the stable MEP. Alternative
localization approaches, such as functional magnetic resonance

most

imaging (fMRI)-based reconstruction or anatomical markers like
the hand knob region (22), have yielded results similar to those
obtained through the motor hotspot method. The analgesic effect
of the M1 region primarily depends on its action on endogenous
opioid neurotransmitters. Positron Emission Tomography (PET)
studies show that M1 stimulation directly enhances the inhibitory
system mediated by opioid neurotransmitters (23). In 2018,
Andre-Obadia applied 20 Hz rTMS to both the hand and facial
areas of M1, and found that stimulation of the hand area of Ml
produced significantly greater analgesic effects for facial or upper-
limb pain compared with stimulation of the facial M1 area or
sham rTMS (24). The analgesic mechanism was suggested to
depend on affective-cognitive modulation pathways [such as the
anterior cingulate cortex (ACC) and periaqueductal gray (PAG)]
rather than on a strictly somatotopic effect.

2.2 Dorsolateral prefrontal cortex (DLPFC)

rTMS applied to the left dorsolateral prefrontal cortex
(L-DLPEC) at the F3 site of the international 10-20 electrode
placement system exerts a broad top-down inhibitory effect
along the midbrain-thalamic-cingulate pathway via descending
fibers from the prefrontal cortex (25). Consequently, the
widespread effects of DLPFC stimulation not only enhance
motor cortex function but also modulate affective circuits
associated with both pain and depression (26). Two studies
directly compared the effects of M1 vs. DLPFC TMS on
quantitative sensory testing (QST) measures. During pain
treatment with rTMS, high-frequency stimulation is often

TABLE 1 Differences between high-frequency and low-frequency rTMS in headache treatment.

Direction of cortical
modulation

Classification

Frequency

Mechanism

Typical target Main references

LF-rTMS <1Hz Inhibitory

HF-rTMS >5Hz Excitatory

Table 1. Differences between high-frequency and low-frequency rTMS in headache treatment
LF-rTMS(Low-Frequency Repetitive Transcranial Magnetic Stimulation)
HF-rTMS(High-Frequency Repetitive Transcranial Magnetic Stimulation)

LTD(long-term depression)

LTP(long-term potentiation)

R-DLPFEC (Right Dorsolateral Prefrontal Cortex)

L-DLPFC(Left Dorsolateral Prefrontal Cortex)

M1(Primary Motor Cortex)
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Analogous to LTD

Analogous to LTP

02

Right DLPFC Lefaucheur 2014 (19)
Level C evidence for migraine

Left DLPFC

Level A evidence for chronic migraine
Contralateral M1

Level B evidence for cluster headache

Chen 2000 (18);
Lefaucheur 2014 (19);
Lefaucheur 2020 (20)
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applied to activate the left DLPFC (27), or low-frequency
stimulation to inhibit the right DLPFC (28). This approach may
be based on the valence lateralization hypothesis (29), which
proposes that the left hemisphere primarily processes positive
emotions, whereas the right hemisphere processes negative
emotions. Therefore, high-frequency activation of the left
DLPEC (27) or low-frequency inhibition of the right DLPFC
(28) is selected to modulate emotional and pain-processing

networks (20) and thereby achieve an analgesic effect.

2.3 Occipital cortex(OC)

Based on gray matter atrophy coordinate network mapping
studies (30-32), large-scale data from 1,000 human resting-state
functional connectivity (RSFC) cases have been used to link the
anatomical coordinates of gray matter volume reduction with
brain networks, identifying disease- and symptom-specific brain
networks. The reports indicate that functional abnormalities in
the brains of patients with Migraine with Aura (MwA) primarily
EEG studies indicate

excessive responsiveness of the OC to visual stimulation (34),

concentrate in the visual regions (33).

and positron emission tomography (PET) studies show an
increase in activation in the OC in response to light (35).
Mapping of the light-sensitive retinal ganglion cells, which relay
to the posterior thalamic dura mater sensitive neurons and
subsequently project to the OC, provides a neurobiological
pathway that may help explain the hyperactivity of visual
processing and photophobia in migraine patients (36). Whether
OC could serve as novel targets for MOH is a question worth
our consideration and further investigation.

3.1 Amplitude of evoked potentials (Amp),
Pre-activation level (PAL), habituation
deficit (HD), habituation slope (HS), and
central sensitization (CS)

Pre-activation level (PAL) refers to the amplitude (Amp) of
the response wave recorded during the first stimulus of an
evoked potential. An elevated PAL is defined as central
sensitization (CS). In healthy individuals, repeated stimulation of
evoked potentials typically results in a gradual decline in
response wave amplitude, a characteristic indicative of normal
cortical excitability regulation. This adaptive process protects the
nervous system from sensory overload and optimizes attentional
and memory resources for novel stimuli and this phenomenon
is known as habituation. An impairment in this process is
referred to as habituation deficit (HD) (37-40).HD is assessed
based on the habituation slope (HS), which represents the slope
of the change in evoked potential amplitudes or areas (41).
Sensory information reaches the cortex through synchronously
active thalamic axons, providing a strong excitatory drive to
layer 4 (L4) cortical neurons (42). Inefficient thalamocortical
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drive leads to elevated sensory cortical PAL, resulting in an
imbalance in the excitation-inhibition network. This dysfunction
can induce hyperresponsiveness of primary sensory cortical
neurons, a phenomenon commonly observed in individuals with
CM and MOH. A study assessing 29 MOH patients, 64
migraine without aura (MOA) patients, and 42 healthy
volunteers (HV) during both attack and interictal phases used
N20-HS from median nerve somatosensory evoked potentials
). In
the MOH group, an increase in response amplitude (Amp) to a

(SSEP) to evaluate cortical and subcortical excitability (

small number of repeated stimuli indicates the presence of
central sensitization (CS), while the lack of amplitude reduction
during subsequent stimulations reflects a habituation deficit
(HD). This pattern is similar to the pre-attack phase of episodic
migraine (EM), suggesting that the somatosensory cortex has
become persistently sensitized. MOH patients appear to be
attack
hypersensitivity due to high PAL and hyperreactivity due to
high HD, which negatively impacts neuronal plasticity (44). This

locked in a “sustained state,” characterized by

phenomenon may even contribute to widespread cutaneous
allodynia (45, 46). Subgroup comparisons in MOH revealed that
MOH-NSAIDs exhibited increased PAL and the
presence of HD, suggesting a potential reduction in inhibitory

patients

interneuron function. In contrast, while MOH-triptans patients
also showed HD phenomena, there was no increase in PAL,
which may be related to the shorter duration of withdrawal
headaches in MOH-triptans to MOH-NSAIDs
patients (47).

compared

3.2 Motor evoked potential (MEP), cortical
spreading depression (CSD), and cortical
silent period duration (CSPD)

Cortical Spreading Depression (CSD) is a slowly propagating
depolarization wave involving neurons and glial cells, which can
be seen on the electroencephalogram (EEG) as a high-amplitude
negative depolarization wave followed by a high-voltage slow
wave or a flat suppression state. CSD exhibits the characteristic
of spreading: this depolarization wave accompanied by
suppression gradually extends to surrounding cortical areas,
with the affected regions slowly returning to normal electrical
activity after the suppression phase (48). Cortical spreading
depression plays a significant role in aura development (49).
Stereotactic electroencephalography in a patient with an attack
of MwA demonstrated low-voltage suppression initiating in the
left mesial occipital cortex and propagating anteriorly at
approximately 3 mm/min, corresponding clinically to a
contralateral right superior scintillating scotoma and ipsilateral
headache. This is the first

demonstration of cortical spreading depression occurring during

definitive electrophysiological
a migraine headache (50). Silent Period (SP) refers to a period
of muscle contraction cessation observed on electromyography
(EMG)
brainstem, or the cortical area. During this phase, the EMG

following stimulation of peripheral nerves, the

records a pause in muscle contraction, resulting in a period of



Xiao et al.

electrical silence (51). And the Cortical Silent Period Duration
(CSPD) is defined as the sustained period of EMG silence
recorded in a target muscle following a single-pulse TMS
applied to the M1 region during voluntary muscle contraction.
This suppression begins after the motor evoked potential (MEP)
and persists until voluntary contraction of the target muscle
resumes, reflecting intracortical inhibitory neural mechanisms
(52). A study (53) have assessed the characteristics of MEP and
CSPD in MOH patients using the orbicularis oris muscle,
included 9 MOH-triptans, 9 MOH-NSAIDs, 12 MOH-Bi (MOH
patients with overuse of two types of medications), 12 EM, and
13 HV. The CSPD duration among (sub)groups showed the
following differences: MOA < MOH-triptans < MOH-Bi < MOH-
NSAIDs < HV. A negative correlation was observed between the
monthly intake of triptans and CSPD in MOH-triptans.
Additionally, an earlier study reported that pain-related cortical
evoked potential amplitudes in MOH-triptans were higher than
in HV (54). Collectively, these findings suggest that triptans may
enhance cortical excitability mechanisms. Although both MOH-
MOH-NSAIDs
chronification, their clinical manifestations do not completely

triptans  and contribute  to  migraine
overlap. MOH-triptans tend to experience daily headaches
resembling migraine, while MOH-NSAIDs are more prone to
). This difference
may be related to the fact that CSPD is relatively prolonged in
MOH-NSAIDs compared to MOH-triptans, as the interictal
CSPD in CM-MOH-NSAIDs was to be
comparable to that in HV (57). Researchers observed 18 patients
with MOH who discontinued triptans and NSAIDs without
using preventive medications. After 3 weeks, they re-evaluated
CSPD. Among the patients, 10 MOH-Bi patients showed a
significant reduction in CSPD after discontinuing the
medication, while 8 MOH-triptans patients had similar CSPD
before and after discontinuation. Due to the lack of a group of

typical tension-type daily headaches (55,

found nearly

patients who only discontinued NSAIDs, it remains to be
determined through further research whether the shorter
duration of withdrawal headache in MOH-triptans patients
compared to MOH-NSAIDs can be explained by CSPD change.

3.3 Multisensory evoked potential
integration

Clinical sensory processing impairments, such as photophobia
and phonophobia, are positively correlated with headache
intensity (58). Visual or auditory stimuli can trigger migraine
attacks in 50%-75% of patients (59).
patients may experience visual and auditory discomfort even

Moreover, migraine

during pain-free periods, which can intensify during attacks (60,

). A coherent, distinct, and stable perceptual experience arises
from the ability to integrate shared sensory information across
different modalities (62—
when stimuli from different sensory systems are temporally or

). Multisensory integration occurs

spatially linked (65-67). Cross-modal illusions serve as a
valuable paradigm for assessing how multisensory integration

influences perception (68, 69). A well-known example is the
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sound-induced flash illusion (SIFI), which includes the fission
illusion (Fis) and the fusion illusion (Fus), both of which are
associated with cross-modal variations in visual cortical
excitability. Transcranial electrical stimulation that enhances
occipital cortical excitability, or occipital infarcts, can disrupt
SIFI, whereas right parietal cortical lesions may cause
). The Fus and Fis
effects represent dissociable phenomena, with Fis being more
). A study
investigating SIFI levels in 63 patients with chronic migraine
(CM), including 52 medication-overuse headache (MOH)
patients (83%) and 24 HV. The results indicated that MOH

patients—particularly those in the MOH-triptans subgroup—

preserved or even enhanced SIFI effects (

closely linked to cortical excitability states (70-

exhibited excessive excitability in the visual cortex. This
disrupted the expected low SIFI effect seen in HV, leading to
increased signal resolution in the identification of flash
stimuli, potentially due to reduced cortical inhibition within
the primary visual areas.

These findings suggest that

medication-induced ~ maladaptive  neuroplasticity =~ may
contribute to visual cortical hyperexcitability, increasing
susceptibility to MOH triggers. Further exploration of SIFI
mechanisms in MOH may help design more targeted

preventive treatments.

TMS has been applied in the treatment of MOH, with
commonly used types including sTMS (Single-pulse Transcranial
Magnetic Stimulation),rTMS (Repetitive Transcranial Magnetic
Stimulation), and iTMS (Intermittent Theta Burst Stimulation).
Research specifically investigating the therapeutic effects of
sTMS, rTMS, and qTMS in MOH populations is limited. Most
studies have primarily focused on migraine and chronic
headache patients, although some have involved MOH. More
targeted research on MOH may be needed in the future.

4.1 Single-pulse TMS (sTMS)

STMS temporarily disrupts brain activity by interrupting CSD,
thereby reducing the occurrence of migraine aura (73). It
influences neurotransmitter release by decreasing excitatory
glutamate and increasing inhibitory gamma-aminobutyric acid
(GABA), which lowers neuronal excitability and helps reduce the
STMS can also
modulate the spontaneous activity of third-order thalamic

frequency and severity of migraines (74, 75).

neurons and trigeminovascular activity induced by C-fibers (73).
The first long-term study on sTMS at occipital cortex for adults
) (>8
headache days per month) included more than half of the

with CM and high-frequency episodic migraine (HFEM) (

patients with MOH and demonstrated significant efficacy. The
proportion of MOH patients decreased from 52% (N=79/153) at
baseline to 19% (N =29/153) at the third month and 8% (N=7/
87) at the twelfth month (77). Participants underwent self-
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administered TMS therapy 2-3 times daily for three months.
Compared to baseline, the median HIT-6 score decreased by 4
points at the twelfth month. The proportion of patients with
severe headache-related disability dropped from 93% at baseline
to 63% at both the third and twelfth months. Regardless of MOH
status or treatment resistance level, 45% of patients experienced
long-term headache improvement. When assessing treatment
sustainability using HIT-6 score changes, patients who showed
significant score reductions were more likely to continue
treatment for 12 months, indicating their recognition of the
positive effects of STMS (77).

4.2 Repetitive TMS (rTMS)

The effects of rTMS on cortical excitability can persist for an
extended period, with the direction of modulation primarily
depending on the stimulation frequency (78). Since various
target different
pathophysiological aspects of MOH, rTMS theoretically allows

treatment protocols can be designed to
for personalized treatment tailored to individual patient needs
(79).High-frequency rTMS (HF-rTMS) may promote dendritic
spine structural remodeling by reshaping postsynaptic
synaptic GABAergic
activity. Additionally, it can increase endorphin levels in
migraine patients (15). In 2014, Misra (15) studied the effects of
left frontal HF-rTMS treatment in 94 migraine patients,
including 22 MOH patients. Among them, 56 patients received
while 38

A reduction in N20 amplitude was found to be associated with

scaffolding proteins and modulating

real stimulation, received sham stimulation.
decreased headache frequency and severity over one month.
Compared to the sham group, the real stimulation group
experienced significant HD improvement, which was associated
with reduced headache severity but not frequency. That same
year, Conforto (14) reported negative results for HF-rTMS
targeting the left DLPFC. He randomized 18 CM patients [of
whom 14 (77.78%) had MOH] into real and sham stimulation
groups (1:1 ratio). Over eight weeks, patients underwent 23
r'TMS sessions, with headache days assessed through a headache
diary. The study found no significant benefits of HF-rTMS-L-
DLPFC and suggested that M1 might be a more promising
target than DLPFC. In 2016, Indian researcher Kalita (80)
investigated the differences between single-session and three-
session HF-rTMS-L-DLPFC for chronic headache treatment.
The study included 82 participants, comprising CM and chronic
tension-type headache (CTTH) patients, of whom 36 had MOH.
After treatment, no significant differences were observed in
headache frequency reduction between CM patients with and
without MOH at 1, 2, and 3 months post-treatment. Among 10
CTTH patients and 6 mixed chronic daily headache (CDH)
patients (including 5 MOH patients), headache frequency
showed improvement after rTMS, but without statistically
significance. Three years later, Granato (81) conducted a study
on 14 MOH patients (10 overusing triptans & NSAIDs, 4
overusing NSAIDs only), administering 20 Hz HF-rTMS-L-
DLPEC treatments over two consecutive weeks. The study
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assessed headache days, duration, intensity, medication use, and
disability levels. The results indicated a strong placebo effect,
with headache days reduced by 45.5% in the treatment group
and 40% in the sham group, failing to confirm the therapeutic
efficacy of HF-rTMS-L-DLPFC.

4.3 Quadruple-pulse rTMS (gTMS)

Quadruple-pulse transcranial magnetic stimulation (qTMS)

delivers four monophasic magnetic pulses at variable
interstimulus intervals (ISI), achieving excitatory effects when
ISI<10 ms and inhibitory effects when ISI>30ms on the
underlying cortex. Initially, studies on qTMS focused on MI.
Researchers recruited 10 HV and assessed motor cortical
excitability and plasticity by measuring the peak MEP-Amp
from the relaxed right first dorsal interosseous (FDI) muscle.
Their findings demonstrated that qTMS induces long-lasting
excitability and plasticity changes in M1, suggesting its potential
). Following qTMS

treatment, MEP measurements were conducted every 5 min for

preventive effects on MOH attacks (82,

30 min and then every 15 min for 180 min while maintaining a
constant output intensity. Results showed that qTMS at short
ISIs (1.5-10 ms) enhanced MEPs for over 75 min, resembling
long-term potentiation (LTP), whereas long ISIs (30-100 ms)
suppressed MEPs, mimicking long-term depression (LTD).
Thus, qTMS can bidirectionally modulate synaptic plasticity by
altering ISI. Given that sSTMS has demonstrated acute analgesic
effects on MwA in the visual cortex of EM patients (84) and
preventive effects (77), Vigand et al. were the first to apply
qTMS to the visual cortex of patients with chronic migraine and
medication-overuse headache (CM-MOH).
protocol (qTMS-I) involved delivering 4-pulse sequences every
5 s with an ISI of 50 ms for 30 min (totaling 1,440 pulses). This
protocol reduced VEP-Amp and HS in HVs (85). During a one-

Their inhibitory

month treatment period (twice per week), CM-MOH patients
also exhibited reductions in VEP-Amp and HS, with the
therapeutic effect more pronounced 3 h post-stimulation than
immediately after treatment. This qTMS-induced reduction of
visual cortical CS led to a nearly 50% reduction in monthly
headache days in CM-MOH patients, with HIT-6 score
improvements persisting for one month post-treatment.
Additionally, half of the patients (1n=6) reverted to an EM
pattern (ICHD-3 1.1) (86), allowing for the reintroduction of
preventive medications (87). However, severe headache days
(Grade 3 intensity), acute medication intake, MIDAS, STAI, and
BDI scores did not show significant improvements. A single
session of occipital qTMS-I only caused a transient VEP-Amp
reduction, with no significant effects on other VEP parameters,
suggesting that repetitive rTMS sessions are necessary to induce
). Building
) and meta-analyses (90), researchers

long-lasting plasticity changes in sensory cortices (
on previous studies (83,
designed a simulated excitatory protocol (qTMS-E), which
delivered pre-stimulation pulses to functional MRI (fMRI) of
the occipital region V2 and V3 areas every 5s with an ISI of
50 ms for 10 min, followed by stimulation of V1 area every 5s
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with an ISI of 30 ms for 30 min. In the six patients who reverted to
EM, VEP-HD significantly improved one month after the qTMS-I
treatment phase (39, 91, 92).

Placebo-controlled comparisons are essential for evaluating
the efficacy of interventions in RCT (randomized controlled
trial). The placebo effect arises from various factors, including
but not limited to the clinician’s demeanor during treatment
(enthusiastic, indifferent, or neutral) (93, ), the patient’s
awareness of the research process and trial details, and the
subjective perception of symptoms, particularly pain. In some
studies, placebo interventions have demonstrated clinically
relevant response rates of >50% (75, 95,
et al. (
therapies found that sham rTMS was significantly more

). A study by Huang
) on the placebo effects of non-pharmacological

effective than sham CBT(Cognitive Behavioral Therapy),
sham nVNS (non-invasive Vagus Nerve Stimulation), sham
tDCS (transcranial Direct Current Stimulation), and sham
acupuncture in reducing headache days, likely due to the high
procedural similarity between sham and real rTMS (14, 75,

, 98-103).
rTMS yielded a higher response rate in reducing headache

Notably, one study even reported that sham

days than the active intervention, contradicting the classical
RCT interpretation that “the most effective treatment is the
). This
paradox may be attributed to the small sample size in sham

one with the greatest specificity beyond placebo” (

rTMS trials, as smaller sample sizes tend to exaggerate
treatment effects (105-107). These findings underscore the
need for large-scale RCTs on rTMS for MOH, incorporating
biomarker-based objective quantification. Such studies would
not only elucidate the pathophysiology of MOH but also
enhance our understanding of TMS mechanisms, providing

strong clinical evidence to support its application in practice.

Research on TMS for MOH remains limited, and many findings
must be extrapolated from studies on CM or EM. The effectiveness of
the L-DLPFC target is still debated, while MOH studies targeting the
occipital lobe are nearly nonexistent. Additionally, few studies have
used objective electrophysiological biomarkers as primary outcome
measures, providing an important direction for future MOH
treatment research design. Several factors may contribute to
variability in the efficacy of TMS for MOH (14, , ): ()
Differences in neuroplasticity and excitability alterations between
MOH-NSAIDs and MOH-triptans patients may lead to distinct
treatment responses (109-111). (ii) Lack of strict adherence to
guidelines (112), including variations in stimulation timing (80,

), target selection, and stimulation protocols across studies (113).
(iii) Inconsistent study designs and measurement parameters, such
as differences in baseline characteristics, statistical methods, small
sample sizes, uneven group distributions, and lack of long-term
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follow-up (114, ). (iv) Placebo effects cannot be ruled out, as
the clinician’s approach, the participant’s understanding of the
study, and the inherent placebo effect of device-based therapies
(which is generally greater than that of oral medications) may
influence outcomes (81, 93, 94, 116).

In the future, multimodal measurements of electrophysiological
indicators such as Amp, PAL, HD, HS, CS, MEP, CSD, CSPD, and
SIFI, along with TMS-induced high-density electroencephalographic
responses (TMS-EEG), will help unravel the underlying mechanisms
of CS and HD in MOH patients. These measurements will also allow
for more accurate determination of the effects of TMS on the entire
brain or other brain regions with abnormal electrical activity,
thereby identifying more effective treatment targets and efficacy
evaluation indicators for MOH.

Future research on TMS treatment for MOH will place
therapy, with
providing an objective

greater individualized

electrophysiological

emphasis  on
assessments
evaluation metric for this approach. Currently, most studies
on TMS treatment for MOH rely on subjective efficacy
evaluations based on clinical manifestations, such as pain
diaries and pain scales. There is limited research using
electrophysiological indicators to assess the efficacy of TMS in
treating MOH. By combining objective electrophysiological
with
researchers can better understand how TMS modulates neural

metrics subjective  clinical symptom indicators,
circuits to achieve pain relief. This will help optimize the
clinical application of TMS and enhance our ability to

harness this promising treatment method more effectively.
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