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Introduction: Peripheral neuropathy (PN) may cause severe, treatment-resistant 

pain, especially in traumatic and/or iatrogenic cases. In those with insufficient 

responses to conventional strategies, spinal cord stimulation (SCS) may be a 

useful treatment option. However, limited research has been performed on 

SCS for this indication. This study aims to assess the efficacy, satisfaction and 

safety of SCS in patients with PN caused by traumatic and/or iatrogenic factors.

Methods: Patients with traumatic and/or iatrogenic PN, implanted with SCS 

between 2005 and 2021 at Radboudumc are included in this study. Perioperative 

data on efficacy, satisfaction, and safety were retrospectively collected from the 

electronic patient records (EPIC) and analyzed using descriptive statistics. The 

efficacy is assessed with the numeric rating score (NRS). Responders are defined 

as those having ≥50% reduction in NRS.

Results: Fifteen patients (M = 8, 48 ± 12 years) are included. At last follow-up 

(2–18 years), 63% (10/15) of patients are defined responders with an average 

decrease in NRS of 63% (8.1 ± 0.8 to 3.0 ± 2.0) (p < 0.01). All patients are 

satisfied with their implant. A complication was present in one patient, 

reporting a superficial infection (6%, 1/15) following implantation.

Discussion: Unlike peripheral nerve stimulation (PNS) and dorsal root ganglion 

(DRG) stimulation, which are more frequently considered for patients with PN 

caused by traumatic and/or iatrogenic factors, SCS enables central nervous 

system stimulation via the spinal cord, thus targeting pain regions associated 

with multiple lower limb nerve roots. As PN, caused by trauma and/or iatrogenic 

factors may affect multiple nerves simultaneously, it is suggested that SCS offers 

improved clinical benefit for these patients.

Conclusion: The current study demonstrates that SCS is a promising treatment 

modality for patients with traumatic and/or iatrogenic PN. Prospective trials 

comparing SCS to treatments like PNS and DRG stimulation are essential to 

substantiate its efficacy, expand its indications, and inform future clinical 

guidelines for patients with intractable traumatic or iatrogenic peripheral neuropathy.
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GRAPHICAL ABSTRACT

1 Introduction

Peripheral neuropathy (PN) is a significant global health 

challenge, impacting 7%–10% of the general population (1). It is 

associated with marked reductions in physical, social and 

emotional functioning (2) and manifests as burning, tingling 

and/or stabbing sensations, with pain being present in almost 

two thirds of patients (3). Common causes of painful PN 

include diabetes mellitus, complex regional pain syndrome 

(CRPS) type II, post-amputation or phantom limb pain, and 

direct trauma or iatrogenic factors (3). Traumatic and/or 

iatrogenic PN is often difficult to treat, while various 

pharmacological options, local minimally invasive injections and 

more invasive alternatives involving peripheral neuromodulation 

techniques [e.g., peripheral nerve stimulation (PNS) and dorsal 

root ganglion (DRG) stimulation] have been developed to treat 

these patients (4, 5). However, a subset of these patients remains 

refractory to conventional strategies and often suffer psychiatric 

symptoms like depression, consequently leading to a marked 

decrease in quality of life (6, 7). The complex pathophysiology 

of traumatic and/or iatrogenic PN, which may simultaneously 

affect multiple nerves, likely contributes to treatment resistance. 

Hence, alternative neurosurgical strategies, such as spinal cord 

stimulation (SCS) should be considered for this particular 

group. SCS involves implantation of a lead and an implantable 

pulse generator (IPG), allowing for electrical stimulation of 

various structures in the spinal cord. Improvement in pain 

intensity is thought to be achieved by enhanced activation of 

low threshold Aβ-fibers, consequently leading to decreased 

nociception by inhibition of the lateral spinothalamic tract 

(Figure 1) (8).

Over the years, SCS has shown to be a valuable treatment 

option for various chronic pain disorders, such as diabetic 

neuropathy and persistent spinal pain syndrome (PSPS), with an 

overall response rate of ≥50% (9). Despite promising outcomes, 

SCS is often not considered a treatment option for patients 

suffering intractable painful PN caused by iatrogenic and/or 

traumatic factors. Since 1996, no literature has been published 

on this subject (10). As a result, there is limited awareness and 

only a weak recommendation for the use of SCS in painful 

PN (11). For this purpose, more research is needed to 

further explore its therapeutic potential. The current study 

aims to evaluate the efficacy of SCS in patients with refractory 

painful PN caused by iatrogenic and/or traumatic factors. 

Outcomes provide valuable insights for interventional pain 

physicians, serving as a crucial resource for achieving optimal 

management of patients with intractable traumatic and/or 

iatrogenic PN.
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2 Materials and methods

2.1 Study population

Patients diagnosed with refractory PN, caused by iatrogenic and/ 

or traumatic factors, implanted with SCS at the Radboudumc 

between 2005 and 2021, were selected. PN is defined as refractory if 

insufficient pain relief was obtained following the European 

federation of neurological societies (EFNS) Step-by-Step treatment 

[including physiotherapy, transcutaneous electrical nerve 

stimulation (TENS), optimal medication and different forms of 

nerve blocks] (12, 13). Patients with <2 years follow-up, and those 

suffering CRPS type II or PN with other causes than iatrogenic 

and/or traumatic factors, such as chemotherapy, radiotherapy, 

pharmacological treatments and thermal injuries, were excluded 

from this study. In all patients, trial stimulation was performed 

prior to implantation of the SCS system. Subjects received a similar 

surgical approach to SCS with an 8-pole electrode (Vectris Octad, 

Medtronic Inc., Minneapolis, MN, USA or Octrode, Abbott) being 

implanted percutaneously with the tip placed between T8 and T12. 

At the time of surgery, there was no reimbursement in the 

Netherlands for SCS in PN. Hence, prior to surgery, 

reimbursement was requested for all patients to individual health 

insurance companies on a case-by-case basis.

2.2 Study design and outcomes

The primary aim of this retrospective observational study is to 

investigate the effect of SCS on pain intensity in patients with 

intractable PN caused by iatrogenic and/or traumatic factors. The 

secondary aim of this analysis is to evaluate the overall satisfaction 

rate and safety of SCS in this group. As part of the standard 

procedure for SCS at the Radboudumc, patients completed a 

questionnaire three times daily over four consecutive preoperative 

days, with pain intensity being evaluated with Numeric Rating scale 

(NRS). These preoperative data have been collected retrospectively 

from the electronic patient database of Radboud university medical 

center (EPIC). At the last follow-up in April 2024, patients were 

contacted and asked about satisfaction and efficacy of SCS. With 

regard to satisfaction, patients were asked if they would undergo 

the surgery again, if answered with yes, patients were classified as 

satisfied. To evaluate efficacy, postoperative data on pain intensity 

have been collected at the last-follow up and compared to 

preoperative outcomes. Responders are defined as those having 

≥50% improvement in NRS.

2.3 Ethical considerations

This study was performed according to the Dutch law and Ethical 

Principles for Medical Research Involving Human Subjects, outlined 

in the World Medical Association’s Declaration of Helsinki revised in 

2013. The Medical Review Ethics Committee region Arnhem- 

Nijmegen concluded that this study was not subject to the Medical 

Research Involving Human Subjects Act (CMO Oost-Nederland; 

file number: 2024-17523). All patients gave consent for using their 

data for the current manuscript.

2.4 Statistical analysis

Preoperative and postoperative data on the efficacy, satisfaction 

and safety of SCS in patients with traumatic and/or iatrogenic PN, 

were analyzed using descriptive statistics, in which all values and 

differences are compared and described manually. Statistical 

FIGURE 1 

Hypothesized mechanism of spinal cord stimulation for peripheral iatrogenic/traumatic neuropathy. Overview of the mechanism underlying 

peripheral nerve injury and spinal cord stimulation. ACC, anterior cingulate cortex; GABA, gamma-aminobutyric acid; PFC, prefrontal cortex; SCS, 

spinal cord stimulation; S1, primary somatosensory cortex; THA, thalamus. Created in BioRender. Kollenburg, L. (2026). https://BioRender.com/ 

mwlweeu.
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analyses for the determination of significance in pain scores were 

performed with SPSS Statistics for Windows (Version 31.0, IBM 

Corp, Armonk, NY). The Shapiro–Wilk test was used to check if 

these data were normally distributed. If data were normally 

distributed, a dependent samples T test was performed to assess 

statistical significance in pain scores before vs. after treatment with 

SCS. P-values <0.05 are statistically significant.

3 Results

Fifteen patients (male = 8, 48 ± 12 years) were included in the 

current analysis with an average follow-up of 10 (2–18) years 

(Table 1). Out of all patients, five suffered nerve injury after a 

trauma and 10 after a surgical intervention of the lower limb for 

various indications. No pronounced neurovegetative symptoms 

TABLE 1 Outcomes of spinal cord stimulation in patients with peripheral neuropathic pain due to trauma and/or iatrogenic factors.

Patient Age (y) Gender Diagnosis Tip of 
lead

Follow 
up

Satisfied NRS 
preop

NRS 
postop

Reduction 
in NRS (%)

Remarks

1 70 M Iatrogenic injury of 

Ischiadic nerve after 

previous pain 

treatments

T10 2 y (27 m) Yes 8 4 50 N/A

2 42 F Iatrogenic injury of 

ischiadic nerve after 

resection of sarcoma in 

buttocks

T9–T10 7 y (87 m) Yes 9 6 33 N/A

3 46 M Traumatic injury of 

peroneal nerve after 

bone fracture

T12 14 y 

(175 m)

Yes 9 5 44 N/A

4 36 M Iatrogenic injury of 

genitofemoralic nerve 

after surgery in 

inguinal region

T8 18 y 

(226 m)

Yes 8 4 50 Revision Quad to 

Octad electrode, 

revision IPG due to 

empty battery

5 45 F Iatrogenic injury of 

peroneal nerve after 

surgery on fibula

T11 6 y (72 m) Yes 9 2 77 N/A

6 47 M Iatrogenic injury of 

saphenous nerve after 

surgery for varices

T9 12 y 

(149 m)

Yes 8 2 75 Revision IPG due to 

empty battery

7 27 F Traumatic injury of 

ischiadic nerve after 

bone fracture

T8–T9 17 y 

(214 m)

Yes 9 6 33 Revision entire SCS 

system due to defect 

contacts

8 60 M Traumatic injury of 

peroneal nerve after 

bone fracture

T8 2 y (27 m) Yes 8 2 75 N/A

9 47 M Iatrogenic injury of 

ilionguinal nerve after 

surgery in inguinal 

region

T10–T11 14 y 

(173 m)

Yes 8 0 100 N/A

10 69 M Iatrogenic injury of 

ischiadic nerve after 

surgery of hip

T9–T10 10 y 

(131 m)

Yes 8 5 43 N/A

11 50 F Iatrogenic injury of 

nervus suralis en 

peroneus after surgery 

for neuralgia

T10 7 y (87 m) Yes 7 4 43 Revision IPG due to 

pocket pain

12 54 M Iatrogenic injury of 

peroneal nerve after 

surgery on fibula

T9 6 y (75 m) Yes 8 3 63 N/A

13 56 F Iatrogenic injury of 

nervus ilioinguinalis 

after surgery in 

inguinal region

T8 6 y (72 m) Yes 6 0 100 Revision IPG due to 

pocket pain

14 27 F Traumatic injury of 

ischadic and peroneal 

nerve after femur 

fracture

T10 13 y 

(156 m)

Yes 9 3 67 SCS system removed 

after 11 years due to 

permanent pain 

reduction

15 54 F Traumatic injury of 

ischadic and femoral 

nerve after pelvis 

fracture

T8 18 y 

(219 m)

Yes 8 0 100 SCS system removed 

after 12 years due to 

permanent pain 

reduction, infection

F, female; h, hour; m, months; M, male; N/A; not applicable; T, thoracic vertebra; y, year.
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were present in the study population. The average decrease in NRS 

is 63% (8.1 ± 0.8 to 3.0 ± 2.0) (p < 0.01). In total, 67% (10/15) of 

patients are defined as responders (Table 1). Two patients 

requested for removal of the SCS system as their original pain 

had permanently decreased. Further, all patients (100%, 15/15) 

are satisfied with their implant. The only biological complication 

was a superficial infection in one patient, which was treated 

with antibiotics (6%, 1/15). In total, reoperations are performed 

in 47% (7/15) of patients. Four patients underwent IPG 

replacement due to an empty battery (13%, 2/15) or pocket pain 

(13%, 2/15); in one of the patients with battery depletion, a 

simultaneous electrode revision was performed. One patient 

received a revision of the entire SCS system due to defect 

contacts (7%, 1/15), and in two patients the system was 

explanted due to permanent pain reduction (12%, 2/15) (Table 1).

4 Discussion

Traumatic and iatrogenic PN has major socioeconomic 

consequences, as it may cause enhanced health care costs and 

mental disorders like depression (14). The current study investigates 

the efficacy, satisfaction and safety of SCS in this group of patients.

4.1 Efficacy of SCS for PN

Outcomes of this study indicate that SCS is a potential treatment 

option for traumatic and/or iatrogenic PN, with 67% of patients 

being responders. Despite limited research being published on this 

specific group of PN, the response rate obtained within the 

current study corresponds with outcomes reported for SCS in 

other causes of PN. Data suggests improvement in pain intensity 

in 58%–65% of patients with CRPS (15, 16). Further, response 

rates of 58%–100% are mentioned for patients with diabetic and 

idiopathic neuropathy (9, 10, 17). In addition, reports show that 

SCS is effective in 48%–88% of patients with PN related to 

persistent spinal pain syndrome related (18, 19). In patients 

suffering stump pain after amputation and/or phantom limp pain 

in the lower extremities, authors report response rates of 83% (20) 

and 100% (21). Promising outcomes of SCS in diabetic 

neuropathy and/or leg/back pain further support consideration of 

this strategy in the treatment spectrum of PN caused by trauma 

and/or iatrogenic factors (19). In the current analysis, 100% of 

patients are satisfied, which can likely be attributed to all patients 

experiencing sufficient reduction in pain intensity. The 

satisfaction rate is higher than previous outcomes on SCS for 

chronic pain, reporting an overall rate of 82.2% (22).

Discrepancies in outcomes of SCS for various forms of PN 

may be caused by variability in surgical technique, responder 

definition, follow-up, stimulation settings and underlying 

etiologies of PN (23). It is important to note that some 

outcomes on SCS for painful PN were published further back in 

time (10), hence why outcomes may differ from more recent 

articles in which more advanced approaches to SCS have been 

used. With regard to surgical technique, it can be expected that 

electrode placement most proximal to the root of the affected 

nerve(s) will correlate to better outcomes (24). Concerning the 

follow-up, studies have shown that around 13%–26% of patients 

undergoing SCS experience loss of efficacy over time due to the 

presence of habituation, which may be caused by neuronal 

plasticity (25–28). This phenomenon likely forms an explanation 

for the loss of responders found in patients with PN receiving 

SCS on the long-term and may suggest that studies with a 

longer follow-up period may have decreased response rates (10).

Another important aspect contributing to discrepancies in study 

outcomes includes variability in etiologies causing PN, as these may 

interfere differently with SCS. To illustrate, SCS most likely acts 

upon the myelinated fibers of the gate control system, however, in 

certain pathologies, peripheral pain is also suspected to be caused 

by disturbances in other pathways including non-myelinated 

fibers, which may lead to diminished efficacy of SCS (10). It is 

noteworthy that, in cases of diabetic PN, it can be considered a 

continuous and systemic disease which progresses over time, 

whereas this is not the case for PN caused by nerve injury and/or 

iatrogenic factors, thus likely affecting outcomes of SCS (29). The 

importance of variability in etiologies on clinical outcomes of SCS 

is confirmed by findings of Kumar et al. suggesting lower efficacy 

of SCS in patients with PN caused by postherpetic neuralgia and 

intercostal neuralgia when compared to diabetic and idiopathic 

neuropathy (10). However, as the involvement of chronic pain 

pathways in various forms of peripheral neuropathic pain is 

similar, it makes it somewhat questionable to what extent the 

etiology affects outcomes of SCS (30).

In the current study, it is noteworthy that in two patients, the 

SCS system was explanted due to permanent reduction in pain 

intensity, even when stimulation was turned off for a long period 

of time (13%, 2/15). Though rarely described, the presence of this 

phenomenon has also been reported for patients with CRPS 

undergoing SCS (31). Further, a retrospective chart review study 

similarly reports explant of SCS due to permanent pain reduction 

in 3/962 patients with various indications of chronic pain (32). 

Though the mechanism underlying this observation remains 

unknown, it may be caused by permanent reversal of central 

sensitization (33), increase in current perception threshold (34), 

nerve regeneration and/or cortical plasticity (35). Meier et al. 

investigates the carry-over effect in SCS and attributes the 

occurrence to “peripherally induced reconditioning of the central 

nervous system”, suggesting that selective activation of Aa/β fibers 

could temporarily reverse neuronal hyperexcitability and changes 

in descending supraspinal circuits induced by chronic pain (36). 

Though the carry-over effect has only been described to last for 

several hours, a similar mechanism might be present for 

permanent disappearance of pain after explant of the SCS system 

(36). It remains unclear as to why this phenomenon solely occurs 

in certain patients, however, Lee and colleagues suggest that age 

may play an important role as young patients are thought to have 

greater Pexibility returning from disturbances in the sympathetic 

nervous system (31). Further, factors including pain intensity, 

etiology, stimulation paradigms might also be involved as these 

are thought to affect the duration of the carry-over effect in SCS 

(36). Interestingly, despite similar effects on pain reduction, only 
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limited number of patients requested removal of the SCS system. 

This might be attributed to pain reduction not being permanent, 

anxiety for regaining painful sensations after the explant or 

patients not being bothered by their implant. Due to limited data 

availability, the mechanism of SCS and (permanent) carry-over 

should be further investigated as it could provide valuable insights 

for treatment optimization of SCS for PN. Other factors 

contributing to this phenomenon may be permanent alterations in 

personal stressors, leading to improvements in pain intensity 

over time.

A single technical complication, IPG site pain (2/15), occurred in 

this study and has also been mentioned by others covering SCS for 

peripheral neuropathic pain (37), alongside other adverse events 

such as lead migration and lead breakage (9, 20, 38), which did not 

occur in the current study. Furthermore, only a single biological 

complication occurred, while others report additional adverse 

events (AEs) including cardiac arrest, femur fracture, allergic 

dermatitis, hematoma, and wound dehiscence/impaired healing in 

patients with peripheral neuropathic pain undergoing SCS (21, 38, 

39). Interestingly, the AEs, except for infection (3%–8%), are 

considered rare for patients with chronic pain undergoing SCS 

(40). The discrepancy in AE rates between the overall chronic pain- 

and peripheral neuropathic pain group is likely due to patients with 

PN often suffering additional comorbidities like diabetes, hence 

making them more prone to develop infections and other wound 

related complications (41). Due to an absence of additional 

comorbidities in the current study population, lower incidences of 

biological complications were also expected.

4.2 Mechanism of SCS in PN

In PN, SCS is hypothesized to alter neurochemical signaling in 

the dorsal horn, inhibiting central neuronal hyperexcitability in 

the nociceptive system (8). Peripheral nerve injury enhances 

neuronal firing via the Aβ and c fibers, leading to excessive release 

of glutamate and substance P in the dorsal horn (8) (Figure 1). It 

may also increase apoptosis of inhibitory interneurons, as well as 

cause hyperexcitability of microglia and astrocytes (42–44). As a 

result, the secondary order neuron depolarizes, leading to 

enhanced activation of the spinothalamic tract and increased 

transmission of pain signals to various cortical and subcortical 

areas (Figure 1). SCS potentially reduces nociception by inhibiting 

activity in the spinothalamic tract, through stimulation of Aβ 
fibers and activation of inhibitory interneurons (33, 34, 45). 

Following stimulation of these interneurons, opioids are released, 

leading to the hyperpolarization of Aδ and c fibers as well as 

secondary order neurons. As a result, pain transmission via the 

spinothalamic tract is reduced (33). SCS may also enhance GABA 

release, leading to the suppression of wide dynamic range (WDR) 

neurons, which are shown to be hyperexcitable after nerve injury 

(46, 47). Through connections with the Aδ and C fibers, 

inhibition of WDR neurons likely acts on similar ascending pain 

pathways (47). Evidence also suggests that SCS terminates wind- 

up in C fibers, which is a phenomenon describing increased pain 

intensity over time following repeated nociceptive stimulation 

(47). SCS has also been shown to counteract the activation of 

microglia cells, which may play an important role in peripheral 

neuropathic pain (Figure 1) (48).

4.3 Efficacy and mechanisms of peripheral 
neuromodulation in PN

Unlike SCS, peripheral neuromodulation techniques are 

more frequently considered as a treatment option for PN. 

Previous literature has explored the efficacy of conventional 

neuromodulation techniques, such as PNS, as well as more 

innovative approaches, like DRG stimulation (49, 50). Previous 

findings suggest that PNS of the tibial nerve causes 65%, 79% and 

83% pain relief after 1, 3 and 6 months follow-up respectively in six 

patients with PN and CRPS (51). Other studies report a 57.4% 

reduction in pain intensity at 12-month follow-up following PNS 

of the brachial plexus in a cohort of ten patients with CRPS (52). 

Furthermore, authors state that 71% of patients with various forms 

of chronic pain (including CRPS) experience ≥50% improvement 

in pain after treatment with 60-day PNS (53). The therapeutic 

effects of PNS are thought to be established via peripheral and 

centrally acting mechanisms. On the central level, PNS may reduce 

hyperalgesia and central sensitization by inhibiting the activity of 

dorsal horn interneurons and wide dynamic range neurons, and 

through modulation of GABAergic and serotonergic pathways (50). 

Peripherally, PNS is theorized to suppress pain signal transmission 

by modulating large diameter Aβ afferent nerve fibers, without 

small fiber activation (50). With regard to DRG stimulation and 

PN, Ege and colleagues investigated the efficacy of this approach in 

nine patients with chemotherapy-induced PN. They report a mean 

reduction of 2.3 in average and 2.6 in worst pain using the visual 

analogue score (54). Notably, pain scores further ceased after 3 

months, with the lowest pain scores (average of 1.9) being reported 

after 6–12 months (54). Others mention an average decrease of 

64.2% (N = 4) (at 12 months follow-up) (55) and 80% (N = 8) (at 6 

weeks follow-up) (56) for patients with painful diabetic 

neuropathy. Data also shows improvements of 67% (N = 8) (at 3 

days follow-up) (57), 100% (N = 1) (at 3 years follow-up) (58), 40% 

(N = 1) (at 20 months follow-up) (59), 71% (N = 7)(at 1 week 

follow-up) (60) and 49% (N = 33) (at 12 months follow-up) (61) in 

those suffering idiopathic PN and polyneuropathy. The precise 

mechanism behind DRG stimulation in PN remains unclear. 

However, several theories imply that it may suppress the 

transmission of pain signals by acting at the T-junction of 

nociceptive neurons, stimulating postsynaptic activation of pain- 

gating circuits in the dorsal horn and DRG, and modulating the 

intrinsic excitability of DRG neurons (62).

4.4 SCS vs. peripheral neuromodulation 
for PN

Literature suggests that only small portion of patients with PN 

receive SCS, owing to the lack of awareness of SCS guidelines, 

absence of reimbursement, and low referral rates for this indication 
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(63). The lack of clear indications contributes to limited clinical 

experience. An unstandardized surgical approach and the inclusion 

of heterogenous groups likely also contribute to physicians’ 

reluctance to implement SCS for painful PN caused by trauma and/ 

or iatrogenic factors. As a result, clinicians select pharmacotherapy 

or peripheral neuromodulation techniques (e.g., PNS and DRG 

stimulation) instead of SCS for patients suffering traumatic and/or 

iatrogenic PN (62). To date, very limited research has been 

published on the comparison between SCS and peripheral 

neuromodulation techniques, especially for PN. It should, however, 

be emphasized that each neuromodulation technique acts on a 

different target site and may thus be preferred in specific clinical 

scenarios. PNS and DRG stimulation may especially be effective 

when peripheral neuropathic pain originates from a single affected 

nerve, due to their ability to target areas closely adjacent to 

the affected nerves. Consequently, it is theorized that in 

mononeuropathy, lower amplitudes are needed to achieve the 

desired effect, compared to SCS, where greater current loss may 

occur across the cerebrospinal Puid (CSF) layer and dura mater 

(50). In addition, proximity allows for precise modulation, 

potentially leading to greater reductions in pathological neuronal 

firing near the origin of pain. Supporting this, studies have 

demonstrated enhanced GABA release within the dorsal horn of the 

spinal cord following DRG stimulation, compared to SCS (64, 65). 

The advantage of precise, localized targeting of the affected nerve in 

these treatments also presents a limitation, especially in patients 

with traumatic and iatrogenic PN involving multiple branches 

originating from different nerve roots (e.g., the sciatic and 

concomitant peroneal nerves arising from L4–S2–S3), as was the 

case in the current study sample. In this particular group of PN 

patients, DRG stimulation and/or PNS would require the placement 

of multiple electrodes at different spinal levels and/or peripheral 

nerve branches respectively, making SCS a more practical and 

comprehensive option. Further, SCS is often also preferred in 

patients who received multiple surgeries in the affected area as 

scarring and/or anatomical abnormalities may be present which 

complicate PNS but not SCS. Moreover, SCS may be particularly 

advantageous over PNS in cases involving nerves located deep 

within the lower abdomen and groin region (e.g., ilioinguinal nerve 

and genitofemoral nerve), where accurate targeting with PNS can be 

technically challenging. Finally, another advantage of SCS over PNS 

and DRG, is the ability to automatically adjust stimulation 

parameters with closed-loop systems during postural changes, 

allowing consistent efficacy throughout bodily movement (66).

4.5 Strengths and limitations

Though the sample size of the current study is relatively small, 

due to lack of reimbursement, it does remain the largest sample 

size of studies investigating SCS in patients with PN caused by 

trauma and/or iatrogenic factors. Additionally, the length of follow 

up in the current sample is also considered a major strength. 

Whereas a subset of studies include heterogenous groups and 

poorly define causes of PN (10, 25), inclusion of a homogenous 

group, is considered a major strength of the current study. It is 

important to note that though all subjects of this study received the 

same diagnosis, variability in iatrogenic and/or traumatic events, as 

well as the nerves affected by the events differed between patients. 

This is also the reason that the lead was placed slightly different in 

each patient. Further, the current analysis does not correct for 

confounders such as pain medication intake, follow-up, age, 

gender, type of electrode, waveforms and pain score at baseline, 

hence why conclusions should be taken with caution. Moreover, 

SCS is also shown to have an effect on quality of life (67), however, 

as this is not evaluated in the current study, this would form an 

interesting field for future research. Further, as this study is 

retrospective, there are no matching controls, hence why the 

placebo effect could not be properly evaluated. The current analysis 

does not measure duration between nerve injury and implantation 

of SCS, which may be a relevant topic for prospective studies as it 

is suggested that early SCS, within 24 h after nerve injury, is related 

to higher rate of responders and longer duration of analgesic effects 

compared to late SCS, 16 days after nerve injury (68). Future 

research including homogenous groups of PN, variable follow-up 

moments, standardized surgical approach and sham-controls are 

necessary, as these may lead to a better understanding of pain 

pathophysiology and SCS mechanisms.

5 Conclusion

Traumatic and iatrogenic PN places a huge burden on patients’ 

lives, especially in case they are refractory to conventional pain 

strategies. Current outcomes highlight SCS as a promising 

treatment option for intractable traumatic and/or iatrogenic PN. 

Future research involving homogeneous cohorts of peripheral 

neuropathy patients and the use of sham controls will be crucial to 

further explore the clinical potential of SCS for traumatic and 

iatrogenic neuropathic pain. In parallel, prospective trials directly 

comparing SCS with treatments such as PNS are essential to 

validate its efficacy, support the expansion of its indications, and 

guide its integration into clinical guidelines for managing 

intractable peripheral neuropathy.
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