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Introduction: In collaborative industrial work systems, the locus of
authority—whether control over system dynamics is initiated by the system
(adaptive) or by the human operator (adaptable)—can shape work experience
and perceptions of the robotic partner. This study exploratively investigates how
these control schemes and a static work system influence key psychological
factors and which one should be favored in collaborative assembly tasks.
Methods: In an experimental laboratory study with n = 27 participants, a
collaborative gearbox assembly task with a robot is used to compare adaptive
and adaptable control schemes against a non-adjustable baseline. In the adaptive
condition, the robot’s speed automatically adjusted to human proximity; in
the adaptable condition, speed is manually adjustable via interface buttons;
in the baseline condition, speed remains static. The primary endpoint was
the longitudinal, comparative investigation of flow experience and perceived
task demands as they represent central indicators of employees’ psychological
experience in dynamic work systems. Dependent variables included additionally
autonomy perception and workplace fit (task perception), and trust, safety,
robot’s intelligence, and collaboration satisfaction (robot interaction perception),
as well as cycle time (performance), measured across four collaborative trials and
five time points, making group comparisons and the investigation of construct
dynamics possible.
Results: Both control schemes demonstrated improved collaboration
experiences compared to the baseline condition. Participants in the adaptive
condition reported higher flow experience and workplace fit, and showed the
fastest production times across all trials, while participants in the adaptable
condition reported higher autonomy and task demands. Additionally, trust in the
robot increases over time, harmonizing trust levels across conditions.
Discussion: Despite limitations related to an exploratory design and a small
sample size potentially masking existing effects, the findings indicate that
dynamic working conditions can improve worker experience. However, the
findings do not present a consistent picture favoring either adaptive or adaptable
control schemes. Further research is needed to determine which control scheme
is preferable in different task contexts. To inspire future work, we derive a set of
hypotheses from the study’s initial findings.

KEYWORDS

human-robot interaction, dynamic automation, Industry 5.0, human perception,
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1 Introduction

With Industry 5.0 as a EU-wide strategic approach toward
an industrial landscapes that not only strives for efficiency and
cyber-physical connectedness (Industry 4.0) but also considers
sustainability, resilience, and focuses on the human as the
core of production processes (Breque et al., 2021; European
Commission, n.d.–b), new opportunities—and necessities—arise to
design technology induced, yet humane, workplaces. One such way
is to use the potentials that go along with elevated sensors, systems’
learning capabilities, no-code-programming and accessible robots:
that is, work system dynamics. These dynamics can be used to
create workplaces and work processes that fit not only the current
production requirements, but also the people working in them and
the goals for sustainable and resource-conserving work. They can
ensure that the technology and the structure of work fit the current
needs of the sociotechnical system by means of changeable work
environments, task allocation and technology behavior.

Those dynamics can be broken down into two major strategies:
adaptability and adaptivity. Whereas, adaptability is initiated by
the human, adaptivity is triggered automatically by the technology
employed (Kidwell et al., 2012). As such, both strategies allow
work systems to account for humans’ characteristics, situational
states and external requirements. Still, research on the effects of
such a dynamic design on the people working in it is scarce, such
as is especially the knowledge on where and when adaptivity or
adaptability are preferable.

Therefore, our exploratory study is a step into comparing static
to adaptive and adaptable work systems in the context of human-
robot collaboration in production tasks. To investigate workers’
perceptions of the work, collaboration, and wellbeing under
those different conditions, we initiated a laboratory experiment,
implementing adaptability and adaptivity (vs. fixation) of robot
trajectories, to enhance human safety, robot productivity, and
especially psychological resources. The objective of the study is
to derive best practices for human-centered design in human-
robot collaboration.

2 Theory on dynamic work systems
and their effects on workers

When looking at Industry 5.0, one necessity becomes obvious:
production and thus work systems will need to be inherently
flexible to allow for continually adapting to changing resource
availabilities to account for sustainability, but also to human needs
and performance requirements (Breque et al., 2021). Especially
in the production sector, we see a rising demand in flexibility
(e.g., Fragapane et al., 2022) and spontaneous changes in teams.
This flexibility can manifest on different levels and across different
aspects of production, from job rotation for production workers to
adjustments of cycle times.

The potentially best researched area is that of task allocation
and the question of which agent will execute which task within
a work system at a given point in time (Older et al., 1997).
Here, the term dynamic automation (DA) can be found, referring
to the dynamic allocation assignment of tasks to human and

technical actors, independent of the decision-maker (Bernabei
and Costantino, 2023). In short, dynamic allocation leads to the
decision “who is doing what, and when” (Bernabei and Costantino,
2023, p. 3528). Different terms are used to refer to dynamics
(in the context of task allocation, see also Older et al., 1997):
mixed-initiative interaction (Hearst et al., 1999), collaborative
control (Fong et al., 1999), coactive design (Johnson et al.,
2011), adjustable autonomy (Kortenkamp et al., 2000), situation
dependent allocation (Greenstein and Revesman, 1986), flexible
and adaptive allocation (Mouloua et al., 1993), adaptive aiding
(Rouse, 1988), or self-organizing sociotechnical system (Naikar and
Elix, 2016).

Another area of research that partially overlaps with dynamics
is automation behavior, with a particular focus on robot behavior.
Under the term of behavior adaptation of robots, one can find
research and practical examples trying to account for the human
expectation of interaction partners to adapt to them (Mitsunaga
et al., 2008) such as robots learning user preferences of them
navigating (Inamura et al., 1999) with direct human feedback or
by evaluating sensor data.

2.1 Two control schemes: adaptability and
adaptivity

Kidwell et al. (2012) describe two distinct “control schemes” (p.
428) for automated systems: adaptivity and adaptation. Adaptation
[also: adaptability] allows an operator “to specifically tailor the level
of automation (LOA) to suit current and/or future workload” (p.
428) as well as adapting the system to individual factors. Thus, a
robot that is adaptable can be changed by the human to fit the
situation or personal needs and requirements.

Adaptivity, on the other hand, means that a system balances
changes in workload automatically (Kidwell et al., 2012). As to the
more specific definition of Kaber et al. (2005), adaptive automation
can be understood as the dynamic allocation of control over system
functions to humans and computers, based on the state of the
operators or the task. It can be seen as a process of using a machine
only when a human worker is in need of support (Gramopadhye
et al., 1997). Adaptivity can also be seen as an ability to either
recommend or decide on changes in the level of automation in case
of a pre-defined trigger (set) appearing (Oppermann, 1994).

Hence, there are two directions from which dynamics can
be initiated—or a “locus of authority that changes LOAs”
(Calhoun, 2022, p. 271): one is the human, the other is
some, at least semi-autonomous, system, potentially driven by
AI. This distinction underpins a fundamental debate in the
design of human–automation interaction about whether control
should be dynamically adapted by the system itself through
adaptive automation or remain under human authority by
adaptable automation. Interestingly, after co-authoring the 2012
conference paper titled “Adaptable and Adaptive Automation for
Supervisory Control [. . . ]” with Kidwell, Ruff and Parasuraman,
Gloria Calhoun published a paper in 2022 named “Adaptable
(Not Adaptive) Automation: Forefront of Human–Automation
Teaming,” indicating a shift in focus toward adaptable automation.
This later work explicitly argues for prioritizing human authority,
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reflecting concerns about transparency, trust, and accountability in
increasingly autonomous systems. The research history thus raises
the questions of the advantages and disadvantages of adaptability
and adaptivity, and of what control scheme is preferable (under
which condition). In the following, arguments for both will be
provided to establish a base for the experimental comparison in a
human-robot collaboration context.

2.1.1 Why adaptivity: reasons for technology as
the locus of authority

As Dhungana et al. (2021, p. 200) report, “all these [task
allocation] approaches [...] leave the decision to the algorithm.”
Thus, the standard case for flexible work systems is that of a
technology, be it implemented in a robot or run on a separate
computer, adapting processes and thus being the locus of authority.
Also coined as “human-aware robot behavior” (see, e.g., Svenstrup
et al., 2009) researchers and developers use e.g., camera systems
and algorithms for movement prediction or infer willingness to
collaborate from human posture (Svenstrup et al., 2009) to make
robots adapt their behavior to human collaborators. The advantages
of robotic adaptivity, that Chen et al. (2024) list, include successful
interactions with humans, perception as a team partner, expression
of understanding, adjusting to responses of users and different
situations, and embodying various roles. Mostly, the central point
for adaptivity in industrial robots is that an adaptive robot is able
to smoothly change its behaviors or movements and thus creating
a fit to human behavior, which helps establish smooth and fast
workflows (Karbouj et al., 2024). An experiment by Liu et al. (2016)
shows that not only are adaptive conditions faster in task execution
than fixed processes, but they are also subjectively evaluated better,
especially when the control avatar behaves in a predicting manner,
going beyond reactive adaptation.

Another advantage of a locus of authority on part of
the technology is that adaptivity is possible without human
intervention, without the need to overthink needs and preferences
and without the interruptions of user inputs to control a robot.

2.1.2 Why adaptability: reasons for humans as the
locus of authority

The arguments for having the human decide on or at least be
involved in the decision of what and how automation works lie
mainly in the psychological literature and knowledge regarding the
importance of autonomy, completeness, and empowerment. It is
based on the principle of human-centeredness, seeing the human
as the central role within a sociotechnical system (Huchler, 2015),
which is also vital for an Industry 5.0-way of thinking.

Additional, central work-psychological models and theories
such as the criteria of humane work (Hacker, 2005), the job-
demands-resources model (Bakker and Demerouti, 2007), the job
characteristics model (Hackman and Oldham, 1975), the more
current SMART Work Design model (Parker and Knight, 2024)
as well as self-determination theory (Ryan and Deci, 2000) all
underline the importance of varying demands, autonomy, and
opportunities for learning and self-development as fundamental
psychological needs or essential resources at work. These aspects

are more likely to be preserved and actively supported through an
adaptable approach.

Strengthening those resources is of vital importance, especially
in the production sector, where work can often be classified as basic
work (Bovenschulte et al., 2021) with low competence demands and
predominantly manual activities. While such work is particularly
suitable for robotic applications, it inherently suffers from low
degrees of autonomy and from tasks with low cognitive stimulation
that are partially physically straining or lead to continuous distress.
Adaptability can thus be a way toward worker empowerment,
can help level out the physical demands by enabling workers to
dynamically change task allocation and hand over strenuous tasks
to robots, and can even leverage autonomy and task completeness
through oversight of a whole production sequence instead of only
small task sequences decided upon in a top-down manner (see also
Tausch and Kluge, 2023).

3 Research questions and empirical
motivation

Despite the ongoing theoretical debate on adaptability and
adaptivity, the empirical evidence base remains surprisingly
limited. Calhoun’s (2022) mini-review on opportunities to flexibly
design human-automation systems reveals a huge research
asymmetry: while adaptive automation has been the focus of
extensive investigations, publications on adaptable automation
remain scarce, with adaptive approaches outnumbering adaptable
ones by a factor of ten. Although hybrid approaches appear
promising, experimental comparisons between both dynamic
modes remain underexplored. Thus, Calhoun (2022) claims
that a shift in research is needed away from “building and
demonstrating” (Sheridan, 2016, p. 531) the optimal adaptive
system toward empirically examining “adaptable automation
enabled with efficient interface design” (Calhoun, 2022, p. 273).
Moreover, existing research in the field of flexible automation has
primarily focused on identifying triggers for switching LOA such
as physiological arousal, critical events, performance breakdowns,
or a combination (see e.g., Feigh et al., 2012). In contrast, there
is a lack of studies that systematically examine the consequences
of dynamic control schemes on the human experience, the
perception of the robotic partner, and the interaction between
the two.

Against this background and in the light of the guiding
human-centered, sustainable, and resilient principles of Industry
5.0, there is a clear need for research that explores how different
control schemes influence the quality of human collaboration with
automations. Building on the theoretical foundations introduced
in the previous sections, we assume that an adaptable approach
may better support psychological resources such as autonomy.
At the same time, adaptive automation might promote smoother
task execution. Due to the limited empirical basis in this field,
we refrain from formulating predefined hypotheses but instead
derive research questions. They form the basis for the exploratory
experimental study conducted in this work and are further broken
down into specific constructs and empirical evidence in the
following chapter:
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a) How do adaptive and adaptable work systems, in comparison to
static systems, influence the perception of work characteristics,
and how do they affect cognitive and affective reactions toward
the robot and the interaction with it?

b) Which control scheme—adaptable or adaptive automation—
is preferable for implementation in a human-robot workplace
in production?

This approach provides a first step toward a joint consideration
of adaptability and adaptivity and thus allows us to investigate the
advantages and disadvantages of both control schemes in a nuanced
manner within an industrial production context. In that sense, our
study differs from prior research in the following points:

1) It experimentally compares adaptive and adaptable automation
within the same design, which is still scarce (Calhoun, 2022),
AND further provides a static baseline condition to contrast
both forms of dynamic control against. Thereby, our focus is
not on robot initiative as in prior studies (e.g., Baraglia et al.,
2017; Liu et al., 2016; Noormohammadi-Asl et al., 2024) but
specifically on the comparative effects of adaptable, adaptive,
and static control over robot speed parameters.

2) Dynamics are implemented via robotic speed changes, which
represents a smooth and non-obstructive means of conveying
dynamism. This is in contrast to prior experiments using, e.g.,
verbal instructions necessary for the robot to act at all (Shah
et al., 2011), or colliding human and robot movement paths
resulting in waiting times when non-adaptable (Lasota and
Shah, 2015).

3) Our task context differs from abstract or context-free paradigms
(e.g., Nikolaidis et al., 2017; Noormohammadi-Asl et al.,
2024) by situating the experiment in a realistic, low-effort
production environment.

4) The interaction takes place in a physical space and directly
influences the shared work environment unlike simulation-
based or web-based studies (e.g., Liu et al., 2016; Nikolaidis et al.,
2017).

5) Our outcomes are not limited to performance metrics but
center on perceptual variables that are critical for humane and
meaningful work design.

Taken together, our contribution lies in systematically
comparing adaptivity and adaptability to a static baseline in a
setting that avoids obstructive or artificial task dynamics. By using
a realistic production task that mirrors low-demand workplaces
likely to be augmented by robots, our results provide insights into
an easily implementable parameter of robot dynamism and thus
contribute to the human-centered design of decent work in line
with current societal efforts such as Industry 5.0.

3.1 Consequences of adaptivity and
adaptability on experiencing one’s work

Autonomy, besides being one of the central human motives
according to see self-determination theory (Ryan and Deci, 2000),
is also a key motivational task characteristic that describes the
freedom and independence in planning and sequencing work

tasks, making self-directed decisions, and choosing work methods
(Morgeson and Humphrey, 2006). As Morgeson and Humphrey
(2006) show, autonomy is more pronounced in professional
occupations, thus likely harder to achieve in less complex,
potentially unlearned production jobs. Adaptability on behalf of the
human keeps them in the loop whilst exploiting anticipatory and
preparatory powers of the human (van Dongen and van Maanen,
2005)—thus, a higher felt autonomy in an adaptable (not adaptive)
workplace can be expected.

Flow-experience is another motivational state, expressed by
being absorbed during concentratedly executing and activity, and
also by feeling in control over the situation (Csikszentmihalyi,
1975). It also occurs at work (e.g., Engeser and Baumann, 2014)
and during cooperative activities (Magyaródi and Oláh, 2015). Its
positive consequences are manifold (see Peifer and Wolters, 2017,
for an overview), hence it is a state that should be supported, by,
e.g., offering autonomy as a central antecedent (Peifer and Wolters,
2017).

Still, work does not only provide resources, but also puts
demands on people (JD-R model by Bakker and Demerouti,
2007). Those demands can be regarded as “physical, social, or
organizational aspects of the job that require sustained physical or
mental effort and are therefore associated with certain physiological
and psychological costs” (Demerouti et al., 2001, p. 501). If
demands are high and not counterbalanced by adequate resources,
such as job control, job strain can evolve (demand-control model by
Karasek, 1979). Kidwell et al. (2012) state that applying adaptability
generally can reduce complacency and increase monitoring and
task completion attention, as well as performance and operator
confidence, whilst it can also increase workload and demands
put on the human part. From this, they conclude that “an
adaptive scheme that automatically rebalances workload as the
need arises might be more effective for optimal human-system
performance” (Kidwell et al., 2012, pp. 428–429). Adaptivity has
been shown to improve performance while reducing attention
demands in comparison to undynamic automation use (Calhoun,
2022; Parasuraman et al., 2009). Thus, from a demands-perspective,
adaptivity should be preferable due to not posing additional
demands and reducing efforts needed to execute tasks. However,
particularly in low-demanding environments such as routine
production contexts, adaptability may be preferred, as it can
elevate task demands to a psychologically desirable level by offering
opportunities for meaningful engagement, decision-making, and
active participation in the work process.

In addition to motivational and strain effects of workplace
dynamics, they are also cognitively evaluated. This perception
of workplace fit refers to the subjective impression that one’s
workplace, including the tools and technologies it involves, is
more or less aligned with one’s individual needs, abilities, and
working style (Karmacharya et al., 2025). Based on the logic
of human-technology fit (Goodhue and Thompson, 1995) and
human-centered design (Wilkens et al., 2023), we assume that
designing workplaces that do not only match “standard” humans,
but the individual, is another resource at work. It might be equally
affected by adaptivity and adaptability and should be generally
rated higher than when standardized workplaces and non-reactive
technologies are used.
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3.2 Consequences of adaptivity and
adaptability on experiencing the robot and
the interaction

Trust is a complex meta-construct addressed by models
such as the TrAM (trustworthiness assessment model; Schlicker
et al., 2025). Overall, it can be understood as an attitude and
expectation that some form of automation will help reach one’s
goals, especially in vulnerable and unclear situations (Lee and See,
2004). Accounting for its complexity, aspects of trustworthiness,
i.e., an AIs purpose, processes and performance (Lee and See,
2004) can be integrated, coming to an overall picture of trust in
AI, that, e.g., can be subdivided into global trust and its facets,
including perceived ability, integrity, transparency, unbiasedness,
and vigilance (Wischnewski et al., 2025). A study by Nikolaidis
et al. (2017) showed that trust was higher when the robot adapted
its behaviors and that with higher initial trust, participants were
more willing to adapt the robot themselves. Also Lasota and Shah
(2015) show trust gains in an adaptive condition where the robot
made avoidance maneuvers in order to adjust to human actions
compared to a static robot behavior condition.

One of the more global constructs regarding interaction
experience is the satisfaction with collaboration with the robot.
Satisfaction, transferred from work satisfaction, can be understood
as a positive emotional state resulting from the judgement of, in
this case, the interaction with the robot and the work executed
together (Locke, 1976). As to the operationalization of Lasota and
Shah (2015), it is based on a fluent and mutually understanding
interaction that works out. Liu et al. (2016) showed that most
people prefer working with a robot who adapts to their intentions.
The same is shown by Sekmen and Challa (2013) who implemented
adaptivity in a robot by a learning algorithm updating after every
interaction with a human. Using multiple inputs such as human
speech and its understanding, localization of sounds, a navigation
system and recognition of faces and attention measure, their robot
either adapted to its human interaction partners or not. They show
that adaptive interaction is preferred. Thus, enhanced collaboration
satisfaction can be expected in dynamic work situations.

Collaboration satisfaction is closely related to the perceived
safety and comfort in interacting, understood as the perception that
the robot moves adequately and does not endanger the human
by its behaviors (Lasota and Shah, 2015). A study by Munzer
et al. (2017) compares an instructed (i.e., human-controlled)
with a semi-autonomous collaboration between a human and a
collaborative robot, where the robot learns from the prior trial
which action is expected from it. This condition is rated more
helpful, although it also comes with increased fear of the robot
(Munzer et al., 2017). This can potentially be explained by the
more fluid interaction evolving from the robot acting proactively
and by the loss in controllability on part of the human. Thus,
there are hints both for enhanced collaboration satisfaction and
potential impairments of safety perception, which might not occur
in adaptable contexts.

Perceived adaptivity is a more concrete construct related to
especially the degree of perceived ability of a robot to adapt to one’s
presence and needs. Ahmad et al. (2017) describe adaptive robot
systems as “capable of adapting based on the user actions [...] based

on their emotions, personality or memory of past interactions” (p.
1). It is supposed to relate to the dimension of workplace fit (see
chapter before) and can be understood as one possible precondition
to enable this fit. Nevertheless, Calhoun (2022) lists dangers of
adaptivity such as a potential loss in acceptance (Parasuraman
and Riley, 1997) and situation awareness, depending e.g., on
predictability and reasonableness of automatic changes, potentially
leading to irritation, performance drops or safety issues (Miller and
Hannen, 1999).

Another variable evaluating a robot or any cognitive agent is
its perceived intelligence, which can be described as the perceived
competence of a robot and sensibility of its behaviors (see Bartneck
et al., 2009). It can be regarded as a factor within the judgement of
anthropomorphism, i.e., “the attribution of a human form, human
characteristics, or human behavior to non-human things such as
robots” (p. 74) and is mainly influenced by a robot’s competence
(Koda and Maes, 1996). It can be expected that more abilities, such
as being able to adapt to human posture and behavior, will lead to a
higher perception of intelligence.

4 Materials and methods

The aim of this study is to explore how different control
schemes, implemented across three study groups (adaptive,
adaptable, static) in robot-assisted work settings affect perception-
related variables regarding the task, the robotic system, and the
interaction. To address this, we conducted a laboratory experiment
using a mixed within-between subjects design, allowing us to
exploratory examine the derived research questions regarding
adaptability and adaptivity in an application-oriented industrial
production context.

4.1 Experimental design

The laboratory experiment investigated the effects of different
robot control schemes as independent variable on perception-
related variables of the task, robot, and interaction (see Table 1
for an overview) as dependent variables. The independent variable
was manipulated by systematically varying the robot’s speed control
across two experimental groups and one control group during a
collaborative gearbox assembly task. In the adaptive experimental
group (EGrobot), the robot automatically adjusted its speed in real
time based on the distance to the human. To enable this, a camera
system continuously tracked the positions of the human’s head
and hands relative to the robot’s Tool Center Point. Every 200
milliseconds, the minimum distance between these points was
computed and used to scale the robot’s speed linearly between
two thresholds: the robot moved at full speed when the distance
exceeded 0.75 meters and gradually slowed down as the human
approached, coming to a complete stop at 0.25 meters or closer
(for further information on the technical implementation see
Supplementary material). In the adaptable experimental group
(EGhuman), participants had full manual control over the robot’s
speed throughout the task. Using three physical buttons located on
the robot’s teach pendant, they could switch at any time between
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TABLE 1 List of constructs, corresponding measures, example items, and item characteristics.

Category Construct Measurement
at

Measure Source Sample item Items Range

Experience
of work

Autonomy in
decision-
making

t5 Subscale from
the WDQ

Morgeson
and
Humphrey,
2006

I was able to make many decisions
independently in my tasks.

3 1;5

Flow
experience

t2–t5 FIS-S (Flow
Intensity
Short-Scale)

Peifer and
Bartzik, in
preperation

Please project your thoughts on the task
you just completed. Have you been in a
state of “flow”?

1 slider 1;11

Task demands t2–t5 FKS (Flow-
Kurzskala)

Rheinberg
et al., 2019

The demands of the task were. . . too low -
exactly right - too high.

1 1;7

Workplace fit t5 Own scale I had the feeling that the work process is
tailored to me.

6 1;6

Experience
of robot and
collaboration

Global trust
in the cobot

t1, t5 Global trust
subscale from
TAIS

Wischnewski
et al., 2025

I trust the robot. 5 1;5

Safety and
comfort

t5 Perceived safety
and comfort

Lasota and
Shah, 2015

I felt safe when working with the robot. 4 1;5

Robot’s
intelligence

t5 Godspeed Bartneck
et al., 2009

incompetent - competent 5 semantic
differential
1;5

Collaboration
satisfaction

t5 Satisfaction with
the robot as a
teammate

Lasota and
Shah, 2015

The robot and I worked well together. 4 1;5

The sample items are translated from the German version used.

three predefined speed levels corresponding to low (30%), medium
(65%), and high (100%) speed relative to the robot’s maximum
speed of 500 millimeters per second. The robot operated by default
at medium speed, but participants were free to adjust the speed as
needed according to their comfort and perceived task demands. In
the control group (CG), the robot operated at a constant speed of
65% of its maximum.

4.2 Sample and participation

The study was conducted between February 18 and March 17,
2025. A total of 31 participants were recruited, of whom 27 were
included in the final analysis after data cleaning due to a failed
manipulation check. Of the remaining sample, 59.26% were female,
the mean age was M = 32.33 years (SD = 10.49), and the sample
was generally highly educated, with 44% holding a master’s degree
and 11% holding a doctoral degree. In addition, 59% of participants
reported prior experience with robotic systems.

Participation in the study was voluntary, with informed
consent, and participants received a compensation of 15e for
approximately 1 h of involvement. An ethics approval under the
number 976 was received from the local ethics committee of
the Faculty of Psychology at Ruhr University Bochum following
German Research Foundation guidelines (Schönbrodt et al.,
2017). Eligibility was limited to individuals aged 18 years or
older. Participants who experienced difficulties understanding the
German language (used throughout the experiment) were excluded
from participation.

Participants were randomly assigned to one of three study
groups, with 10 participants in the static study group (CG), 6 in

the adaptive study group (EGrobot), and 11 in the adaptable study
group (EGhuman). Groups did not differ in the distribution of sex,
in age, or experience with robots.

4.3 Experimental setup for gearbox
assembly task

4.3.1 Laboratory setup and workstation
The experiment was conducted in a laboratory environment

at the Centre for the Engineering of Smart Product-Service
Systems (ZESS) using a collaborative robotic system for a semi-
automated gearbox assembly task. The setup included the assembly
workstation, a mobile robotic system (KUKA KMR 200 iiwa 14
R820), a 3D stereo camera (ZED2i, Stereolabs) for human body
tracking, and a dedicated computing system for robot control and
sensor data processing. Figure 1 illustrates the experimental setup.

The workstation involved all components needed for a gear
assembly, including two gears, two shafts, four bearings, an upper
and lower gearbox housing, eight screws and nuts to fasten the
housings together. As such, the end product is a functional yet
simplified version of a gearbox that is easy to handle and features
a quick-to-learn assembly process. The workstation also comprised
component bins for part provisioning, and a shelf storage unit for
additional components.

4.3.2 Assembly procedure
While the full experimental procedure is described later on, the

robot-assisted assembly process involved the following steps: after
verifying the presence of all required components, the robot was
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FIGURE 1

Experimental setup for gearbox assembly. The 3D camera used for human body tracking was mounted on a tripod and not visible in the figure, as the
image was taken from the camera’s perspective.

initialized by the participant via the teach pendant. The robot then
grasped and held the first gear while the participant inserted the
output shaft, followed by the insertion of two large bearings. After
confirming this step by pressing a button on the robot, the robot
placed the assembled output shaft and gear into the lower gearbox
housing. Next, the robot grasped and held the second gear while the
participant inserted the input shaft and two small bearings. After
confirming completion again, the robot positioned the second gear
into the lower gearbox housing. It proceeded to place the upper
gearbox housing onto the lower part. In the final assembly steps,
the robot inserted screws and washers into the designated holes,
while the participant fastened each screw from below using back
nuts. This was repeated for all eight screw locations. After assembly,
the participant placed the completed gearbox into the designated
storage area.

4.4 Experimental procedure

The experiment followed a structured, multi-phase procedure
(see Figure 2 for an overview of the process and variables analyzed
in this study; for a detailed description of all variables, see Table 1
in the Supplementary material). First, participants were verbally
briefed, signed an informed consent form, and were introduced to
the study. At baseline (t0), they completed the first questionnaires
on different control variables.

To familiarize participants with the task and ensure a
comparable baseline, each participant first completed one full
gearbox assembly manually before the robot-assisted assembly.
This initial trial was crucial to establish understanding of the task
and allowed for later evaluation of collaborative performance.

After completing the manual assembly, they filled out a robot-
specific trust questionnaire (t1) to measure their initial trust,
before they received detailed instructions for the robot-assisted
assembly, including safety guidance and information about the
robot’s behavior depending on their assigned condition. They
then performed four robot-assisted gearbox assemblies. After each
assembly procedure, short questionnaires (t2–t4) assessed their
experience of the task and interaction with the robotic system.
Finally, at t5, participants completed a post-task questionnaire that
included various perceptual-related variables as well as questions
regarding their sociodemographic background. The experimental
procedure concluded with a debriefing, and participants were
compensated for their time.

4.5 Dependent variables under exploration

A set of validated and newly developed instruments was used
to assess various psychological variables on the perception of the
task, the robot and the collaboration as well as traits, attitudes,
and sociodemographics during the experimental procedure. Whilst
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FIGURE 2

Overview of the experimental procedure.

the full table including all measurement instruments can be found
in the Supplementary material, Table 1 lists only the variables
analyzed throughout the manuscript, sorted in the categories of
experience of (1) work and (2) robot and collaboration.

Collaboration satisfaction, although assessed after each
collaborative task, was considered only as a one-time measure
at t5, so after the full collaboration, for this manuscript. Thus,
participants’ overall evaluation of the collaboration could be
assessed rather than the temporal progression.

Additionally, we had a manipulation check asking participants
if the robot’s speed during production had been static, automatically
adapting or changeable by themselves. Another variable, perceived
adaptivity (measured at t5), was used as a manipulation-check to
see if our experimental design was perceived by participants as
intended. It was measured with three self-developed variables on
a scale from 1 to 5, including “I had the feeling that the robot
could adapt to my needs.” For sociodemographics, we measured
educational level, age, gender and experience with robots to
characterize the sample.

For performance, the most promising measure is the cycle
time in seconds within each assembly cycle. These cycle times
represent the duration of the robot’s movements from the initiation
of the first motion command to the completion of the final motion
step. Manual preparatory or subsequent human actions were not
included in these measures, but potential interruptions (e.g., robot
stops due to collisions caused by incorrectly placed parts) were part
of the logged time. As such, the automatically logged, and thus
objective, cycle time can be seen as a measure for performance
speed as it includes most of the time needed to assemble one
gearbox. However, it should be noted that cycle time is not only
an outcome variable but is also directly shaped by the experiments’
manipulation of robot adaptation, which must be taken into
account when interpreting this measure. At the same time, no other

objective performance indicators were recorded in the present
study, which is why cycle time serves as the only available proxy
for performance and is therefore used in the analyses.

4.6 Primary and secondary endpoints

Following best practices from clinical research, we formally
defined primary and secondary endpoints to increase transparency,
facilitate the interpretation of our explorative results, and clarify
which results are most relevant for addressing the central
research question (Eldawlatly and Meo, 2019; Willis, 2023). The
primary endpoint in this study was defined as the longitudinal
investigation of flow experience and perceived task demands across
the four collaborative trials, depending on the dynamic control
scheme. These variables represent central indicators of employees’
psychological experience in dynamic work systems and provide
insight into how participants adapt to different control schemes
over time. Other variables, including autonomy, workplace fit,
trust, safety, perceived robot intelligence, collaboration satisfaction,
and cycle time, were defined as secondary endpoints. Their
analyses complement the primary endpoint by offering a broader,
more holistic perspective on the psychological, relational, and
performance-related effects of different control schemes.

4.7 Exploratory statistical analyses

To obtain exploratory insights into the proposed research
questions, we regarded variable descriptives such as means,
standard deviations and correlations, and conducted ANOVA tests
to examine group differences between the three study conditions
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with regard to the reported dependent variables. For variables
that were assessed at multiple time points, repeated measures
ANOVAs were performed. To account for the multiple hypothesis
tests implied by our primary and secondary endpoints, we applied
the Bonferroni correction, which controls the family-wise error
rate at α = 0.05 (Ranstam, 2016). This procedure ensures that
the overall false-positive risk remains below the pre-specified α-
level.

As the study follows an exploratory experimental approach,
the sample size was limited, which in some cases led to violations
of statistical assumptions. In cases with violation of normality
assumption, non-parametric Kruskal-Wallis tests were used as
an alternative. In cases of heterogeneity of variances, Welch-
corrected ANOVAs were applied to ensure the robustness and
interpretability of the results despite the exploratory character and
sample size limitations.

5 Results

The exploratory data collection delivered a plethora of data, of
which selected analyses are presented in the following. Regarding
behavior in the experiment, we find that in the adaptable EGhuman,
people changed the robot’s speed on average 1.07 times (SD = 1.33),
with a maximum of five changes and one person not adjusting the
speed at all. Across all groups, the mean cycle time in the final trial
was 6.05 min (SD = 1.40).

Table 2 gives an overview over the measurements’ means, their
reliability, and correlations.

5.1 Analyses of perceptual-related
measures

5.1.1 Group effects on outcome variables
To verify the effectiveness of the experimental manipulation,

we first examined participants’ perception of the robot’s adaptivity.
As expected, the perceived adaptivity differed substantially between
the three study groups (see also Figure 3): the control group
reported a mean of M = 1.5 (SD= 0.42), the EGhuman M = 2.42 (SD
= 0.42), and the EGrobot M = 3.67 (SD = 0.76). A robust Welch-
ANOVA confirmed significant group differences, F(2, 11.39) = 20.62,
p < 0.001, ω² = 0.73, 95% CI [0.45, 0.87]. Corrected post-hoc t-
tests revealed a significant difference between the control group and
the EGrobot [p = 0.001, g = 3.63, 95% CI [1.95, 5.31)], as well as
a marginally significant difference between the two experimental
groups [p = 0.053, g = 2.13, 95% CI (0.88, 3.38)]. These results
indicate that participants reliably perceived the intended differences
in the robot’s adaptivity, validating the manipulation.

Following this manipulation check, we analyzed perception-
related variables that were assessed once, after participants had
completed the collaborative assembly task. Table 3 summarizes the
results for perceived decision-making autonomy, workplace fit, safety
and comfort, perceived intelligence of the cobot, and satisfaction with
collaboration, presenting group means, standard deviations, test
statistics, and post-hoc comparisons where applicable.

Significant group differences were found for perceived
autonomy and workplace fit, with autonomy rated significantly

higher in the EGhuman compared to the control group, and
workplace fit rated significantly higher in the EGrobot compared to
the control group (see Figure 4).

5.1.2 Effects of time and group on
flow-experience, task demands, and trust

Following the analyses of perception-related variables assessed
at a single measurement point, we examined variables measured
repeatedly across the experimental trials, namely flow experience,
perceived task demands, and trust.

Flow experience was assessed repeatedly across all trials (see
Figure 5). Across all trials, mean flow experience (one item
measurement) was M = 4.68 (SD = 2.84) in the control group,
M = 8.46 (SD = 1.44) in the EGrobot, and M = 6.91 (SD = 2.44)
in the EGhuman. Due to a lack of sphericity, a Greenhouse-Geisser
correction was applied. The repeated measures ANOVA revealed a
significant main effect of group, F(2, 24) = 4.97, p = 0.016, η2 =
0.21, 95% CI [0.01, 0.44], but no significant main effect of time,
F(3, 72) = 1.82, p = 0.171, η2 = 0.07, 95% CI [0.00, 0.17], and
no significant interaction, F(6, 72) = 2.24, p = 0.077, η2 = 0.16,
95% CI [0.00, 0.29] (see Figure 4). Post-hoc comparisons showed
a significant difference between the CG and the EGrobot, p = 0.018,
g = 1.73, 95% CI [0.29, 3.18].

Also perceived task demands were assessed repeatedly across
trails (see Figure 6). Over all trials, mean task demands were M =
1.7 (SD = 0.92) in the control group, M = 1.83 (SD = 0.41) in the
EGrobot and M = 2.52 (SD = 0.96) in the EGhuman. A repeated-
measures ANOVA with Greenhouse-Geisser correction indicated
significant main effects of group, F(2, 24) = 3.96, p = 0.033, η2 =
0.18, 95% CI [0.01, 0.41] and time, F(3, 72) = 14.24, p < 0.001, η2

= 0.17, 95% CI [0.06, 0.28]. Post-hoc comparisons with Bonferroni
correction revealed that for time, trials 1 and 2 differed significantly
from trials 3 and 4 [p < 0.02, g = 0.08, 95% CI (−0.45, 0.61)], and
for group, the control group differed significantly from EGhuman [p
= 0.035, g = 0.86, 95% CI (0.01, 1.71)].

Trust was measured as trust in the specific robot participants
collaborated with: once before the robot was introduced and once
after all four trials. Means, standard deviations, and ANOVA results
are presented in Table 4, showing a significant main effect of time
[p = 0.004, g = 0.91, 95% CI [0.31, 1.51)].

5.2 Analyses of objective measures

In addition to self-reported measures, the cycle times were
analyzed across the four trials as a potential measure for
performance regarding speed in the conditions. Descriptive results
(see Table 5) showed a decrease in mean cycle times across trials in
all groups, with the shortest times observed in the EGrobot and the
longest times in the CG. Specifically, overall cycle times averaged
445.54 seconds (SD = 31.33) in CG, 381.28 s (SD = 65.34) in
EGhuman, and 320.38 s (SD = 33.51) in EGrobot.

A repeated-measures ANOVA with Greenhouse-Geisser
correction revealed significant main effects of group and time,
whereas the interaction effect did not reach significance (see
Table 5). Post-hoc comparisons with Bonferroni correction showed
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TABLE 2 Descriptive statistics, internal consistencies, and intercorrelations of the assessed variables.

Variable Range α,
ω

M SD r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 Autonomy 1–5 0.90,
0.92

1.93 1.04 1

2 Flow t2 1–11 / 5.81 2.72 0.46∗ 1

3 Flow t3 6.67 3.31 0.47∗ 0.54∗∗ 1

4 Flow t4 6.59 3.51 0.31 0.26 0.87∗∗∗ 1

5 Flow t5 6.78 3.72 0.48∗ 0.33 0.72∗∗∗ 0.77∗∗∗ 1

6 Task
demands t2

1–7 / 2.59 1.31 0.37 0.28 0.54∗ 0.49∗ 0.49∗∗ 1

7 Task
demands t3

2.22 1.12 0.14 0.03 0.27 0.32∗ 0.37 0.69∗∗∗ 1

8 Task
demands t4

1.78 0.89 −0.02 −0.08 0.08 0.12 0.17 0.58∗∗ 0.82∗∗∗ 1

9 Task
demands t5

1.52 0.7 −0.12 −0.07 −0.09 −0.07 −0.13 0.36 0.58∗∗ 0.75∗∗∗ 1

10 Workplace
fit

1–6 0.8,
0.89

2.43 1.04 0.47∗ 0.42∗ 0.5∗ 0.47∗ 0.65∗∗∗ 0.13 0.17 0.1 0.04 1

11 Global trust
in the cobot
t1

1–5 0.9,
0.93

3.79 0.94 0.34 −0.01 0.2 0.11 0.16 −0.01 0.06 0.01 −0.01 0.31 1

12 Global trust
in the cobot
t5

0.77,
0.89

4.42 0.54 0.21 0.21 0.37 0.28 0.34 −0.02 −0.29 −0.24 −0.32 0.05 0.16 1

13 Safety and
comfort

1–5 0.61,
0.73

4.69 0.46 −0.27 −0.13 0.03 0.04 −0.06 −0.31 −0.24 −0.24 −0.27 −0.15 −0.21 0.53∗∗ 1

14 Cobot’s
intelligence

1–5 0.71,
0.85

3.40 0.80 0.06 −0.32 0.13 0.36 0.25 0.03 0.18 0.12 0.01 0.09 0.35 0.09 0.02 1

15 Collaboration
satisfaction

1–5 0.75,
0.78

4.55 0.55 −0.01 0.03 0.07 −0.01 0.2 −0.21 −0.48∗ −0.5∗∗ −0.53∗∗ −0.13 −0.16 0.63∗∗∗ 0.49∗ −0.13 1

16 Cycle timea

t2
4.21–
11.98

/ 7.82 1.71 0.19 0.25 0.07 0.16 0.09 0.06 0.00 −0.07 0.01 0.33 −0.08 0.3 0.01 0.06 −0.27 1

17 Cycle timea

t3
6.23 1.29 −0.44∗ −0.15 −0.34 −0.18 −0.36 0.00 0.05 −0.07 0.22 −0.27 −0.34 −0.21 −0.22 0.04 −0.25 0.36 1

18 Cycle timea

t4
6.02 1.28 −0.47∗ −0.12 −0.53∗ −0.4 −0.5∗ −0.31 −0.42 −0.44∗ −0.04 −0.32 −0.42 −0.19 −0.27 −0.17 −0.05 0.32 0.82∗∗∗ 1

19 Cycle timea

t5
6.05 1.40 −0.46∗ −0.29 −0.59∗∗ −0.42 −0.53∗ −0.41 −0.5 −0.47∗ −0.16 −0.39 −0.3 −0.09 −0.14 −0.03 0.08 0.21 0.75∗∗∗ 0.9∗∗∗ 1

α: Cronbach’s alpha. ω: McDonald’s omega. M: mean value. SD: standard deviation. Significant codes:
∗∗∗p ≤ 0.001, ∗∗p ≤ 0.01, ∗p ≤ 0.05.
aCycle time is shown in minutes.
All significant values are shown in bold.
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FIGURE 3

Boxplots of perceived robot adaptivity across the study groups. CG, control group; EGrobot, adaptive experimental group; EGhuman, adaptable
experimental group.

TABLE 3 Group comparisons of perception-related variables.

Variable M (SD) Test statistic p-value post-hoc

CG EGhuman EGrobot

Autonomy 1.17 (0.24) 2.45 (0.98) 2.22 (1.31) X2(2) = 10.12,
ε² = 0.34,
95% CI [0.07, 0.71]

0.006 CG < EGhuman [p = 0.01, g = 1.68,
95% CI (0.67, 2.69)]

Workplace fit 1.67 (0.61) 2.62 (1.11) 3.33 (0.58) F(2, 24) = 7.749, η² = 0.39,
95% CI [0.01, 0.85]

0.002 CG < EGrobot [p < 0.001, g = 2.62,
95% CI (1.26, 3.98)]

Safety and comfort 4.75 (0.37) 4.66 (0.53) 3.61 (0.14) X2(2) = 0.22,
ε² = 0.00a

0.896 /

Cobot’s intelligence 3.14 (1.00) 3.55 (0.75) 3.57 (0.43) F(2, 24) = 0.83,
η² = 0.05,
95% CI [0.00, 0.38]

0.449 /

Collaboration satisfaction 3.6 (0.83) 4.2 (0.68) 4.33 (0.55) F(2, 24) = 2.62,
η² = 0.16,
95% CI [0.00, 0.66]

0.093 /

CG, control group; EGrobot, adaptive experimental group; EGhuman, adaptable experimental group.
M: mean value. SD: standard deviation. CI: confidence interval. g: Hedges’ g.
aConfidence intervals could not be meaningfully estimated due to the very small H statistic.

significant differences between CG and EGrobot [p < 0.001, g =
3.90, 95% CI (2.13, 5.66)], between CG and EGhuman [p = 0.011,
g = 1.23, 95% CI (0.29, 2.18)], and between EGhuman and EGrobot
[p = 0.023, g = 1.07, 95% CI (0.01, 2.14)]. For the effect of time,
cycle times in Trial 1 were significantly longer than in Trials 2 [p <

0.001, g = 0.90, 95% CI (0.45, 1.36)], 3 [p < 0.001, g = 0.92, 95%
CI (0.46, 1.37)], and 4 [p < 0.001, g = 0.90, 95% CI (0.45, 1.36)].

6 Discussion

The present study aims to examine how different control
schemes (adaptive or adaptable) in designing human-robot
collaboration during an assembly task influence participants’
perceptions, experiences, and collaboration outcomes in

comparison to a static work setting without (control over)
dynamics. The goal is to identify if dynamics lead to positive
consequences and which locus of authority over the dynamics
should be preferred for industrial implementation. The results
show that participants in the adaptable condition, who could
manipulate robot speed on their own, reported higher perceived
autonomy and higher task demands than the static group with
constant robot speed. Workplace fit and flow experiences were
rated higher in the adaptive condition, with the robot adaptively
changing its speed in relation to human proximity, compared to
the static group. Trust in the robot increased over time across
all groups. Interestingly, adaptive automation (EGrobot) yielded
the highest flow experience, whereas adaptable automation
(EGhuman) resulted in the highest perceived demands, although
demands were generally low across conditions. This finding
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FIGURE 4

Boxplots of group differences in perceived decision autonomy and workplace fit. CG, control group; EGrobot, adaptive experimental group; EGhuman,
adaptable experimental group. *p < 0.05, ***p < 0.001.

FIGURE 5

Mean flow experience across trials and groups. CG, control group; EGrobot, adaptive experimental group; EGhuman, adaptable experimental group.
Trials 1–4 correspond to measurement points t2–5.

aligns with the notion that manual control options, while
increasing flexibility, may introduce additional cognitive load,
particularly when switching between assembly task and system
adjustment is required, while adaptive control leads to more
fluent work processes. In line with these subjective patterns,

the objective cycle-time indicated efficiency gains under both
dynamic schemes compared to the static baseline, with the
adaptive control scheme yielding the shortest processing times.
Across all groups, cycle times further reflected familiarization
effects, with the first production process being markedly slower
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FIGURE 6

Mean task demands across trials and groups. CG, control group; EGrobot, adaptive experimental group; EGhuman, adaptable experimental group. Trials
1–4 correspond to measurement points t2–5.

TABLE 4 Mean trust before and after collaboration across all groups.

Group Trust in the specific robot

Before
collaboration

After
collaboration

ANOVA main
effect group

M (SD) M (SD)

CG 3.2 (1.02) 4.42 (0.45) F(2, 24) = 3.22,
p = 0.057,

η2 = 0.21, 95% CI
[0.00, 0.70]

EGhuman 3.96 (0.80) 4.35 (0.67)

EGrobot 4.43 (0.39) 4.57 (0.48)

ANOVA
main effect
time

F(1, 24) = 9.85, p < 0.001, η2 = 0.29,
95% CI [0.00, 0.79]

interaction

F(2, 24) = 3.30,
p = 0.054,

η2 = 0.22, 95% CI
[0.00, 0.71]

CG, control group; EGrobot, adaptive experimental group; EGhuman, adaptable
experimental group.
M, mean value. SD, standard deviation. CI, confidence interval.

than the subsequent sequences, which progressively accelerated
before stabilizing.

Taken together, these results tentatively point toward the
potential advantage generally of dynamic work systems and
specifically of adaptive automation in dynamic work systems,
at least for parameters such as flow facilitation, and perceived
alignment with user needs via automatic robot speed adaptation.
Before engaging in a deeper interpretation of these and additional
descriptive findings, they must be considered in light of the
limitations inherent to the exploratory nature and small sample of
this study.

6.1 Limitations of the study

This study’s exploratory design, motivated by the lack of prior
research jointly examining adaptive and adaptable control schemes

alongside a static baseline, led to the derivation of overarching
research questions rather than specific hypotheses. While certain
effects could be assumed, insights were too limited to create well-
grounded hypotheses, and thus no formal sample size planning
was conducted. As the goal was to explore these questions, yet in
an authentic production setting with a working robot and actual
adaptive and adaptable robot behavior, the experiment could only
be done with a limited number of people. Consequently, the small
and uneven sample size limits statistical power and potentially
masks existing group differences (Baguley, 2004).

Additionally, the chosen gearbox assembly task was simplified
to ensure technical feasibility, which lowered cognitive and physical
demands and may have reduced the study’s sensitivity to detect
effects. The significant differences in perceived demands found
suggest that control schemes can influence demands, even in low-
demand scenarios. In such contexts, both adaptive and adaptable
automation may be perceived as equally manageable, limiting
observable impact of the control scheme on constructs such as flow,
workload, or perceived teaming.

Another limitation is the focus on perception-based variables
without including differentiated performance-related measures.
This limited the ability to link subjective experiences to
objective task outcomes, which in turn is essential for deriving
comprehensive insights for implementation approaches (Isham
et al., 2021). Measuring performance in dynamic scenarios
is inherently challenging, as production cycles vary within
and between subjects due to dynamic work system behavior.
Although production times were recorded, comparing them across
conditions is difficult, as robot speed, as well as participant behavior,
varied. We included cycle time analyses and were able to show
that generally, the dynamic conditions performed better regarding
speed than the static baseline. Still, this comparison is somewhat
“unfair” due to the opportunity of accelerating speed only available
in those dynamic conditions. Thus, a shorter cycle time was
expectable due to faster potential robot movements. This does
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TABLE 5 Mean cycle times (in seconds) across groups and trials.

Group Cycle times M (SD) ANOVA main effect group

Trial 1 Trial 2 Trial 3 Trial 4

CG 480.17 (55.27) 429.48 (30.45) 433.41 (55.68) 439.11 (72.72) F(2,26) = 13.97, p < 0.001, η² = 0.07, 95% CI (0.00, 0.91)

EGhuman 489.12 (140.44) 363.97 (79.38) 336.70 (47.24) 335.33 (47.55)

EGrobot 413.45 (70.77) 297.89 (61.53) 284.60 (40.92) 285.60 (45.27)

ANOVA main effect time F(2.25, 54) = 20.92, p < 0.001, η² = 0.16,
95% CI (0.00, 0.89)

interaction F(4.5, 54) = 2.12, p = 0.08, η² = 0.03, 95% CI (0.00, 0.62)

CG, control group; EGrobot, adaptive experimental group; EGhuman, adaptable experimental group.
M, mean value. SD, standard deviation. Trials 1–4 correspond to measurement points t2–5.

not necessarily transfer to real performance advantages, e.g., if the
static condition was designed differently, the speed there could
have been higher. Developing methods to validly compare static
and (different) dynamic processes using objective performance
parameters remains an open challenge.

Moreover, workplace adaptations were narrowly
operationalized, limited to robot motion control by scaling
the execution speed of predefined motion commands. This can be
seen as a study’s strength, as it is a realistic and easy-to-implement
parameter for adaptations in human-robot interaction. Still, other
potentially impactful dynamic elements such as flexible task
allocation or task timing were not included due to the explorative
character of the study and its setup. Limiting adjustments to a single
collaboration parameter likely reduced available cues for workplace
fit or autonomy. Safety regulations for close human–robot
interaction (capped robot speed at 500 mm/s), as implemented
in real production scenarios, further required conservative speed
profiles, limiting the opportunity in the adaptable condition to
adjust the speed according to one’s own preferences.

These implementation constraints were further accompanied
by technical limitations of the adaptive control setup itself. In the
adaptive condition real-time, distance-based speed control worked
reliably, but body tracking and calibration limitations (occlusions
and position errors up to ∼0.2 m) required an additional safety
buffer, resulting in even more conservative speed profiles during
close human–robot collaboration. Furthermore, speed control
was limited to three discrete levels (30/65/100%), constraining
perceived speed differentiation and fine-grained user control.

Despite these limitations, the study design holds important
strengths. Using a real robotic system addresses the intention-
behavior gap common in simulated or vignette-based approaches
(Hulland and Houston, 2021; Sheeran and Webb, 2016) and
enhances external validity (Voit et al., 2019) compared to the usual
Wizard-of-Oz experiments. Situating the study in a low-demand
production context with an embodied and functioning robotic
system broadens understanding of adaptive and adaptable control
schemes beyond software-based systems or high-demand tasks.
The extended experiment duration—over 1 h per participant with
multiple task repetitions—enabled not only evolving familiarity
with the system, yielding more stable perceptions and experiences,
but also closer alignment with real work tasks and the investigation
of dynamics, e.g., in trust in the robot.

Within these boundaries, the study provides initial insights into
the consideration of different control schemes in a comparable

manner in production work systems and supports the formulation
of future research questions and hypotheses.

6.2 What we learned about work
perception

When looking at work characteristics, we find that both
dynamic groups report higher autonomy than people in the
condition with the robot not changing speed. Whilst the difference
to the group being able to manually adapt speed is significant, it is
comparable, yet not significant, when the robot behaves adaptively,
and thus could be understood equivalently considering the smaller
sample size and higher variance. Thus, we see that adaptable
and adaptive control schemes seem to support autonomy, with
no advantage of people being able to manually adjust working
conditions as could have been expected. This can be explained by
people indirectly controlling robot behavior also in the adaptive
condition: If participants understood how the robot adjusted its
speed based on their movements, this could have given them
control and thus create indirect adaptability. Additionally, we see
the importance of autonomy as a resource because of its medium
to high correlations both with workplace fit and flow experience.
Autonomy can be seen as a precondition to create the balance of
demands and abilities that is needed for flow as well as to make the
workplace more fitting to one’s own performance premises.

On the other hand, task demands are often considered less of
a resource, potentially causing strain and exhaustion (Demerouti
et al., 2001). In our data, we find that demands are comparable,
and very low, in the static and adaptive condition. Only when robot
speed was adaptable, people reported higher, yet not high, demands.
Looking at the time curve, one can also see a tendency toward
convergence at the last measurement point. This suggests that it
places additional demands on people to adapt robotic behavior,
yet this effect might diminish over time and thus only plays a
role in work contexts when it comes to the new introduction of
adaptable scenarios. Still, the adaptivity implemented here was
rather simple with only three speed levels to be chosen from. Thus,
generalizations on adaptability of work systems in general need to
be reflected in the light of its complexity. Additionally, the increase
in demands might even be beneficial for basic work that, as already
pointed out in the theoretical introduction, usually poses very low
demands that might not be challenging enough to allow for, e.g.,
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flow experiences or personal development. Interestingly, our data
also show a medium to high positive correlation between initial
task demands and flow experience. As such, raising demands—by
introducing ways to adapt one’s own—work functions as a resource
itself depending on the context.

Across all conditions, flow experience tended to increase
throughout the production cycles. This pattern can be explained
by enhanced routine, less need to think about procedures, being
increasingly sure about the production steps and potentially also
by clearer expectations about the robot’s behavior, which can
all enhance absorption. Nevertheless, differences between control
schemes become also apparent: our results suggest that adaptive
robot behavior fosters a deeper state of flow than static work
scenarios. Descriptively, flow values in the adaptable groups are
also higher than under static conditions, but the pronounced
effect is evoked by an adaptive control scheme, leading to a deep
flow experience especially in the last trial. Potentially, having
the robot adapt its speed automatically helps staying immersed
in the production task, with it working fluently and fitting to
one’s own motion. In an adaptable scenario, one will always have
to cognitively take a meta-perspective on the work situation,
asking if the current speed is appropriate and if and how it
should be changed. This awareness and its reflection will, as to
Csikszentmihalyi (2014), disturb flow maintenance. As such, the
results are well explainable within the construct. Still, for flow, one
has to keep in mind that workers with a certain flow metacognition,
i.e., who are convinced that it is a useful state, are more likely
to invest in reaching this state (Weintraub et al., 2023), e.g.,
by adapting working conditions. Consequentially, also personal
prerequisites might play a role in how (1) adaptability is used and
(2) in how far dynamic working conditions can be exploited in a
flow-supportive manner.

As a potential enabler of flow experience, we can identify
workplace fit. It correlates with medium intensity with flow
experience, as well as with autonomy, which can be a precondition
for achieving fit. Overall, workplace fit is not very high, a logical
consequence of the aspect of only one parameter to adapt or be
adapted already discussed in the limitations. If more aspects were
adaptable or the adaptations possible were of greater extent, we
would have expected fit to be higher. As such, especially in the
static condition the perceived fit, just as the objectively given fit,
is very low. We see a substantially higher mean in the group able to
adapt robot speed, but only a significant, yet big, difference to the
condition with the robot behaving adaptively. In line with research
conceptualizing interruptions as hindrance stressors (Baethge and
Rigotti, 2013; Pachler et al., 2018), micro-interruptions during task
execution can reduce perceived workplace fit by disrupting flow
experience, raising strain, and undermining the sense that the
environment matches one’s way of working. As adaptive, system-
initiated adjustments occur without workers intervention, they
minimize self-imposed task switching and thus fewer interruptions,
which supports both flow experience and workplace fit. In contrast,
adaptable, human-initiated adjustments require periodic meta-
decisions (i.e., whether, when, and how to change speed) that may
be perceived as interruptions and can reduce perceived workplace
fit relative to adaptive control, while still exceeding the static
condition where no tailoring occurs. Similar to the perception of

flow, this pattern is also likely moderated by individual difference:
e.g., tolerance for automation may mitigate the disruptive impact
of such perceptions (Merritt and Ilgen, 2008), whereas impulsive
personality traits may amplify it (Tett et al., 2021).

6.3 What we learned about robot and
collaboration perception

Interestingly, when looking at the satisfaction with the
collaboration with the robot, no differences between the control
schemes can be found. There is only a slight descriptive difference
to the static work setting, where satisfaction is a little lower, but
no subjective preference for one or the other control scheme
can be deduced. Based on theory and research from work
psychology, a preference of being able to control one’s own work
environment and execute job crafting (Tims et al., 2012) would
have been expectable. In the light of the previously discussed
results, including those of enhanced autonomy and flow experience
especially under the adaptive control scheme, it is possible that
those resources and positive states lead to positive feelings and
thoughts, contributing to satisfaction. This would be inline with
research suggesting that constructs such as autonomy (see, e.g.,
the Job characteristics model (Hackman and Oldham, 1975)),
agency (S.M.A.R.T. model on agency, Parker and Knight, 2024),
or flow (for an overview, see a review on flow experience and its
(affective) correlates, Peifer et al., 2022) contribute to satisfaction.
In our case, this effect could not be reproduced. One likely
explanation lies in the task design and technical constraints
of the study: due to safety regulations in close human-robot
collaboration, the robot’s working speed was generally kept low
across all conditions. As a result, participants occasionally had to
wait for the robot to complete its task steps, even when the speed
was adjustable. Such waiting times may have lowered perceived
productivity, normally associated with satisfaction (e.g., Kowalski
et al., 2022). A moderating effect of low performance perception
could mask potential effects of our manipulation on satisfaction
and related variables. Furthermore, correlational analyses indicate
that satisfaction with the collaboration was positively related
to perceived safety and trust in the robot after the task. The
relatively slow execution may have influenced these perceptions
in contrasting ways: while slow operation may enhance feelings
of safety and trust in the robot, it may simultaneously reduce
perceived productivity, ultimately limiting satisfaction.

Safety and comfort were generally reported as medium to high
when working with the robot; descriptively, ratings tended to be
lowest when the robot behaved adaptively and similar between
static and user-controlled (adaptable) scenarios, although the
difference is not significant. Consistent with the control schemes,
the adaptive condition automatically scaled speed with human
proximity (moving faster when farther away and slowing to a
robot stop at close range), which may have reduced perceived
controllability and thus tempered safety feelings. This mechanism
echoes prior observations, e.g., by Munzer et al. (2017), of
proactive robot behavior sometimes elevating fear due to loss
of control. By contrast, the static condition used a constant,
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conservative speed, whereas in the adaptable condition most
participants quickly increased speed from 65% (equal to the static
robot’s speed) to 100%, yet perceived safety and comfort remained
similar between participants in both conditions. This suggests that
perceived controllability supports feelings of safety in our setup.
Complementary correlational evidence indicates that higher safety
and comfort co-occurs with higher trust in the robot and with
greater collaboration satisfaction. Trust can thus be understood as a
precondition of experiencing interactions with autonomous agents
as safe and comfortable.

Interestingly, trust results before and after collaboration show
quite different patterns: initial trust (see Mcknight et al., 2011),
much based on expectations and the information provided in the
situation, was different (though below the level for significance)
depending on the adjustment opportunities. It was highest when
the robot was initially presented as adaptive, lower when its speed
was adaptable for participants and lowest when it was presented
as non-adjustable. This can be explained by attribution of more
competence and thus, perceived trustworthiness (Schlicker et al.,
2025), shown in our data as a medium correlation (n.s.) of initial
trust with perceived robot intelligence. This intelligence had thus
no correlation with trust ratings after the collaboration. Overall,
intelligence ratings were comparable between conditions, with a
descriptively slightly lower intelligence when no adjustments were
possible. This is interesting as a higher intelligence attribution for
a robot behaving adaptively could have been expected. Potentially
due to the limitation of adjustments, being only the speed of the
robot arm that changes, and limited participant knowledge on
the complexity of this adaptive movement scheme, intelligence
perception was not affected by objectively given competence
differences between conditions.

Additionally, we see that trust rises with a large effect after
the interaction occurs. Still, for the adaptable group, it remains
on the same level. This assimilation effect underscores the
importance of regarding trust throughout interactions, examining
trust trajectories (Alonso and La Puente, 2018) and not only
initial reactions or attitudes toward a technology. Trust after
the collaboration, understandable as a form of calibrated trust,
correlates negatively, yet insignificant, with task demands, in the
sense that when trusting the collaboration partner, demands to
monitor it and be suspicious might decrease. It as well has
a medium correlation with flow, while initial trust does not,
hinting at potential trust-promoting effects of flow experiences,
strengthening the bond between human and robot through
pleasing and fluid interactions.

6.4 What we learned about production
speed as a measure of task performance

Beyond subjective measures, we also examined cycle time as
an objective indicator of task performance. The results showed
a clear reduction in execution times across trials with a marked
decrease from trial 1 to subsequent trials and a plateau thereafter.
This pattern suggests that learning and familiarization effects
were concentrated in the early phase of the experiment, reflecting
a gain in process fluency. In addition, the dynamic conditions

outperformed the static baseline, with adaptive robot speed
showing the shortest cycle times, i.e., the fastest execution.

Taken together, these results indicate that dynamic speed
control, and particularly automatic adaptation, led to measurable
efficiency gains in this collaborative assembly task. However,
since speed adaptation was the very mechanism of dynamism in
this study, performance speed and experimental manipulation
are not fully independent. This limits the generalizability
of the performance findings to scenarios where adaptivity
and adaptability are operationalized in a different manner.
Nevertheless, the expectable performance benefits of an
automatically regulated speed profile become evident here,
underscoring the potential of adaptive control schemes to facilitate
more fluent and efficient human-robot collaboration processes.

6.5 Research and theory implications

This study makes a contribution by jointly examining different
loci of control—either with the human or the technical system—
in the context of human-robot collaboration, an approach still
largely underrepresented in the literature (see Calhoun, 2022).
It further contributes to examining low-demand, production-
based settings, thereby extending the scope beyond predominantly
high-demand work contexts and collaboration with technology
and beyond simulation-driven research. This broadens not only
our empirical knowledge to more scenarios highly relevant
for designing locus-of-control arrangements and for considering
improvements of work design that really matter but also allows us
to test the transfer of theory to those scenarios. This is especially
important in the light of the EU’s Industry 5.0 program and the
development goal of “decent work.” Such safe work with equal
opportunities for everyone offering a perspective for individual
development (European Commission, n.d.–a) can, especially in
the production sector, only be reached by implementing dynamics
and individualization of work places, technologies and processes.
Therefore, investigation and an understanding of control schemes
and dynamic work conditions, their distinct advantages and
peculiarities is of vital importance to realize human-centered
work. Our research helps working toward that goal by looking
at human cognitions, emotions and motivation under dynamic
working conditions.

While Calhoun (2022) emphasizes the advantages of human-
controlled adaptations, our findings indicate that system-controlled
adaptations appear, to some extent, more advantageous in the
highly structured, low-demand context investigated here. This
suggests a more nuanced understanding of control schemes: the
choice between adaptive and adaptable approaches should not
be based solely on system capabilities or performance, but must
also consider task structure, individual design consequences and
demands, in line with established work design models (see e.g.,
Hackman and Oldham, 1975; Parker and Knight, 2024). In highly
structured, repetitive contexts, a smooth workflow particularly
supported by system-initiated adjustments may be valued over
direct control, making this control scheme more favorable and, e.g.,
flow-promotive, than in high-risk or high-demand settings where
aspects like job crafting might be more beneficial and demanded.
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TABLE 6 Proposed hypotheses on dynamic adjustments in highly structured, low-demand work context.

Hypothesis Rationale

H1: Adaptive adjustments lead to a similarly high
perception of autonomy as adaptable adjustments
and to higher autonomy than no adjustments.

If workers understand how the system adapts to them and can leverage these adaptations, which is more likely in
repetitive task contexts where the system logic becomes familiar over time, adaptive adjustments may satisfy
autonomy needs through indirect control without requiring direct control. For other work contexts, especially
knowledge work, autonomy needs might be higher and thus can be better satisfied by allowing for adaptable
adjustments. The hypothesis is thus specifically relating to low-demand, potentially physical work contexts.

H2: Adaptable work settings allow for worker
autonomy and a collaboration that is perceived as
safe.

Investigating the advantages of adaptable automation is still a challenge unsolved in empirical research (see also
Calhoun, 2022). Based on our results and existing theory, it can be expected that the opportunity to adapt
technologies and work settings to one’s own needs in real-time does not only foster the resource of autonomy but
also allows to create a safe and comforting work environment for oneself, while adaptive control might focus more
on efficiency, potentially sacrificing subjective wellbeing.

H3: Adaptive adjustments lead to higher flow
experience compared to adaptable adjustments and
no adjustments.

Adaptive adjustments can streamline workflows in repetitive tasks, reducing disruptions and supporting immersion,
thereby promoting flow experience.

H4: The opportunity for adaptive as well as
adaptable adjustments lead to higher satisfaction
with human-system collaboration compared to
static work systems.

Adaptive adjustments may reduce the cognitive and physical effort needed for coordination within collaboration
processes, which can increase satisfaction when working with the system. On the other hand, especially basic work
could profit from a rise in demands, which is also beneficial for motivational processes such as flow. Thus, both types
of adjustments hold their benefits for satisfaction compared to static scenarios. The decisive moderators for
determining the preferable control schemes need to be investigated exploratively.

H5: Adaptive adjustments lead to higher perceived
workplace fit compared to unadjustable workplaces.

As adaptive adjustments automatically integrate into workflows without requiring additional actions from the
human operator, they can blend seamlessly into the work design, supporting workplace fit. By avoiding the need for
task disruptions, disrupting workflow and thus reducing perceived workflow fit, adaptive adjustments maintain
continuity and fluidity in task execution. This effect is expected to be particularly pronounced in physical tasks with
varying performance or needs depending on, e.g., the duration of work, and with differential individual physical
conditions, e.g., height or movement radius, where adjustments are (1) needed throughout the day or (2) beneficial
for executability.

H6.1: Initial trust in a robot is mediated by perceived
intelligence of the technological system, with an
adaptive control scheme eliciting the highest trust
via high perceived intelligence, an adaptably
controllable robot a moderate level, and a
non-adjustable robot the lowest.
H6.2 After-task trust is not mediated by perceived
intelligence of the technological system.

Perceived system intelligence may shape initial trust in a technical system by signaling competence before interaction
begins. In adaptive control schemes, these attributions may be more favorable, whereas adaptable technologies or
those that do not show dynamic behavior may be perceived as less competent and less trustworthy.
Over the course of collaboration, trust calibrates to the experienced performance and reliability of the system,
rendering these initial attributions less relevant.

However, given the limitations of the present study, further
research is required to validate this assumption and to explore
their boundaries. As a starting point and based on this exploratory
study’s insights, Table 6 presents a set of hypotheses for future work,
focusing on variables relevant to the design of workplaces and
highlighting areas where our exploratory findings point to some
surprising patterns in the specific context of highly structured and
low-demands tasks.

Future research should test these hypotheses in comparable
low-demand, repetitive task contexts, ideally involving a larger
participant sample to strengthen the assumptions and preliminary
findings of this study. Moreover, directly comparing these contexts
with high-demand task settings could provide deeper insights into
how task demands interact with control schemes, thereby offering
a stronger empirical basis for determining whether adaptive or
adaptable approaches are more suitable in specific work contexts.

6.6 Practical implications

From a practical standpoint, the results suggest that adaptive
automation, when implemented with robust, low-latency sensing,
and control, can enhance flow experience in human-robot
collaboration without imposing additional task demands, which

may offer potential efficiency gains in industrial contexts while
maintaining safety requirements (see e.g., Byner et al., 2019).
Beyond that, there are several levers to strengthen both the real
and perceived safety within adaptive or adaptable speed control,
as suggested by our research. For adaptive automation, improving
sensing, and calibration, e.g., via full-body 38-keypoint tracking
and multi-sensor fusion, can reduce positional uncertainty and
allow higher robotic speed while preserving predictable behavior.
In addition, the implementation details observed here suggest
that conservative safety buffers and restricted speed profiles,
while protective, shape how adaptation is experienced; careful
tuning of these parameters may improve perceived safety (which
proved as a downside of adaptivity in our experiment) as well
as responsiveness. Transparency-oriented design, such as visual
previews of planned trajectories via mixed reality (Maccio et al.,
2022; Shaaban et al., 2024), can further increase the predictability
of robot behavior and help humans feel more at ease.

In parallel, emerging approaches integrate richer human
feedback into the control loop, moving beyond proximity-only
rules. Zhang et al. (2022) have shown that machine learning
can leverage physiological signals to modulate a robot’s velocity
in real time; for example, a reinforcement-learning system
using electroencephalography and -oculography inputs tailored
a teleoperator’s speed to the operator’s mental state, improving
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task efficiency and safety. Likewise, novel control frameworks
(e.g., Franceschi et al., 2025) adjust robot motion based on
physical interaction cues. While traditional mechanisms such as
speed and separation monitoring impose fixed limits when a
human is nearby, more advanced schemes propose continuously
scaling speed using interaction-force feedback to maintain safety
while improving responsiveness. By incorporating such intelligent
adaptation mechanisms, future robotic systems could extend our
speed-adjustment methodology to more complex scenarios and
diverse user profiles, enabling robots to autonomously balance
productivity with human comfort and safety in real time.

For adaptable automation, intuitive and low-effort user
interfaces are crucial. Finer-grained and more intuitive control
via gesture or voice commands can reduce the observed rising
perceived task demands and interruptions to flow experience
(Campagna et al., 2025). As such, a control scheme that allows
workers to adapt their workplace, technologies or processes does
not necessarily lead to excessive demand or fragmented work
processes. Well-designed adaptable automation even offers distinct
benefits in practice, aligning with the goals of Industry 5.0: it
empowers workers with direct control, supports autonomy, allows
personalized adjustment for varying skill levels or physical needs
(that a robot might not be able to assess via sensors), and can be
deployed in environments where sensing quality limits adaptive
schemes. Ultimately, the choice between adaptable and adaptive
approaches should be guided by the specific task context as well
as worker needs and capabilities. While this study highlights
practical advantages from a human-centered viewpoint for both, its
findings for the examined production setting lean toward adaptive
adjustments as the more favorable option.

7 Conclusion

This exploratory laboratory study jointly examined adaptable
(human-initiated) and adaptive (system-initiated) control schemes
against a static baseline in a structured, low-demand human–
robot assembly task. Relative to static control, adaptive automation
yielded higher workplace fit and higher flow experience across
trials, indicating that proximity-based speed adaptation can
support immersion and perceived alignment of the work process
with user needs. Adaptable automation, in turn, produced higher
perceived autonomy than static control and was associated with
somewhat higher, though generally low, task demands. Over all
measures, the dynamic approaches lead to more favorable results
than a static work system. However, these conclusions must be
viewed in light of the study’s limitations, including small group
sizes, a simplified task, and the restriction to speed as the only
adaptation parameter.
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