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How to achieve human-centered
automation: the importance of
trust for safety-critical behavior
and intention to use in
human-robot collaboration

Franziska Legler* and Angelika C. Bullinger

Chair of Ergonomics and Innovation, Department of Mechanical Engineering, Chemnitz University of
Technology, Chemnitz, Germany

Introduction: Recent technological advances in human-robot collaboration
(HRC) allow for increased efficiency and flexibility of production in Industry 5.0
while providing a safe workspace. Despite objective safety, research has shown
subjective trust in robots to shape the interaction of humans and robots. While
antecedents of trust have been broadly examined, empirical studies in HRC
investigating the relationship between trust and industry-relevant outcomes are
scarce and the importance of trust regarding its precise effects remains unclear.
To advance human-centered automation, this paper investigates the affective,
cognitive, and behavioral consequences of trust in robots, and explores whether
trust mediates the relationship between industry-relevant characteristics and
human-centered HRC outcomes.

Methods: In a pseudo real-world test environment, 48 participants performed
a manufacturing task in collaboration with a heavy-load robot. Trust, affective
experience over time, intention to use, and safety-critical behavior were
examined. A 2 x 2 x 2 mixed design varied the availability of feedback, time
pressure, and system failures, each expected to affect the level of trust.

Results: In the control group, trust remained consistently high across all
conditions. System failures and feedback significantly reduced trust, whereas
time pressure had no effect. System failures further increased negative affective
experience, while feedback reduced safety-critical behavior. Trust was unrelated
to affective experience but positively related to safety-critical behavior and
intention to use. The relationship between feedback and safety-critical behavior,
as well as intention to use, was significantly mediated by trust.

Discussion: Highly relevant for implementation, the control group showed
a tendency toward overtrust during collaboration, evidenced by disregarding
system failures. The results indicate that implementing a feedback system
alongside the simulation of safe system failures has the potential to adjust trust
toward a more appropriate level, thereby reducing safety-critical behavior. Based
on these findings, the paper posits several implications for the design of HRC and
gives directions for further research.

KEYWORDS

human-robot collaboration, trust in automation, affective experience, safety-critical
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1 Introduction

Due to demographic changes and the declining prestige
and attractiveness of workplaces involving physical labor
among younger generations, meeting personnel demands
in manufacturing companies is becoming an increasingly
critical challenge for success. Furthermore, manufacturing
companies experience an increasing demand for customized
products. Economical production of small batch sizes and variant
flexibility have become key to success (Buxbaum and Sen, 2021).
Conventional automation reaches its limits here. However,
technological advancements within Industry 4.0 like adaptive
sensor systems (e.g., Bdiwi et al., 2017a) enable humans to interact
with robots in a shared workspace without safety fences and
to work simultaneously on the same task or component (ISO
International Organization for Standardization, 2011). This
so-called human-robot collaboration (HRC) is directly associated
with Industry 5.0 (Alves et al., 2023) and is expected to unlock
significant potential in the productive industry: (i) combining
the repetitive skills of robots to improve quality with the ability
of humans to solve ill-defined problems (ISO International
Organization for Standardization, 2016), (ii) improving flexibility
of production facilities (Oubari et al., 2018), (iii) improvement of
ergonomic work conditions, both physical and mental, as robots
execute monotonous or heavy-load tasks (Buxbaum and Sen,
20215 Pietrantoni et al., 2024), and (iv) simple programming and
operation, enabling operators without programming expertise to
train robots (Buxbaum and Sen, 2021). However, shared-space
interaction with robots is still rarely implemented on the shop
floor (Kopp et al,, 2021; Giallanza et al., 2024). In addition to
the technical complexity, this is partly due to the expectation
that HRC holds a potential risk for humans (Buxbaum and Sen,
2021) as malfunctions of robots are even possible in standardized
collaborations in industrial manufacturing (Schifer et al., 2024).
To both overcome these concerns and realize the potential of
HRC, Industry 5.0 focuses on human-centered automation,
sustainability, and resilient production, instead of the narrower
“techno-economic vision” (Alves et al., 2023), which aims to
maximize production speed and economic profit. Thus, the
consideration of human factors is now central in HRC (Alves et al.,
2023; Giallanza et al., 2024; Paliga, 2023), as is the understanding
of the experience of humans during interactions with intelligent
automation, such as robots (Alves et al., 2023).

From a human factors perspective, trust in robots is considered
a key factor, as it determines the way humans interact with the robot
(Coronado et al., 2022; Hancock et al., 2021; Schifer et al., 2024).
One of the most frequently cited contributions in the field of trust
in HRC is the review paper of trust in automation by Lee and See
(2004) — written at a time when HRC was still a young domain. The
authors emphasize that, when interacting with automation, trust
must be calibrated appropriately, as under- and overtrust are both
associated with negative outcomes such as the misuse, disuse and
abuse of automated systems. To this day, research emphasizing the
importance of trust in HRC still largely refers to this foundational
work (e.g., Hancock et al., 2011; Hopko et al., 2023)—although
Lee and See (2004) primary focused on information and decision
support automation rather than robots. Two recent reviews of
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shared-space HRC (Hopko et al.,, 2022; Coronado et al., 2022)
concluded that the characteristics of robots as antecedents of
human factors such as trust are widely studied. They have also
shown that human factors are only used as dependent variables
whereas their interrelations and potential effects on other covariate
human factors as well as their effects on further industry-relevant
outcomes in a shared-space HRC have so far been largely neglected.
Given that research indicates trust to play a central role in HRC
(e.g., Hancock et al., 2021; Schifer et al., 2024), it seems pertinent
that trust should be examined more closely as a predictor of
industry-relevant outcomes. Therefore, in addition to studying the
antecedents of trust in HRC, research in the field needs to further
investigate the actual consequences and outcomes of trust relevant
to the shop floors of Industry 5.0. Industry-relevant outcomes can
be divided into two categories: performance-centered and human-
centered. Industry 4.0 focused primarily on performance-centered
outcomes (e.g., productivity, production costs, resource efficiency,
product customization) of technological advancements. Beyond
that, Industry 5.0 emphasizes the importance of human-centered
outcomes like wellbeing and human safety, which are key to
achieving the goals of Industry 4.0. Investigating human-centered
outcomes empirically will help to nuance the discussion in the field
and contribute to the realization of HRC, overcoming the tendency
to argue for the importance of trust mainly in light of earlier
results gained from the more general field of trust in automation.
When working toward the goal of human-centered automation, it
is decisive to look beyond performance criteria and consider the
affective, cognitive and behavioral consequences for the individual
human in a shared-space HRC.

This paper contributes to the state of the art with an empirical
study investigating the relationships with and potential mediating
effects of trust in robots during HRC on affective, cognitive,
and behavioral human-centered outcomes. The following chapter
provides an overview of the state of the art regarding the concept of
trust in robots in HRC, specific human-centered outcomes of trust
in HRC for Industry 5.0, and antecedents of trust that can be used
as strategies to adjust trust levels.

2 State of the art

Despite an extensive body of research in the field, there is
still no consensus how trust is defined (Hopko et al., 2022).
Proposing an inclusive, human-focused definition, Schifer et al.
(2024) “define human trust in robots as an asymmetric way of
relating that is characterized by dependence, risk, vulnerability,
positive expectations, and free choice (p. 9).” Transferring this
definition to industrial HRC, it follows that humans (i) depend on
the robot to fulfill their work task (dependence), (ii) perceive a risk
as they cannot predict future actions of the robot (risk), (iii) are
vulnerable due to potential physical harm or a lack of knowledge
regarding the robot’s capabilities (vulnerability), (iv) expect the
robot to support the shared task (positive expectation), and (v) are
free to engage in trust toward the robot (free choice) even if they
are obliged to use it in the workplace. In the same manner that it is
possible to interact with another person without establishing trust,
it is also possible to interact with a robot without establishing trust.
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Trust, which is based on positive expectations, leads to different
behavior than mistrust in both human-human and human-robot
constellations (Schifer et al., 2024). For example, as with human-
human interactions, humans interacting with robots can choose to
observe their interaction partner’s every physical or mental move
in the case of mistrust, or choose not to monitor them based
on positive expectations in the case of trust. Therefore, in HRC,
humans have a certain degree of freedom on how they interact with
the robot.

In a specific situation, humans choose to trust or choose not to
trust (Schifer et al., 2024). This situational aspect of the definition
by Schifer et al. lead to the conclusion that trust levels differ
depending on situational circumstances and context. Firstly, this
mirrors the argument that an “appropriate” or “calibrated” level of
trust is necessary for effective HRC (Lee and See, 2004; Hancock
et al,, 2011, 2021; Chang and Hasanzadeh, 2024). Secondly, trust
levels can be adjusted depending on situational circumstances and
context (Hancock et al., 2011).

Going beyond antecedents of trust, Schifer et al. (2024)
also include affective (dependence and vulnerability), cognitive
(positive expectations) and behavioral (free choice) components. It
can be concluded that trust should have consequences on all three
components, respectively. This aligns with the human-centered
focus of Industry 5.0, where individual wellbeing is prioritized
(Alves et al., 2023; Giallanza et al., 2024).

On an affective level, subjective wellbeing is highly relevant
in human-centered automation. Negative emotions and stress
experienced at the workplace impact employees’ wellbeing
(Khalid and Syed, 2024). However, affective experience remains
understudied in HRC (Coronado et al., 2022).When affective
experience is addressed, anxiety is a commonly studied affective
state in shared-space HRC (Hopko et al., 2022). In a comprehensive
review, Mauss and Robinson (2009) conclude that there is no
“gold standard” for measuring emotions, as existing methods
fail to capture both subjective experiences and physiological or
behavioral reactions. The authors advocate for a dimensional
approach to affective assessment, emphasizing valence and arousal
as essential components. They also stress the importance of
measuring emotions in conjunction with significant events to
ensure accurate results. According to the circumplex model of affect
(Russell, 1980), negative affective experiences are characterized
by negative valence and increased arousal. To the best of our
knowledge, there are no theoretical models that explicitly consider
the relationship of trust and affective experience. Therefore, it is still
unclear whether trust is an antecedent, covariate or consequence
of affective states, and studies that track affective states over time
and in relation to specific events are scarce in the context of HRC.
As both trust and affective experience are examined by changes in
physiological measures (e.g., Arai et al., 2010; Hopko et al., 2022),
it can be assumed that both concepts are related. Based on trust
literature, it has been found that (i) well-studied factors influencing
trust (e.g., reliability) also affect physiological responses (Hopko
et al., 2023), (ii) (3) emotions were suggested to be useful markers
for under- und overtrust (Schoeller et al., 2021), and (iii) humans
react with negative affective states following trust violations by
robots (Alarcon et al., 2024). Applying the definition of Schifer
et al. (2024), if humans show low trust in a robot, it can be assumed
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that feelings of “vulnerability” arise, which might be accompanied
by negative affective experiences such as anxiety—even if the robot
performs perfectly. From these empirical and theoretical findings,
we deduce that trust is an antecedent for affective experiences.
Therefore, we exploratorily hypothesize:

Hypothesis 1: Lower trust is related to reduced valence and
increased arousal (representing negative affective experience)
during HRC.

On a cognitive level, for HRC to be implemented sustainably
and resiliently in industrial workplaces, human workers should
have a willingness to use the technology and have positive
expectations of it. This is expected to be related to their belief that a
certain type of automation, e.g., a robot in HRG, is beneficial to their
goals (cf. “positive expectations,” Schifer et al., 2024). However,
trust is distinct from both acceptance and actual utilization of
technology. While trust can enhance both, they have been found
to be strongly influenced by contextual moderating factors (Kopp,
2024). A recent meta-analysis suggests that trust is actually an
antecedent of intention to use a robot (Razin and Feigh, 2024).
Additionally, trust has been shown to mediate the relationship
between usability and willingness to use a robot (Babamiri et al.,
2022). Therefore, intention to use is a relevant criterion, influenced
by positive expectations as part of trust. However, most studies
on trust in automation have focused on the relationship between
automation reliability and operator usage, often neglecting to assess
trust as a mediating variable (Lewis et al., 2018). We intend to
further knowledge in this area and hypothesize:

Hypothesis 2: Trust is positively related to intention to use.

On a behavioral level, safety is paramount for human-centered
automation (cf. “risk” and “vulnerability,” Schifer et al., 2024).
While shared-space HRC increases the risk of being physically
harmed by the robot (Onnasch and Hildebrandt, 2022), it has been
found that people are subject to a “positivity bias” (Dzindolet et al.,
2003): they expect automated systems to work well and reliably.
A recent study of technical experts in HRC even found concern
about potential over-reliance on technology (Pietrantoni et al.,
2024). The resulting overtrust reduces situation awareness and is
related to complacency (Parasuraman and Manzey, 2010). On an
objective and observable behavioral level, higher trust has been
found to result in reduced monitoring behavior, with an increase in
trust during interaction leading to even less monitoring (Hergeth
et al,, 2016). Therefore, it was shown that humans objectively react
differently during interactions depending on their level of trust
(cf. “free choice,” Schifer et al., 2024). In example, workers might
stop monitoring a cobot’s actions in case of too high trust (Hopko
et al.,, 2022). As malfunctions are rare and trust increases over time
during failure-free interaction, consequently reduced monitoring
may lead to safety-critical situations. Workers may, due to reduced
monitoring, be unaware of system states and unable to react to
sudden oft-nominal events (Hopko et al., 2022) like system failures.
This concept of overtrust in robots has been defined as a situational
state in which humans misjudge the risks associated with their
own actions due to an underestimation of the likelihood of a
robot performing its functions ineffectively or unsafely (Wagner
et al., 2018; Aroyo et al, 2021). Therefore, it is important to
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better understand objective safety-critical behavior of humans as a
behavioral consequence of trust. Concluding, we hypothesize:

Hypothesis 3: Trust is positively related to safety-critical
behavior during shared-space industrial HRC.

As mentioned above, the body of knowledge on antecedents
of trust is extensive (Hopko et al., 2022). Previous results point
to differences in the antecedents of trust depending on the
domain. For example, although anthropomorphism has generally
been found to have a positive impact on trust in robots, this
holds particularly true for social robots and not necessarily for
industrial robots (Onnasch and Hildebrandt, 2022). Research in the
domain of industrial HRC has thus to consider industry-relevant
characteristics as antecedents of trust, as proposed e.g., by Chang
and Hasanzadeh (2024), who underline the need to investigate
distinctive features relevant to the respective field of robots. The
results of trust-influencing factors can be further used to create
variance in human trust levels by purposefully adjusting trust levels
and subsequently explore relationships with expected consequences
of trust. In industrial application, two robot characteristics—system
failures and feedback via communication—and the environmental
characteristic time pressure have been argued to be important trust
antecedents (Chang and Hasanzadeh, 2024). The following section
briefly describes the effects of these antecedents on trust. Based on
the previously explained relationship between trust and human-
centered outcomes in industry, the links between antecedents of
trust and these outcomes are discussed.

Much of the literature on trust focuses on system reliability and
the effects of system failures; the latter have been shown to have
a negative impact on trust (e.g., Parasuraman and Manzey, 2010;
Wickens et al., 2015; Legler et al., 2023). This can be explained by
the definition of trust itself: As trust involves positive expectations,
these are violated in the event of a system failure. Akalin etal. (2023)
state that trust loss is especially caused by robot failures, which
include design failures, expectation failures and system failures.
In this paper, we follow Akalin et al. (2023) and define system
failures as failures in both, hardware or software, of a robot system.
Furthermore, system failures increase perceptions of vulnerability
(Schifer et al., 2024). Higher monitoring and situation awareness
have been observed following failures of an automated system
(Wickens et al., 2015). As trust is positively related to intention
to use and safety-critical behavior, it can be assumed that system
failures also reduce these. Further, as trust has been shown to be
related to affective experience (e.g., Alarcon et al., 2024; Hopko
et al,, 2023), it can be assumed that unexpected system failures
are related to negative affective experience, probably mediated
by trust. Given that studies on affective experiences are rare,
the affective experiences resulting from trust-related antecedents
and consequences of trust will be assessed in an exploratory
manner. On the account of system failure and intention to use,
we hypothesize:

Hypothesis 4: System failures reduce trust during industrial
HRC, and thereby intention to use.

Providing visual feedback on the state of an automated system,
such as a robot, has been shown to increase situation awareness
and the predictability of robots’ actions which enhances trust,
thereby strengthening intention to use and reducing safety-critical
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behavior. Visual feedback systems have been implemented to
increase user’s situation awareness (Maurtua et al., 2017), displaying
visual cues to signal danger and capture human attention
(Goldstein, 2010). A meta-analysis showed that feedback directly
affects trust in automation (Schaefer et al., 2016). Additionally, trust
mediates the relationship between feedback and actual reliance on
the system (cf. “dependence;” Schifer et al., 2024), as feedback
renders the robot’s actions more predictable (Dzindolet et al., 2003).
This minimizes human vulnerability, while increasing acceptance
and intention to use. Therefore, although feedback is expected
to enhance trust, and trust is positively related to safety-critical
behavior, it is expected that feedback will lower safety-critical
behavior. To better understand these relations, we hypothesize:

Hypothesis 5: Feedback increases trust during industrial HRC.
Hypothesis 6: Trust mediates the relationship of feedback with
intention to use and safety-critical behavior.

Hypothesis 7: Feedback shows a direct effect on reducing safety-
critical behavior.

Pacing in industrial settings can cause time pressure, which
has been found to increase mental workload during human-
automation interactions. The framework of Chang and Hasanzadeh
(2024) highlights time pressure as a key environmental factor
affecting trust in robots in industrial settings. Surprisingly, effects
of time pressure have remained understudied. Most research
assumes that time pressure increases trust, as humans experience
an increased subjective workload under time pressure (Wang
et al., 2016) and compensate this complexity and uncertainty by
increasing trust in automation (Luhmann, 1979; van der Waa
et al., 2021). As trust is positively related to intention to use
and safety-critical behavior alike, it can be assumed that time
pressure enhances both due to increased positive expectations and
dependence on the robot. Therefore, we hypothesize:

Hypothesis 8: Time increases trust

industrial HRC.
Hypothesis 9: Trust mediates the relationship of time pressure

pressure during

with intention to use and safety-critical behavior.

Summing up the current state of trust research, three elements
are apparent that require closer consideration: (i) The concept
of trust in HRC has characteristics at affective, cognitive and
behavioral levels which leads to the assumption that trust also
manifests in affective, cognitive, and behavioral consequences
relevant for the design of efficient HRC in industrial settings. (ii)
Investigating the concepts of affective experience, intention to use
and safety-critical behavior is highly relevant to achieve human-
centered automation as intended within Industry 5.0. (iii) Trust
has the potential to mediate the relationship between characteristics
typically apparent in industrial robots, such as system failures,
feedback and time pressure, and important human-centered
outcomes of industry, such as affective experience, intention to use
and safety critical behavior. This puts trust at the center of attention
to explain relationships between industrial characteristics of HRC
workplaces and affective, cognitive, and behavioral consequences.
Until now, human factors such as trust have rarely been studied
as covariates of other human factors, and the potential mediating
effects on outcomes relevant for a safe HRC have been largely
neglected (Hopko et al., 2023). Therefore, our overall research
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FIGURE 1

(A) View of test environment with KUKA robot and participant during collaboration, and (B) visualization of feedback system containing LED lighting

system and (C) an information display.

KOOPERATION
32 sec.

>

ROBOT ZONE
speed up to 2300 mm/s

storage

COLLABORATION position

ZONE
speed 500 mm/s

7
..~ SAFETY ZONE
unauthorised
e crossing induces

A safety stop B

FIGURE 2

(A) Schematic presentation of the robot cell containing different zones and associated robot speeds, (B) visualization of robot's orbital path, and (C)
monitors for simulating an assembly line with two components in the queue and green LED lighting system of the robot indicating collaboration

mode.

J Component |-

question is: In an industrial HRC setting, how do changes in
trust, prompted by the trust-relevant antecedents system failures,
feedback and time pressure, impact the human-centered outcomes
affective experience, intention to use and safety critical behavior?

To address the research question, an experimental study was
conducted, comprising a realistic industrial collaboration task with
a heavy-load robot within a pseudo real-world test environment.
Method and results of the study are subsequently presented, closing
with practical implications for industrial HRC.

3 Materials and methods

3.1 Test environment

The study was conducted in a model factory. The robot cell
in which participants operated was surrounded by various other
robotic and automation systems. A KUKA Quantec prime KR
180 industrial robot, classified as a heavy-load robot, was used as
a test bed with a feedback system implemented (see Figure 1A).
The visual feedback system contained an LED lighting system
at the flange and base of the robot (see Figure 1B) and an
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information display (see Figure 1C). Three colors showed different
robot states: white for automated robot actions, green for the
collaboration mode, and orange for system failure states. The
dynamic information display contained a countdown showing
the remaining collaboration time in seconds, as well as top and
side views of the robot to help anticipate actual and future
movement and paths. There was also a pop-up window providing
written information on failure states. The information display was
mounted at an angle on the wall that ensured visibility from both
the safety zone and the assembly position. Still, from the assembly
position, the human operator had to turn sideways and away from
the robot to see the entire display (see Figure 2A). Redundant
information on the robot’s state and failure modes was presented by
the LED lighting system and the feedback display. Further details
regarding the development and user evaluation of the feedback
system can be found in Legler et al. (2022).

Table 1 describes the tasks performed by the human operator
and the robot within a complete assembly cycle, as well as the
information provided by the feedback system. Each cycle contains
five phases involving the robot: component admission and delivery
(phase 1), gesture control (phase 2), assembly (phase 3), component
storage (phase 4), and return to component admission (phase 5).
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TABLE 1 Robot and human tasks during one complete assembly cycle of the HRC task.

Robot task Human task

Phase 1: Component admission and delivery (11 s)

Feedback system

Admission of component (front axle carrier), transport
toward and stop inside collaboration-zone

Waiting in safety zone, possibly sorting hook-and-
pile tapes if necessary

Mode of operation (autonomous), current and
future position of robot, countdown till
collaboration

Phase 2: Gesture control (direct interaction, movement of robot, individual duration)

Holding component on robot flange, support human’s input
by gesture control (speed 250 mm/s)

palm up and down

(1) Entering collaboration-zone
(2) Gesture control: setting an ergonomic height of
the component located at the robot flange by moving

Mode of operation (collaborative), countdown till
collaboration ends, warning and explanation in
case of a system failure

Phase 3: Assembly (no movement of robot, individual duration)

Holding component during assembly (no movement)
component

(3) Assembly of eight hook-and- pile tapes on the

(4) Entering safety-zone

Mode of operation (collaborative), countdown till
collaboration ends

Phase 4: Component storage (105s)

Transport of component to storage position (departing from -
human), placement of the component

Mode of operation (autonomous), current and
future position of robot

Phase 5: Return to component admission (14 s)

Returning to component admission (approaching human) -

Phases gesture control to enable an ergonomic height and assembly
can be referred to as “collaboration,” as participants left the safety
zone during these phases. Figure 2B illustrates the robot’s orbital
path. The robot: (i) picked up the front axle carrier at the back;
(ii) approached toward the assembly position in the front; (iii)
remained in the assembly position holding the front axle carrier for
human gesture control and assembly; (iv) moved to the component
storage position on the left, and (v) returned to home position in
the back.

The study was conducted following the approval of a formal
risk assessment. The robot cell comprised collaboration, robot and
safety zones (see Figure 2A, cf. Bdiwi et al., 2017a for further details
on safety concept in the robot cell). Participants remained inside
the robot cell throughout the experiment, waiting in the safety
zone until the collaboration mode began (otherwise triggering an
emergency stop). The robot’s speed was associated with particular
zones; it moved at a maximum speed of 2,300 mm/s in the
robot zone and slowed down to 500 mm/s when entering the
collaboration zone (see Figure 2B) to ensure that the robot system
was able to immediately stop in case of an emergency stop triggered
by humans. The collaboration mode only started when the robot
came to a standstill within the collaboration zone at the assembly
position. The LiDAR sensors (see Figure 1A) were deactivated
during collaboration mode. The robot was capable of supporting a
collaborative assembly task modeled on a real automotive industry
workplace. The task involved attaching eight hook-and-pile tapes
to a front axle carrier. The robotic system was equipped with
an optical gesture control interface for height adjustment which
is a typical ergonomic feature in HRC (Pluchino et al., 2023).
This interface is based on a combination of depth, color and
thermal imaging (for technical details cf. Al Naser et al., 2022). In
practice, the algorithm performed best when participants extended
their palm toward the robot. Movements of the palm in the
vertical direction relative to the initial detection position were then
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Mode of operation (autonomous), current and
future position of robot

translated into corresponding upward or downward motions of the
robot arm. During collaboration mode, the robot moved at a speed
of 250 mm/s. Given the robot movement with minimal physical
distance to the human in the collaboration zone to support the
human height setting task and holding the component for assembly
represents a HRC level 3 according to Bdiwi et al. (2017b).

Although the automated gesture control was functional, the
gesture control algorithm sometimes failed in prior study series
as a result of incorrect human input or adverse environmental
influences such as light reflections. Algorithm failures resulted in a
lack of response from the system or jerky, uncontrolled movements
of the robot arm due to repeated failed tracking of the palm.
Therefore, to ensure standardized conditions, the test environment
enabled the experimenters to manually control the robot arm
during gesture control. Participants were unable to detect the
manual gesture control (Wizard-of-Oz), allowing experimenters to
simulate a failure of the gesture control system. As the automated
gesture control was based on a very simple human gesture, moving
the extended palm upwards and downwards was equally used as the
input gesture for the Wizard-of-Oz gesture control.

To simulate an assembly line, the test environment also
included three monitors positioned behind the robot and beneath
the component admission table (see Figure 2C). The monitors were
in the person’s direct field of vision during the assembly task,
ensuring that participants could evaluate their performance in the
current assembly.

3.2 Experimental design
A mixed design was conducted with three factors: feedback,
system failure and time pressure. “Feedback” was a between-

subjects factor (CG = control vs. FB = feedback group); therefore,
in the control group, the LED lighting system and information
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FIGURE 3
Visualization of experimental study design. IV, independent variable.
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display were kept off. A balanced design of two within-subjects
factors, “system failures” (F- = none vs. F+ = occurrence of
failures) and “time pressure” (TP- = none vs. TP+ = time
pressure), was applied within both groups. The experimental design
resulted in four conditions, which were performed in randomized
order after a baseline condition to allow habituation to the assembly
task and to the assessment of affective experience. The design of the
study is visualized in Figure 3.

System failures were simulated in gesture control mode
while participants were setting the assembly height. As the
robot delivered the front axle carrier at a height that prevented
participants from reaching the highest hook-and-pile tapes,
participants’ intention was to lower the robot arm. The
experimenters were instructed to manually control the robot
arm with noticeably jerky movements in the direction opposite
to the participants’ palm movements for about 10, resulting in a
position far too heigh to reach all hook-and-pile tapes Afterwards,
gesture control was supported correctly and participants were able
to lower the robot arm. Time pressure was introduced by adding
a component to the assembly line monitors (see Figure 2C) after
an individual cycle time had elapsed, resulting in a component
in queue visible for the participants. Therefore, the time taken
for collaboration mode, including time for gesture control and
assembly of the component, was measured during participants’
baseline assembly cycles, and the fastest collaboration time was
used as an individual reference for each participant. The constant
robot period (35s) and the individual reference time (M = 26.8s,
SD = 4.7, min = 20, max = 39) were added together and used
as the individual cycle time (resulting in an average of 61.8s).
To account for interindividual differences in assembly times and
to ensure that time pressure was objectively operationalized and
equally perceived across participants, the individual reference time
was halved during time pressure conditions. Therefore, individual
reference time during time pressure conditions showed an average
of 13.4s, resulting in an average individual cycle time of 48.4s.
From the participants’ perspective, the individual reference time
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showed them how much time they had available to collaborate with
the robot, and this time was displayed on the information display
(see Figure 1B).

3.3 Measures

3.3.1 Demographics

Demographic information like sex, age, highest educational
degree, as well as experience with industrial robots and production
work, were captured in pre-survey. Additionally, Affinity for
Technology Interaction (Franke et al., 2019, ATI, 6-point Likert-
scale; @ = 0.85) was assessed for sample specification.

3.3.2 Time progression measures of affective
experience

According to Werth and Forster (2015), specific emotions
are intensive, directed toward an object, and fleeting. Since
collaborations with robots involve alternating phases of separate
and cooperative activities, and robots approach and depart from
humans, various affective states can occur. In accordance with
Mauss and Robinson (2009), a dimensional self-report measure
of affect over time was used, as it has been argued that this is
sensitive to changes in valence and arousal, whereas physiological
measurements such as heart rate or skin conductance have only
been shown to be sensitive to arousal. The circumplex model
of affect (Russell, 1980), for example, describes anxiety as an
emotion characterized by a strong negative valence and high
arousal. Therefore, it is possible to assess a tendency toward specific
emotions based on valence and arousal values. The Feeling Scale
(FS; Hardy and Rejeski, 1989; scale range —5 to 5) and Felt Arousal
Scale (FAS; Svebak and Murgatroyd, 1985; scale range 1 to 12)
were used to quantify self-reported affective experience. Combined
single-item scales have also been used in other studies to measure
affect continuously over time (Murray et al., 2016). Valence and
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arousal values were assessed every 10 seconds and the original scale
of FAS was doubled to 12 points due to limited variance in values in
pre-tests (cf. Legler et al., 2023 for further details on pre-test). Due
to pretest results, the assessment interval of 10 seconds was found
to enable participants to concentrate on their primary task. Both
scales were available to the participants at all times, visualized by a
fabric sticker on their left or right arm.

3.3.3 Outcome measures (post-scenario)

Further, several measures for dependent variables were applied.
Trust in automation was measured subjectively via a German
translation (Pohler et al., 2016) of Jian-Scale, following each of
the five scenarios. Only subscale “trust” (6 items; 7-point Likert
scale) was used because the two subscales were highly correlated
and previous work had questioned the two-factor structure (Pohler
etal, 2016; Legler etal.,, 2020). Across the scenarios, mean reliability
for trust was o = 0.82. For Intention to Use, a German translation
of the subscale “intention to use” (Brauer, 2017) was applied
(scale range 1 to 5, mean reliability was a = 0.78) to measure
overall willingness to interact with the robot in the future (cf.
UTAUT Model; Brauer, 2017), representing the pre-conditional
stage of actual usage and an indicator of technology acceptance.
Safety-critical behavior was defined as disregarding system failures.
After completion of data collection, the time taken for gesture
control across all scenarios without simulated system failures was
empirically calculated and showed a 5th percentile of 0.5s. This
value was used as a lower limit of an expected time for gesture
control. Therefore, in failure scenarios, a minimum gesture control
time of 10.5s was expected (10 for the failure simulation plus an
expected lower limit of 0.5 s for the actual height adjustment). Due
to the manual control of failures and expected slight inaccuracies of
experimenters in simulating the failure duration, a tolerance period
of 2 s was set. Therefore, in failure scenarios, a duration of less than
8.5 seconds between the start of collaboration mode and the start of
assembly was defined as disregard of failures. De facto, participants
did not complete the height setting task and started to assemble
while the robot was still moving, which was not permitted by the
instructions given to participants. To control for the manipulation
of time pressure, one item covering temporal demands of the NASA-
TLX measuring subjective workload (Hart, 2006; scale 0-100) was
applied. Additionally, the number of components in the queue after
finishing all five assembly cycles of a scenario was recorded for
manipulation check.

3.4 Sample

The participants were recruited from the participant database
of our partner research institution, which includes students from
technical degree programmes and individuals working in technical
professions, e.g., employees from companies located in the vicinity.
Participants in the study had to be at least 18 years and free
from any motor impairments. Given the technical focus of the
study, an above-average affinity for technology was expected. In the
experiment, 48 persons participated and were randomly assigned to
two groups of equal size: control group and feedback group. Both
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groups were gender balanced. Participants were aged between 18
and 58, the mean age was 26.2 years (SD = 7.54) in the control
and 25.6 years (SD = 7.84) in the feedback group. Bayes factors
(cf. Section 3.6) did not show differences in age (BF;p = 0.52
+0%, rscale = 0.3). Overall, affinity for technology interaction
was on medium to high level and not differing between groups
(antrol = 3.79, Mfeedbuck = 3.88, BFl() = 0.78 £ 0%, rscale =
0.3, scale range 1-6). The majority of participants stated that
they had no vocational qualification or bachelor’s degree. These
individuals were probably students at the time of the study. The
remaining participants stated to they had a vocational qualification
or technician/foreman’s degree (11%) or master’s degree (17%).
Therefore, effects of participant groups (students vs. non-students)
for baseline trust as the most important outcome of this study
was tested. Bayes factors favored the null hypothesis in the overall
sample (BF1p = 0.55 &= 0%, rscale = 0.3). Slightly more participants
of the feedback group (29%) had interacted with an industrial
robot before (vs. 20%) and were currently or had ever worked
in production sector before (29% vs. 25%). Again, effects of
previous personal experience in production (experienced vs. non-
experienced) for baseline trust was tested. Bayes factors favored the
null hypothesis in the overall sample (BF;yp = 2.06 % 0%, rscale =
0.3). Participants received financial compensation.

3.5 Procedures

Participants received the participant information, signed
a declaration of consent and filled in the pre-survey. All
materials applied to conduct the study including such as
experimenter protocols and surveys is public available (cf. Data
Availability Statement).

Participants watched two videos showing a real workplace
with a handling device, as well as an equivalent task performed
collaboratively with the robot in a test environment. This was
intended to support the cover story of workplace design in the
productive industry. Participants were then given instructions on
the collaborative task, which consisted of setting the height via
gesture control and carrying out the assembly task (see Table 1,
phase 2). Participants in the feedback group also received a brief
introduction to using the feedback system. All participants were
instructed to:

e Stay within the marked safety zone before the robot stops
inside the collaboration zone; leaving the zone would result
in an emergency stop,

e Use gesture control for height setting in each assembly cycle,

e Stop the assembly and enter the safety zone as soon as
anything abnormal or critical is noticed,

e And minimize their assembly time, as financial compensation
would depend on it (compensation manipulation).

All participants performed a baseline condition involving a
minimum of ten assembly cycles (see Table 1) in order to familiarize
themselves with the assembly task, learn how to control the robot
using gestures and become trained with the feedback system and
the affective experience assessment. Afterwards, each participant
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performed four interaction scenarios with the robot in randomized
order. Prior to each condition, participants were asked to rate
their current valence and arousal values to establish a baseline (t).
Valence and arousal values were verbally rated by participants every
10s (see Section 3.3) following an acoustic signal and recorded
by experimenters.

Each experimental scenario comprised five assembly cycles,
lasting around 5 min in total. The durations of an assembly cycle
resulted from robot periods (35s) and the individual times taken
for gesture control and component assembly. A typical complete
assembly cycle without simulated failures lasted 57.5 s (SD = 4.04),
whereas one containing simulated failures lasted 67.5 s (SD = 3.97).
System failures were simulated for all participants in the first and
third assembly cycle of the respective experimental scenario. The
position of simulated failures during the five assembly cycles was
not randomized to reduce the mental load for the experimenters,
thereby ensuring that all planned and manually simulated system
failures were carried out by the experimenters in accordance
with the specified procedure. Additionally, the fixed order of the
simulated failures occurred only twice for each participant during
the experiment; therefore, it can be assumed that the participants
were unable to perceive the fixed order.

Each scenario was followed by a short survey to measure
outcomes. At the end, participants were debriefed about the
financial compensation manipulation and received compensation
regardless of their assembly time. Overall, the study lasted about
60 min.

3.6 Data analysis

Statistic Software R (version 4.5.0; R Core Team, 2025) was
used for data analysis. Bayes factor analysis was applied, using R
package “BayesFactor” (Morey and Rouder, 2024). In accordance
with Berger (2006), a very broad prior distribution was used
as uninformed prior. It was operationalized by a zero-centered
Cauchy distribution with a “medium” prior scale, reflecting
common effect sizes in psychological studies (Speekenbrink,
2023). It was implemented by an according rscale parameter
1/3/2 (Morey and Rouder, 2024) in the ttestBF()
function to compare independent groups. The parameterization

of r =

of anovaBF() followed the same theoretical considerations and
was used to examine main and interaction effects of the three
independent variables. Unlike ttestBF(), the rscale parameter in
anovaBF() is based on standardized treatment effects rather than
Cohen’s d. Therefore, rscale in anovaBF() was set to r = 0.5,
analogously representing a “medium” prior scale (Speekenbrink,
2023). Individual scores were defined as random effect to address
for the within-subjects variables system failure and time pressure.
Finally, approximation method “simple” was used to account for
the relatively small sample size for complex models (Navarro,
2015). BFjq is reported unless otherwise stated and represents
the relative likelihood of the alternative hypothesis over the
null hypothesis. For the interpretation of Bayes factors, we
apply Jeffreys’s scale of evidence (Jeffreys, 1961).With the aim of
equivalence testing, in this paper, parameter rscale was set to
0.3 to test the null hypothesis against a rather small effect. For
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interpretation, BFjy < 1 shows a favoring of the null hypothesis
over the alternative hypothesis, supporting equivalence of groups
or conditions.

Package “ggplot2” (Wickham, 2016) was used to visualize time
progression data. Valence and arousal values of each participant
were normalized as deviation from initial values queried prior
to each scenario starting at ty. Additionally, due to individual
durations of gesture control and assembly of components, data
of phase 2 and 3 (see Table 1) were also normalized using the
median values across participants and dependent on scenario.
Robot periods also varied as a result of minor technical issues.
Therefore, all data within a specified phase were normalized to
the means across comparable conditions. To smooth data curves,
a generalized additive model (GAM; Wood et al., 2016) was used.
According to the relatively low number of data points, the adaption
of the GAM model in Wood et al. (2016) was applied and the
function parameter “formula = y ~ s(x, bs = “cs”, fx = T,
k = 0)” was used within the function geom_smooth() by setting
k value to 10 for all graphs aiming at visual comparability. Due to
missing robot log files, the resulting diagrams contain a different
intersection of the total sample. However, due to the use of relative
rather than absolute values and the approximation based on around
900 data points per line, the resulting distortion is expected to
be low. Package “lavaan” (Rosseel, 2012) was used for structural
equation modeling using a maximum likelihood estimation.

4 Results
4.1 Manipulation check

Due to the two within-subjects variables used, participants
experienced two manipulations during the experiment. System
failures were simulated for about 10s during the first and third
assembly cycle. Consequently, the duration of gesture control
should be 10s longer in experimental conditions involving
simulated failures (F+). Figure 4A shows the duration of gesture
control depending on the experimental condition, assembly cycle
and group. Gesture control was higher in cycles 1 and 3 in
experimental conditions with failures (F+; top) than in conditions
without simulated failures (F-; bottom), demonstrating the success
of the planned manipulation.

Regarding the manipulation of time pressure, the available
assembly time for each individual (cf. Section 3.2) was reduced.
Figure 4B (top) shows the subjective ratings for the NASA-
TLX control item “temporal demands.” It is obvious that the
manipulation of time pressure was more effective in the feedback
group. However, the Bayes factor revealed no significant differences
between the groups in either condition involving time pressure and
failures (TP+/F+; BFjp = 0.46 & 0.01%) or condition involving
time pressure without simulated failures (TP+/F-; BF1p = 0.39 +
0.01%). A Bayesian ANOVA applied to the feedback group showed
no effect of time pressure (BFjp = 0.26 £ 1.07%) compared to a
denominator model using individual scores as a random effect. The
control group showed no effect of time pressure, either. Conversely,
the objective manipulation check for time pressure (see Figure 4B,
bottom), operationalized as the number of components in the
queue, supports the success of the manipulation, as participants
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would have been able to reduce their assembly time in order to
avoid components in the queue.

4.2 Trust

Figure 5 shows the descriptive results for trust ratings, clustered
in group and experimental condition. In the control group,
mean trust consistently remained high across all scenarios,
whereas trust decreased in the feedback group following a
system failure. In the feedback group, trust dropped below the
scale mean during experimental condition TP-/F+ (M = 3.72,
SD = 0.90).

Following completion of the baseline condition, trust levels
were found to be similar for both groups (Mcc = 4.92,
Mrpp = 4.74, BFp = 0.54, rscale = 0.3). A Bayesian ANOVA
was applied. Table 2 shows the results of selected Bayesian
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models compared to a random model, with participants as
the random factor. Including only the independent variables
“feedback” (row 1) or “system failure” (row 2) significantly
improved both models. The effect of “failure” was stronger than
of “feedback.” The model including the independent variable
“time pressure” (row 3) favored the null hypothesis. Accordingly,
the model including the two significant main effects (row 4)
showed strong evidence in favor of the alternative hypothesis,
and including an interaction of both main effects (row 5)
showed an additional significant improvement. Relating Bayesian
model results to the descriptive results, (i) overall, trust was
lower in the feedback group; (ii) system failures were found
to reduce trust, and (iii) system failures had a stronger effect
in the feedback group than in the control group. The results
support hypothesis 4 (system failures reduce trust), but contradict
hypotheses 5 (feedback increases trust) and 8 (time pressure
increases trust).
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TABLE 2 Bayesian ANOVA results modeling trust compared to a
denominator model using participants ID as random factor.

Model BFo Evidence
feedback + ID 6.8 £0.73% Moderate
failure + ID 64.1 £0.44% Very strong
time pressure + ID 0.2 +£0.63% (Moderate)
feedback + failure + ID 429.9 £0.81 Extreme
feedback + failure + 5175.0 £2.17% Extreme
feedback:failure + ID

Colon indicates interaction effects.

4.3 Affective experience

Figure 6 shows how subjective valence and arousal values
progressed over time in all four experimental conditions. The
valence and arousal values of each participant were normalized
as a deviation from the initial values queried prior to the
start of each condition, at ty. Timelines show the actual real-
time robot periods (phases 1, 4, and 5), all normalized within
the periods across conditions for the purpose of comparison,
as well as the normalized data for gesture control (phase
2; visualized in green or orange in the event of simulated
system failures) and assembly (phase 3; visualized in gray)
(cf. Section 3.6). A decrease in valence and a simultaneous
increase in arousal indicate a negative affective experience (cf.
Section 3.3). Changes in valence and arousal that indicate
negative affective experience and occur at the same time
result in an elliptical shape formed by the lines for valence
and arousal.

Comparing all subfigures reveals that conditions involving
simulated failures (Figures 6A, B) resulted in stronger fluctuations
in valence and arousal values than conditions without simulated
failures (Figures 6C, D). Conversely, valence and arousal values
were not influenced by time pressure, as can be seen by
comparing Figures 6C, D. A detailed analysis of the conditions
involving simulated failures (Figures 6A, B) shows that the expected
elliptical form of the valence and arousal lines mainly occurred
during the assembly cycles involving simulated failures (cycles
1 and 3). This form was more evident in the feedback group
than in the control group. Nevertheless, both groups showed
a trend toward decreased valence and increased arousal in
the first part of each assembly cycle, resulting in maximum
deviation in the gesture control or assembly phase. At the
end of each assembly cycle (phases 4 and 5), arousal values
drop again.

To allow for further quantitative comparisons between
the experimental conditions, maximum changes in valence
and arousal relative to the preceding value over time were
depending
interest to

calculated, and the frequency of occurrence

on the phase was analyzed. Of particular

the research questions are negative valence deviations
(maximum change hereafter referred to as “valence drop”)

and positive arousal deviations (maximum change hereafter
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referred to as “arousal surge”), as these indicate negative
affective experiences.

Table 3 shows the relative frequencies of arousal surges
depending on the experimental condition and, where applicable,
the simulation of system failures in the assembly cycles. Frequency
patterns can be identified. Overall, it can be seen from column 9
(“mean”) that arousal surges typically occurred with the following
frequency distribution: assembly > gesture control > delivery.
Only a few arousal surges occurred during storage and return.
Furthermore, arousal surges occurred more frequently during
gesture control in cycles with simulated system failures than in
cycles without failures, in both experimental groups (cf. columns
3 and 4, and 5 and 6, respectively). However, greater differences
were observed in the feedback group. In experimental conditions
without failure simulation (cf. columns 7 and 8), arousal surges
were rarely caused by gesture control, but were more frequently
observed in assembly (cf. Section 5.3 for a discussion of this
result). Phase return did not frequently result in arousal surges,
even though the robot approached the human at a speed
of 500 mm/s while they waited within the safety zone (see
Figures 2A, B).

Table 4 shows the relative frequencies of valence drops
depending on experimental conditions and, where applicable,
the simulation of system failures during assembly cycles. Again,
a pattern of frequencies can be identified. Overall, referring
to column 9 (“mean”), it is apparent that valence drops
typically occurred with the following frequency distribution:
assembly > return > gesture control. Only a few valence drops
occurred during delivery. Furthermore, in both experimental
groups, valence drops during gesture control were much more
frequent in cycles with simulated system failures than in cycles
without (cf. columns 3 and 4, and 5 and 6, respectively), and
there were no differences between the groups during gesture
control. In the absence of failure simulations (cf. columns 7
and 8), gesture control rarely caused valence drops, but more
valence drops were observed during assembly (see Section 5.3
for discussion of this result). Return caused a high frequency
of valence drops in both experimental groups in cycles and
conditions without failures comparable to the frequencies found
during assembly.

To further analyze the occurrence of negative affective
experience, the maximum negative deviations of valence and
the maximum positive deviations of arousal relative to the
initial values (tg) were calculated. Overall, the maximum valence
and arousal changes remained relatively small across all robot
phases (compare also Figures 6A-D). A Bayesian 2 x 2 x 2
mixed ANOVA was used to model the maximum deviation
Table 5
selected Bayesian models compared to a random model, with

in valence and arousal values. shows the results of
participants as the random factor. When modeling both valence
and arousal changes, it was found that only the model including
the independent variable “failure” (row 2) showed significant
improvement on the random model. As the models that took
the other two independent variables into account favored the
null hypothesis (rows 1 and 3), no more complex models are
reported. The effect of “failure” was stronger for valence changes

than for arousal changes. This result shows that arousal values
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in green in conditions without simulated failures and highlighted in orange in case of simulated failures. Assembly time (robot phase 3) is highlighted
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simulated failures (F-) nor time pressure (TP-).

time in seconds

change to some extent also in conditions without system failures,
while valence values mostly remain constant (see Figures 6C,
D). As reduced valence and increased arousal were found
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following system failures, the exploratory hypothesis that system
failures induce negative affective experience is supported by
the data.
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TABLE 3 Relative frequency of arousal surges depending on experimental condition, assembly cycles and group.

TP-/F+ TP+/F+ TP+/F- TP-/F- Mean
Cycles Cycles Cycles Cycles Cycles 1 Cycles 1
with without with without to5 to 5
failures failures failures failures
(1+3) (2,4,5) (1+3) (2,4,5)
Delivery (phase 1) CcG 11% 25% 13% 29% 31% 36% 24%
FB 5% 15% 4% 20% 24% 33% 17%
Gesture control (phase 2) CG 35% 6% 43% 19% 7% 7% 20%
FB 63% 15% 48% 20% 15% 9% 28%
Assembly (phase 3) CG 32% 53% 30% 45% 42% 44% 41%
FB 11% 45% 28% 50% 47% 44% 38%
Storage (phase 4) CG 4% 0% 7% 7% 7% 2% 5%
FB 16% 0% 12% 0% 6% 2% 6%
Return (phase 5) CG 18% 16% 7% 0% 13% 11% 11%
FB 5% 25% 8% 10% 8% 12% 11%

CG, control group; FB, feedback group; TP+, with time pressure; TP-, without time pressure; F+, with failures; F-, without failures.

TABLE 4 Relative frequency of valence drops depending on experimental condition, assembly cycles and group.

TP-/F+ TP+/F+ TP+/F- TP-/F- Mean
Cycles Cycles Cycles Cycles Cycles 1 Cycles 1
with without with without to5 to 5
failures failures failures failures
(1+3) (2,4,5) (1+3) (2,4,5)
Delivery (phase 1) CcG 0% 18% 13% 11% 0% 16% 10%
FB 0% 0% 13% 14% 4% 0% 5%
Gesture control (phase 2) CG 54% 0% 27% 0% 5% 5% 15%
FB 59% 8% 35% 9% 4% 0% 19%
Assembly (phase 3) CG 38% 18% 33% 33% 53% 37% 35%
FB 29% 31% 24% 31% 24% 46% 31%
Storage (phase 4) CG 8% 18% 20% 22% 10% 21% 17%
FB 6% 15% 13% 10% 24% 27% 16%
Return (phase 5) CG 0% 46% 7% 34% 32% 21% 23%
FB 6% 46% 15% 36% 44% 27% 29%

CG, control group; FB, feedback group; TP+, with time pressure; TP-, without time pressure; F+, with failures; F-, without failures.

4.4 Intention to use

Figure 7 shows the descriptive results for the ratings of
intention to use, depending on group and experimental condition.
The mean intention to use score was consistently higher than
the scale mean, showing comparable results across experimental
variations and group. Additionally, high variance was found in all
conditions and in both groups.

Following completion of the baseline condition, intention to
use was found to be similar for both groups (Mcg = 3.64, Mpp =
3.60, BFjp = 0.52, rscale = 0.3). Again, a Bayesian ANOVA was
applied. Table 6 shows results for selected Bayesian models when
compared to a random model with participants as random factor.
None of the models showed Bayes factors in favor of the alternative.

Frontiersin Organizational Psychology

Therefore, the model that only includes participants as a random
factor best fits the data.

4.5 Safety-critical behavior

Safety-critical behavior was defined as disregarding simulated
system failures during assembly cycles 1 and 3 (cf. Section 3.3). The
duration of gesture control during assembly cycles involving system
failures was higher for the feedback group (Mdn = 12.84, SD =
3.52) than for the control group (Mdn = 9.62, SD = 5.49), with
Bayes factor showing different durations of gesture control between
groups (BFjg = 17.85 & 0%) (strong evidence). Figure 8A shows in
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TABLE 5 Bayesian ANOVA results modeling maximum negative valence changes and maximum positive arousal changes relative to t compared to a

denominator model using participants ID as random factor.

Maximum negative valence changes
(relative to tp)

Maximum positive arousal changes
(relative to tg)

FIGURE 7

Results for intention to use depending on experimental conditions
and group. Small bars show conditions with time pressure (TP+),
wide bars without time pressure (TP-). F+ indicates conditions with
simulated failure, F- without failure. The lower and upper boundary
of the y-axes represents the scale range. BL, baseline; CG, control
group; FB, feedback group.

more detail that, in the feedback group, durations rarely fell below
the defined cut-off value of 8.5 s for “disregarding system failures.”
No differences were observed in the disregard of simulated system
failures dependent on the time pressure condition. Therefore, when
both experimental conditions involving simulated system failures
were combined, the control group disregarded 47% of all simulated
system failures in assembly cycle 1 and 42% in assembly cycle 3.
By contrast, the feedback group disregarded only 5% of failures in
assembly cycle 1 and 3% in assembly cycle 3. Bayes factor analysis
showed extreme evidence for a difference of both groups (BFj
= 14367.0 & 0%) (see Figure 8B). As can be seen in Figure 8B,
comparing assembly cycles 1 and 3, the frequency of disregarding
system failure decreased sparsely.

4.6 Effects of trust: relationship of trust and
human-centered outcome criteria

To analyze the relationship between trust and the human-
centered outcomes, the experimental condition with the greatest
variance in trust ratings was selected. Therefore, non-parametric
correlations were calculated for the control group (cf. Table 7)
and the feedback group (cf. Table 8) for all dependent variables
using experimental condition TP+/F+. In the control group, trust
shows a weak positive correlation with safety-critical behavior. The
data support hypothesis 3, and not surprisingly, this correlation
disappears in the feedback group because hardly any safety-
critical behavior was observed in this group (see Section 4.5).
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BFio Evidence BFio Evidence
Feedback + ID 0.4 + 0.44% (Anecdotal) 0.38 +0.23% (Anecdotal)
Failure + ID 11731.8 £ 0.67% Extreme 25.9 +0.58% Strong
Time pressure + ID 0.20 £ 1.13% (Moderate) 0.22 +0.73% (Moderate)
TABLE 6 Bayesian ANOVA results modeling intention to use compared to
a denominator model using participants ID as random factor.
1 T T - Tl TI|lT T
o 1 ; Model BF1o Evidence
»n <
=}
) . r Feedback + ID 0.48 £ 0.84% (Anecdotal)
c o 1 i 1 ’
2 RN R [ S M N Failure + 1D 0.16 + 1.22% (Moderate)
< ' | I | i i 1 h H !
g o4 1 i i N | i i i m——
= - | ! ! ! ! ce Time pressure + ID 0.52 + 0.46% (Anecdotal)
_L [ = el _i_ = FB
A Group + feedback + time 0.04 £ 1.29% (Strong evidence)
BL TP-/F+ TP+/F+ TP+/F- TP-/F- pressure + ID

In the control group, a strong positive correlation was found
between trust and intention to use (data supporting hypothesis 2).
Again, this correlation decreases in the feedback group, although
a weak positive correlation is still evident. While the correlations
show the expected direction for arousal surge, trust was non-
significantly related to valence drops and arousal surge (data
contradict hypothesis 1).

To uncover any potential suppressing effects, a structural
equation model was calculated using all variables as manifest
variables to estimate the models with trust as a mediator. As
safety-critical behavior was only operationalized in experimental
conditions involving simulated failures, and as time pressure had
no effect on the human-centered outcome criteria (contradicting
hypothesis 9, trust mediates the relationship between time pressure
and intention to use, as well as safety-critical behavior), separate
models were calculated for the experimental conditions involving
system failures. These models included the independent variable
“feedback” as an exogenous variable, trust as a mediator, and
valence drop, arousal surge, safety-critical behavior, and intention
to use as endogenous variables. All variables were z-standardized to
obtain standardized beta weights.

Figure 9 shows the model for the two experimental conditions
involving simulated system failures. In condition TP-/F+, the
model fit improved significantly when a direct path was added
between feedback and safety-critical behavior (CFI = 0.908,
RMSEA = 0.156, SRMR = 0.075) (Figure 9A). The same was
true for the model for condition TP+/F+ (CFI = 0.994, RMSEA
= 0.0.38, SRMR = 0.057) (Figure 9B). Results show a strong
direct, negative effect of feedback on safety-critical behavior
(supporting hypothesis 7—feedback shows an independent effect
on reducing safety-critical behavior) and a strong direct, negative
effect of feedback on trust (contradicting hypothesis 5—feedback
increases trust). Besides, the model for condition TP+/F+ shows
a significant mediation effect of trust on safety-critical behavior
as the bootstrap confidence interval (using Bollen-Stine bootstrap
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experiment depending on group. CG, control group; FB, feedback group.

(A) Duration of gesture control mode during assembly cycles involving system failures depending on group, black line shows expected minimum
duration, red line shows cut-off value for operationalization of disregarding system failures, (B) proportion of disregarding system failures across the
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TABLE 7 Non-parametric correlation matrix (Kendall's 7) of all dependent
variables in the control group (*p < 0.05).

TABLE 8 Non-parametric correlation matrix (Kendall's 7) of all dependent
variables in the feedback group.

1 2 3 4 5 1 2 3 4 5
1 Trust - 1 Trust -
2 Valence drops 0.080 - 2 Valence drops 0.073 -
3 Arousal surges —0.153 0.297 - 3 Arousal surges —0.202 —0.151 -
4 Safety-critical behavior 0.280 <0.001 —0.024 - 4 Safety-critical —0.011 —0.026 <0.001 -
(disregarding failures) behavior (disregarding
failures)
5 Intention to use 0.575* 0.184 0.028 0.193 -
5 Intention to use 0.240 0.006 —0.146 —0.139 -

method, Kim and Millsap, 2014) for estimating the indirect
effect is not including zero (CI = [—0.554; —0.014], cf. Table 9).
Data support hypothesis 6 (trust mediates the relationship of
feedback with safety-critical behavior). Data do not support this
mediation effect in experimental condition TP-/F+ (CI = [—0.555;
0.274]) (data contradicting hypothesis 6). For both experimental
conditions involving simulated failures, the models support the
significant mediation effect of trust on intention to use (data
support Hypothesis 6—trust mediates the relationship between
feedback and intention to use). However, there were no mediation
effects of trust on valence drop or arousal surge.

5 Discussion

5.1 Summary and interpretation of results

This empirical study aimed to understand how changes in trust,
caused by antecedents of trust (system failures, visual feedback
and time pressure) impact human-centered outcomes (affective
experience, intention to use and safety-critical behavior). The
results showed most surprisingly that time pressure had no effect
on trust or any other human-centered outcome. On the other
hand, both system failures and the availability of feedback, as
expected, were shown to have a significant effect on trust. However,
the availability of feedback did not affect trust in the absence of
system failures. Providing more information to participants about
the current and future state of the robot or the time available
for assembly did not have a positive effect on trust (cf. Figure 1;
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cf. Legler et al, 2022 for details on the feedback system). On
the contrary, feedback had a negative effect on trust after the
occurrence of system failure—a result that was the opposite of
that predicted by our literature-derived hypothesis. This probably
indicates that the feedback system focused participants’ attention
(Goldstein, 2010) on the system failure. For safety reasons, the
failure was simulated as a technical malfunction in gesture control,
ensuring that participants would not be physically harmed if they
disregarded the failure. The reduction in trust observed in the
feedback group demonstrates that even a less salient and harmless
simulated system failure can significantly diminish trust in robots.
As trust remained consistently high in the control group across
conditions, the results suggest that the level of trust exceeded an
appropriate trust level—a state known as overtrust (Lee and See,
2004). As the participants had no secondary task, they were able to
focus exclusively on the robot. As they were also not permitted to
assemble in the event of any robot movement, it can be assumed
that the participants were able to perceive the malfunction but
chose not to react. Such complacency is a typical indicator of
overtrust (Parasuraman and Manzey, 2010). Therefore, data leads
us to suppose that workers overtrusting a robot might notice system
failures, but as a result of their inappropriately high level of trust
they choose not to react (cf. “free choice,” Schifer et al., 2024) as
they do not expect the robot to work imperfectly or being harmful.

System failures were also found to affect the occurrence of
negative affective experiences, measured by valence drops and
arousal surges. These negative affective experiences occurred
during specific HRC phases. In the case of an experimental
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FIGURE 9

Structural equation models with between-subjects variable ‘feedback’ as exogenous variable (coding 0 = control group, 1 = feedback group) and
trust as mediator for human-centered outcomes. Please note that values for valence and arousal present relative values compared to to. Models
calculated for (A) experimental condition TP-/F+, and (B) experimental condition TP+/F+. TP+, with time pressure; TP—, without time pressure; F+,
with failures; F—, without failures.

TABLE 9 Bootstrap confidence interval for the mediation effect of “trust”

condition involving simulated failures, these phases were gesture . ) o - !
in two experimental conditions involving simulated system failures.

control and assembly in both groups (see Tables 3, 4). Results

show that the negative affective experiences were caused by the Mediation effect Cl (Bollen-Stine
simulated system failures. This further supports the assumption bootstrapping method)
that participants in the control group also noticed the system TP—/F+ TP+/F+

failures, as they showed equivalent changes in valence and arousal
Feedback — trust — [—0.555; 0.274] [—0.554; —0.014]

compared to the feedback group. Overall, changes in valence safety-critical behavior

and arousal values were within a range of £2 points on an 11-

or 12-point scale, respectively. Although these time-synchronized Feedback > trust = valence drop | [~0.108;0.654] [F0.321; 0.247]
deviations in both values indicate a negative affective experience Feedback — trust — arousal (—0.617;0.251] [—0.105; 0.415]
during system failures, the intensity of the resulting affects is suree

assumed to be within a range that does not cause distress Feedback — trust — intentionto | [—0.750; —0.061] [—0.973; —0.216]

use

to humans.

Regarding intention to use, no effect of any of the independent
variables was found in the data. Scores remained high across

conditions and showed high variance due to individual  which conceptualize trustasan “expectation;” “belief” or “attitude.”
dispositions, assessed by high intraindividual consistency of  This could also explain the strong correlation between trust and
intention to use. However, intention to use did not correlate  jntention to use. Beyond trust, the other human-centered outcomes
with negative affective experience (see Tables 7, 8), indicating  showed no significant correlations with each other. These results
that low intention to use was not caused by perceived distress in  frther support a need to integrate varieties of human factors
participants, but rather by an individual tendency to reject (new)  criteria when studying HRC in the advent of Industry 5.0.
technology in the workplace. Finally, it was demonstrated that trust in robots mediated
Safety-critical behavior was rarely observed in the feedback  {he effect of human-centered outcomes in industry, i.e., safety-
group, but frequently in the control group. This result again  critical behavior and intention to use. As strategies for intentionally
highlights the importance of feedback in HRC. The negative  adjusting trust levels have already been studied (de Visser et al.,
correlation of trust and safety-critical behavior has only been found  7020), our results show that such strategies have a potential to affect
in the control group, demonstrating that feedback has the potential - jndustry-relevant outcomes such as safety-critical behavior—thus
to counteract individual tendencies toward overtrust. going beyond adjusting trust levels, which has unclear effects on
Overall, the effect sizes of the relationships between trust,  HRC. This further highlights the importance of considering trust in

affective experience, intention to use, and safety-critical behavior  HRC research to realize the human-centered vision of Industry 5.0.
demonstrate the distinctiveness of all human factors constructs

applied. Trust was found to be unrelated to self-reported changes in

valence and arousal. There are several possible explanations for this 5.2 Practical implications for HRC design in

result. Firstly, changes in affective experience were assessed durin . .
b nans g  industrial workplaces

the interaction, whereas trust was measured after the interaction.

As emotions are fleeting (Werth and Forster, 2015), this result may

have been confounded by this methodological choice. Secondly, the Several implications for industrial HRC design can be derived

changes in valence and arousal may have been too small to detect from the presented study results.

a significant correlation. Third, from a theoretical perspective, the 1. Feedback is highly relevant in ensuring situation awareness

results could suggest that trust is a concept with stronger cognitive during HRC. It enables humans to perceive system failures and
than aﬁective aSpeCtS, as eVidenCed by the Variety Of deﬁnitions react properly to these Oﬂ:_nominaL infrequent and unexpected
of trust in robots (cf. Schaefer, 2013 for a detailed overview), situations (Hopko et al., 2022). As malfunctions of robots are
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infrequent but always possible (Schifer et al., 2024) and taking
high costs for manufacturing companies both in case of health
impairments of employees and reduced quality of products into
account, high situation awareness of humans in HRC is key to
success. Although this was not assessed in the study, situation
awareness is especially important in the case of parallel human
tasks (“dual tasks”), which are expected to be the norm in
industrial HRC workplaces in order to make effective use of
the autonomous robot periods. Nevertheless, dual tasks prevent
humans from constantly monitoring the robot’s actions, which
again underlines the importance of feedback.

2. Simulating a set of safe system failures that do not negatively
impact performance outcomes could maintain trust at an
“appropriate level” by encouraging workers to pay attention to
and monitor the behavior of the robot. This reduces the potential
risk of overtrust arising from longer interactions with failure-
free automation. These simulated failures must be made salient
using a feedback system to reduce the risk of them being missed.
This proposition aligns with HRI research which suggests
familiarizing users with potential robot failures (Wagner et al.,
2018) and applying “deceptive practices” of robots (Aroyo et al.,
2021) to prevent overtrust.

3. Trust was unrelated to self-reported changes in valence
and arousal. This calls into question frequently suggested
operationalizations of trust measurement based on physiological
arousal (Arai et al., 2010; Hopko et al, 2022). Additionally,
physiological measures require a person to be wired with
sensors, which raises questions not only of comfort, but also
of protecting personal data. Instead, aiming at a recognition
of human trust by an automated robotic system in the future,
behavioral indicators of trust (Chang and Hasanzadeh, 2024)
should preferably be used, as these are non-invasive and do not
distract workers from their tasks.

5.3 Limitations and future research
directions

The study presented had some limitations. From a content
perspective, as the study focused on human-centered outcomes,
performance-centered outcomes were not considered. While
recognizing the importance of human-centered outcomes,
performance-centered outcomes remain an indispensable target
variable in Industry 5.0, as performance is key to success
in manufacturing. Investigations into assembly time as a
performance-centered outcome can be found in Legler et al.
(2022). No effects on assembly time were found as a result of
industry-relevant antecedents of trust. There are two possible
explanations for this effect. Firstly, even under time pressure,
the assembly task may not have been complex enough to affect
objective performance measurements when performed without
a secondary task. Secondly, it might not be possible to detect
human adaptation of assembly time within a total duration of
5min per scenario. As also trust is known to develop over a longer
period of time, studies involving longer, undisturbed interaction
with the robot are required. Nevertheless, high levels of trust
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were already evident in baseline conditions, indicating positive
expectations toward robots prior to the interaction. Furthermore,
in real industrial scenarios, trust is equally expected to increase
during failure-free HRC.

Due to the post-scenario measurement and laboratory
setting, it can be assumed that participants were aware of
occurring experimental variations and anticipated some form of
manipulation. Flook et al. (2019) summarized that ecological
validity is low in laboratory settings, especially in the case of
failure simulation, as participants perceive the setting as artificial,
controlled, and therefore safe. However, it can be assumed that
workers in industrial HRC workplaces also believe their workplaces
to be safe due to occupational safety examinations prior to
workplace release. Time pressure had no effect on the human-
centered outcomes, equally callings into question the ecological
validity, as the participants probably did not expect consequences
if demonstrating insufficient performance.

Finally, this study cannot imply the long-term effects of
implementing safe system failures to adjust trust toward a more
appropriate level, nor the possible habituation to “safe” system
failures of workers at real HRC workplaces. Although participants
were instructed to assemble only at the component on the robot
flange when the robot stopped moving, participants in the control
group may have perceived the simulated system failures but judged
them as non-critical and therefore disregarded them. Behavioral
observations during the experiment and correct gesture control
during the baseline support this explanation. Still, the instruction
of participants prior to interaction combined with the baseline
condition in this study is comparable to workplace trainings
that often include verbal or written instructions for behavior in
exceptional situations while practical training is only carried out
for normal work processes.

As trust and affective experience has been shown to be
unrelated in this study, the findings show a need for a theoretical
framework that can explain how and under which circumstances
trust impacts emotions.

Several methodological limitations due to the laboratory study
design also need to be discussed in order to interpret the results.

Given the relatively small sample of the study, a Bayes factor
analysis was performed to compare the relative evidence for
the null compared to the alternative hypothesis. Overall, the
effects observed in the study clearly favored either the null or
the alternative hypothesis. However, the relatively small sample
size could account for some effects in this study classified as
anecdotal evidence (cf. Jeffreys, 1961) which means that the data
show a particular degree of uncertainty regarding the favoring
of the null or alternative hypothesis. These effects should be
investigated in further studies. Additionally, the sample did not
consist of actual workers from the productive industry. Based on
participants’ highest educational degree, it can be assumed that
more than two-thirds of participants were students at the time
of the study. Although no statistical effects were found when
comparing students and non-students, or participants with and
without prior production experience, the generalizability of the
results has to be judged as limited, and the results of the study
need to be replicated with actual workers from the productive
industry. As a starting point, a sample of experienced workers
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from workplaces including fenceless human-robot coexistence (no
shared work task) seem promising.

The cut-off value used to operationalize the disregard of system
failures has a significant impact on the results regarding safety-
critical behavior. Nevertheless, the difference between groups in
terms of disregarding system failures was large enough for the effect
to remain when the defined tolerance was deducted.

Regarding the assessment of affective experience over time,
the sampling rate of valence and arousal values at 10-s intervals
reveals that negative affective experiences probably occurred
during a different HRC phase to the one referred to during
data analysis. For example, a surge in arousal could have
occurred during gesture control, but been reported at the next
assessment point in assembly. Nevertheless, trends across the
different phases of the robot can be inferred from the data
and pretest results on assessment intervals (cf. Legler et al,
2023) showed that a higher sampling rate would have reduced
the focus on the primary collaboration task. Still, it cannot
be completely ruled out that the chosen interval of assessment
distracted participants or that they reduced the additional
mental workload of self-report by anchoring themselves to
their previous values. To address these uncertainties, relative
values were evaluated instead of absolute valence and arousal
values and values were only interpretated in group or condition
comparison as the assessment was applied equally throughout the
entire study.

The current study relied exclusively on self-report measures
to assess affective experience, trust, and intention to use. Using
objective measures would allow robotic systems to autonomously
detect changes in human experience and respond by adapting
their behaviors, e.g., by adjusting their path planning. However,
as physiological measurements are non-specific (Mauss and
Robinson, 2009), invasive and are prone to motion artifacts in
situations involving a lot of movement (Chang and Hasanzadeh,
2024), such as an assembly task, future research should investigate
how human factors constructs like trust can be validly measured
over time. This would also provide further insight into changes in
trust over time during HRC. Particular attention should be given
to behavioral measurements of trust, as these remain understudied
(Chang and Hasanzadeh, 2024). As trust has been found to be
negatively related to monitoring behavior (Hergeth et al., 2016), the
use of non-intrusive eye-tracking (e.g., Pluchino et al., 2023) devices
during HRC or even a robotic detection of human gaze based on
optical face recognition (e.g., Al Naser et al., 2022) seems promising
for online trust assessment.

Results of our study suggest that overtrust in robots may
occur in HRC. However, there are currently no specific criteria
to determine an “appropriate trust level” that could be used to
decide whether trust repair or trust dampening should be applied
(de Visser et al., 2020). To enable real-time adjustment of human
trust during HRC, there is a pressing need for research that
quantitatively explore appropriate trust, in order to overcome the
current theoretical considerations and wording of “avoiding under-
and overtrust.” Furthermore, the present study highlights the need
for further research into the consequences of trust, examining the
relationship between trust and outcomes relevant to ensuring safety
and efficiency of HRC.
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6 Conclusion

With the aim of achieving human-centered automation, this
paper investigates the largely neglected relationship of trust in
robots with industry-relevant affective, cognitive, and behavioral
consequences in industrial human-robot collaboration (HRC). To
this end, the paper reviews the current state of the art of trust in
HRGC, putting trust at the center of attention. The paper highlights
the relationship between trust and affective experience, intention to
use, and safety-critical behavior, extending it to potential mediating
effects of trust between industrial-relevant antecedents of trust and
these human-centered outcomes, from a theoretical perspective.
The antecedents of trust and the outcomes are then linked to the
key characteristics of a recent, comprehensive definition of trust in
robots. An empirical contribution to our understanding of the role
of trust in industrial HRC is made by conducting an experimental,
scenario-based study. By varying trust-related characteristics of
industrial HRC—system failures, feedback and time pressure—
in a pseudo real-world assembly scenario, it was demonstrated
that these characteristics identified in trust literature have the
potential to affect intention to use and safety-critical behavior
during HRC. Combining system failures with feedback significantly
reduced high levels of trust to a still tolerable level without causing
distress to participants, but significantly increased proper reactions
to failure events. Without feedback, trust consistently remained
at a high level even after system failures occurred, indicating a
lack of awareness that could potentially enhance reaction times
in safety-critical situations. The paper emphasizes the importance
of investigating the mediating effects of trust during HRC on
industry-relevant outcomes, especially human-centered outcomes,
and provides implications for practical HRC design and directions
for future research.
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