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Introduction: Secondary caries is the leading cause of failure in resin composite
restorations due to biofilm accumulation. Bioactive resin composites (BRCs)
release ions that promote remineralization and inhibit bacterial growth. This
review compares microbial adhesion and antimicrobial effectiveness between
BRCs and conventional resin composites.

Methods: A systematic search was conducted in databases PubMed, Scopus,
and Cochrane Library to identify in vitro studies evaluating bacterial adhesion
and antimicrobial effect of commercially available bioactive resin composites
and their comparison with conventional resin composites. Studies reporting
on microbial adhesion and/or antimicrobial effects were included.

Results: A total of 272 potentially relevant articles were identified. Following
PRISMA guidelines, eight articles met the inclusion criteria. The studies focused
on five commercially available BRCs: Activa Bioactive Restorative (ACT), Beautifil
Il (BE), Cention N (CN), Equia Forte (EF), and SDR Flow Plus. Most studies
assessed the adhesion of Streptococcus mutans in isolation. While microbial
adhesion was observed on both bioactive and conventional resin composites,
cell viability differed, with BRCs demonstrating superior antimicrobial effects.
Conclusion: Bacterial adhesion to dental restorative materials is influenced by
surface roughness, hydrophilicity, chemical composition, and ion release. This
review suggests that BRCs and conventional resin composites exhibit similar
surface characteristics, resulting in comparable bacterial adhesion. However,
BRCs show greater efficacy in reducing bacterial viability, probably due to ion
release, which modulates the local microenvironment and microbial dynamics.
Further research is needed to explore the broader impact of ion release on the
oral microbiome and its potential role in dysbiosis and disease progression.

Systematic Review Registration: OSF Registries, https://doi.org/10.17605/OSF.
IO/HRKFV
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Dental caries is the most prevalent infectious disease
worldwide and a major chronic condition influenced by
microbial activity (I, 2). The primary cause is pH imbalance,
driven by acid production from bacterial fermentation of dietary
carbohydrates, leading to tooth demineralization (3). Repeated
acid exposure selects for acidogenic and acid-tolerant bacteria,
disrupting pH homeostasis and promoting mineral loss (4).

The

modifications

etiology of dental caries involves biochemical
biofilms shifts

composition. Aciduric species like Streptococcus mutans (8.

in oral and in microbial
mutans) contribute directly to caries development (5), while

alkali-producing species such as Streptococcus salivarius,
Streptococcus mitis (S. mitis) and Streptococcus gordonii (S.
Additionally,
Streptococci produce hydrogen peroxide, inhibiting S. mutans
growth (6,

early childhood caries and root caries is Candida albicans (C.

gordonii) help maintain pH balance. some

). Another important microorganism involved in

albicans). C. albicans interacts synergistically with S. mutans in
dental biofilms, where bacterial glucosyltransferases mediate
fungal adhesion and enhance exopolysaccharide production,
leading to increased acidogenicity, biofilm resilience, and
The
interaction between Candida and Streptococci seems to be

exacerbated enamel demineralization (8). specific
relevant to the onset and progression of caries lesions and
conditions the oral microbiome in ways which are only now
beginning to be understood (8). This highlights the complexity
of microbial interactions in caries progression, emphasizing the
importance of pH homeostasis rather than solely focusing on
acid-producing bacteria in caries management (6).

The treatment involves the removal of infected tissues to
prevent further progression of the disease, and the resulting
defect must then be restored using various restorative materials (9).

Historically, dental amalgam was the material of choice for
restoring carious teeth due to its durability, ease of manipulation,
and low cost. Composed primarily of mercury combined with a
powdered alloy of silver, tin, and copper, amalgam demonstrated
excellent mechanical properties and longevity, particularly in
posterior teeth subjected to high occlusal forces (10). However,
concerns about its aesthetic limitations, environmental impact,
and health risks associated with mercury exposure have led to its
gradual decline in favour of alternative materials (11). In
contemporary dental practice, resin composites are routinely used
for direct restorations (12). These materials are favoured for their
aesthetic qualities, conservative preparation requirements, and
improved handling characteristics (13).

Resin composites consist of silanated inorganic fillers dispersed
into an organic matrix (14). The organic matrix typically included
monomers, A-glycidyl
methacrylate  (Bis-GMA), dimethacrylate (UDMA),
ethoxylated bisphenol A glycol dimethacrylate (Bis-EMA) or
Triethylene glycol dimethacrylate (TEGDMA) (15-17). It also

contains often a combination of

dimethacrylate namely  bisphenol

urethane

a photoinitiator  system,

camphorquinone and a tertiary amine (18, 19). The inorganic filler
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component comprises silanized inorganic particles of different size
and shapes, including spherical irregular filler particles, with
materials like silica, barium glass, ytterbium fluoride or zirconia

( b >

based resin composites are prone to secondary caries, which can

). Despite their widespread application, methacrylate-

compromise the long-term success of direct restorations (22, 23).
Sixty percent of the restorative procedures are related to the
replacement of failed restorations (24).
Secondary caries are influenced by multiple factors, including
the technique sensitivity of the adhesive procedure (25), the
resin composite to the polymerization

adaptation cavity,

shrinkage (26), and occlusal stresses generated during mastication
Additional

contributors include surface roughness and plaque accumulation,

leading to mechanical degradation (27, ).
unreacted monomers due to incomplete polymerization and the
absence of antibacterial properties in resin composites (28, 29).

The accumulation of biofilm on the restoration surface and
adhesive interface, which contributes to the occurrence of caries at
the tooth-resin composite interface, is a frequent challenge (25).
The hydrophobic nature and surface roughness resin composites
create an environment conducive to biofilm formation. Cariogenic
bacteria, such as S. mutans and Lactobacillus spp., adhere to these
surfaces and metabolize carbohydrates into acids, leading to
localized demineralization and restoration failure (30).

In addition, the complex enzymatic composition and bacterial
flora of saliva exacerbate the challenges on the oral environment
(31, 32). These technical and biological challenges justify the
growing interest in innovative bioactive resin composites (BRCs)
Unlike
composites, BRCs actively interact with the oral environment to

for direct restorative treatments. traditional resin
promote remineralization and reduce bacterial colonization (33).
BRCs, besides the usual components of the resin composites, are
also composed by calcium phosphate or fluoride-releasing fillers,
that under acidic conditions are released to protect against
demineralization and inhibit caries progression (21). Recent
advancements, such as the integration of nanotechnology and
antibacterial agents, have further improved their mechanical
The

incorporation of fiber reinforcement and “smart” bioactive

properties and resistance to biofilm formation (34).
features has expanded the scope of resin composite applications.
Fiber-reinforced resin composites improve structural integrity by
preventing crack propagation, especially in large posterior
(35).

engineered to respond to environmental changes, releasing

restorations Meanwhile, smart resin composites are
therapeutic ions when pH levels drop below critical thresholds,
providing a dynamic defence against caries (36).

These developments highlight a paradigm shift in restorative
that not

functionality but also actively promote oral health. This

dentistry, emphasizing materials only restore
systematic review aims to critically evaluate the current literature
on BRCs, with a particular focus on bacterial adhesion and
antimicrobial efficacy. The objective is to provide an in-depth
perspective on the advancements and challenges associated with
these innovative materials in restorative dentistry. Specifically,
the main objectives of this review are to compare the adhesion

of cariogenic and carioprotective microorganisms to the resin
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composites under study and assess the effectiveness of bioactive
resins in inhibiting microbial growth.

This systematic review was conducted following the Preferred
Reporting Items for and Meta-Analysis
(PRISMA) (37) guidelines and has been registered in the OSF
Registries, under the registration doi: 10.17605/OSF.IO/HRKFV.

The focused question was determined using the Population,
(PICO)
formulated as “In in vitro studies, do commercial bioactive

Systematic reviews

Intervention, Comparison and Outcome strategy,
resins differ from conventional commercial resins in terms of

microorganism adhesion and antimicrobial activity, when
exposed to microorganisms?” where:

P (Participants): Commercial bioactive resin composites;

I (Intervention): Exposure to microorganisms;

C (Comparison): Commercial conventional resin composites;

O (Outcome): Adhesion of microorganisms on the surface and
the antimicrobial effect of bioactive resin composites;

S (Study type): In vitro studies.

An electronic search was conducted in PubMed, Scopus, and
Cochrane Library databases in October 2024, covering the last
10 years. A combination of keywords, including resin
composites, surface properties, bacterial adhesion and biofilm,
were used in the databases following their syntax rules. All
combinations using (AND, OR) were utilized to refine the
search results. The search key: ((composite resins [MeSH
Terms) AND (surface properties [MeSH Terms) AND
((bacterial adhesion [MeSH Terms) OR [biofilm (MeSH Terms)]).

The aim is to identify articles that examine the adhesion of
microorganisms to commercially available resin composites and
BRCs.

exported to Rayyan - Intelligent Systematic Review (

The articles retrieved from the three databases were
), where
the selection of articles was performed by two independent
authors SL and PL. The results of the different bases were
combined to eliminate duplicated documents and articles were
screened by title and abstract. When the title or abstract did not
provide sufficient information regarding the inclusion criteria,
the full text was obtained and analyzed.

The eligibility criteria for inclusion in this review were as follows:
articles published within the last 10 years; in English or Portuguese
BRCs and
reports on

language; focused on commercially available

comparison with traditional resin composites;
microorganism adhesion or antibacterial effects; included findings
on microorganism adhesion to the surface of the material; papers
that compared the adhesion and/or antimicrobial effects of BRCs
with conventional resins and studies conducted in vitro. The
eligibility criteria for exclusion were as follows: resin composites
are not commercially available; studies that involved different resin
composites surface treatments (e.g., varying polishing methods,
adhesive systems); combination of resin composites with adhesive
that

antimicrobial effects and/or adhesion of bioactive resins compared

systems; articles do not address improvements in

to conventional resins and articles without full-text access.
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Articles that did not meet all the inclusion criteria were excluded.
Any disagreement regarding the inclusion of specific articles was
resolved through discussion with a third author (ATPCG). To
evaluate the methodological quality of the studies, the Quality
Assessment Tool for In Vitro Studies (QUIN Tool) was used (39).
The same reviewers (SL and PL) collected the data independently,
in tables structured in Excel, (Microsoft CorporationTM, USA)
spreadsheets with essential information such as: Author, Study
design, bioactive resin, resin composite (control), microorganisms

in study, objectives, results and conclusion.

The initial search yielded a total of 272 potentially relevant
articles, with 77 publications from PubMed, 180 from Scopus,
and 15 from Cochrane Library, of which 49 duplicate articles
were eliminated. Of the remaining, 223 articles, title and abstract
were read, and articles were selected according to the inclusion
and exclusion criteria. Of the remaining 24 articles, full text was
read, and 8 articles were considered in the current review ( ).

The primary reason for excluding 132 articles was the use of
experimental BRCs, whose suitability for application in the oral
cavity remains unknown. Therefore, only studies involving
commercially available BRCs were included.

Furthermore, 39 articles were excluded due to unsuitable study
designs, and 28 were omitted since the bacterial adhesion was not
evaluated, which was a key focus of this review.

{ Identification of studies via databases and registers J
—
_E Records identified from: Records removed before
" Databases (n = 272) R screening:
5,;5 Pubmed (n =77) Duplicate records removed
H Scopus (n =180) (n=49)
= Cochrane Library (n =15)
_4
Records screened ; Records excluded
(n=223) Wrong population (n = 132)
g ieved
‘= Reports sought for retrieval Reports not retrieve
2| | m=91) (n=67)
5
m }
Reports assessed for eligibility Reports excluded: .
(n=24) — Wrong study design (n =4)
Wrong outcome (n = 12)
= Studies included in review
@
2| |0=®
o) Reports of included studies
=l —
= (n=28)
FIGURE 1

Flow PRISMA diagram of the search strategy used in the present
systematic review
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This review exclusively considered in vitro studies in which
resin composites were produced using molds without the
application of adhesive techniques. Microbial adhesion was
assessed on BRCs without prior surface treatment, as current
literature demonstrates that polishing does not affect bacterial
adhesion (40-42).

The studies selected were analyzed regarding the quality of the
study according to the QUIN Tool (39). criteria and the results of
the analysis are presented in

Among the studies included in the review, the majority
focused on the adhesion of isolated microorganisms. Most of
these studies assessed the adhesion of cariogenic S. mutans (41,

-46) and one study in C. albicans (47). Only two studies
evaluated multiple species: one study evaluated the adhesion of
S. mutans and S. mitis in isolated forms (48), while another

assessed the adhesion of multispecies cariogenic biofilm
composed by S. mutans, S. mitis, Streptococcus Salivarius (8.
salivarius), sanguinis  (S.
Lactobacillus acidophilus (L. acidophilus) (49).

The BRCs investigated across the studies were limited to five

Streptococcus Sanguinis), and

commercially available materials: Activa Bioactive Restorative
(ACT), Beautifil II (BE), Cention N (CN), Equia Forte (EF), and
SDR Flow Plus. Their compositions are presented in

The conventional resin composites used for comparison by
studies are: Admira FusionX-tra, Ceram X, Herculite XRV Ultra,
Grandio SO, G-aenial Universal Injectable, Dyract Flowable,
Filtek Z350XT, Filtek Bulk Fill, Tetric® N-Ceram. Their
compositions are presented in

provides an overview of the 8 studies included in this
review, their objectives, the resin composites investigated, and
their findings related to microbiological adhesion to the resin
composites and cell viability.

Beldiiz et al. 2016 (47), revealed a fine biofilm layer of C.
albicans on the surfaces of all examined materials, observed
through scanning electron microscopy (SEM). Metabolic activity
assays further indicated that the C. albicans formed significantly
less viable biofilms, suggesting that the properties of Beautifil II
could influence microbial viability.

Building on this, Yoshihara et al. 2017 (43) evaluated the
antibacterial properties and surface stability of different dental
restorative materials, focusing on their ability to inhibit bacterial
adhesion and biofilm formation. This work showed that Beautifil
II, albeit releases ions with potential antibacterial properties, its
surface degradation in acidic conditions promotes bacterial
adhesion and biofilm formation. Therefore, this BRCs does not
effectively inhibit bacterial growth and may even enhance
biofilm formation due to increased surface roughness. Also, the
conventional resin composite Herculite XRV Ultra demonstrated
good surface stability but did not exhibit antibacterial properties
or inhibit biofilm formation. This suggests that while it
maintains its structural integrity, it does not provide additional
benefits in preventing bacterial adhesion or growth. Further
Bilgili et al 2020 (48)
demonstrated that surface roughness did not significantly affect
bacterial both BRCs Beautifil II and the
conventional Filtek Bulk Fill. However, authors reported higher

exploring material properties,

adhesion for

Frontiers in

10.3389/froh.2025.1625977

surface free energy values that were associated with increased
bacterial adhesion, particularly for the carioprotective S. mitis.
Although BRCs Beautifil II did not significantly reduce bacterial
adhesion compared to conventional resin composites, a greater
number of dead S. mutans were observed on the Beautifil II
surface, suggesting a potential material-related effect on bacterial
viability, despite the lack of significant differences in CFU counts.

Similarly, Daabash et al. 2023 (41) examined the surface
roughness and bacterial adhesion of several ion-releasing and
conventional resin composites. The results showed that BRCs
Cention N exhibited significantly higher surface roughness
compared to Filtek Z350XT and Activa Bioactive Restorative
resin composites. Despite its smooth surface, Activa Bioactive
Restorative revealed the lowest antibacterial effect, as evidenced
by a higher accumulation of S. mutans bacteria than the
conventional resin composite Filtek Z350XT and the BRCs
Cention N. This BRCs had a rougher surface compared to
Activa Bioactive Restorative but was more effective in reducing
viable bacteria.

In a similar study, Sengupta et al. 2023 (45) showed that nano-
ceramic restorative material Ceram X had a smoother surface
compared to the SDR Flow Plus. However, this did not translate
into a significant difference in bacterial adhesion. In fact, no
difference between S. mutans adhesion amongst these materials
was observed. This suggests that other factors than surface
roughness, such as surface energy, hydrophobicity, and material
composition, may play a more critical role in bacterial adhesion.

Lehrkinder et al. 2024 (49) investigated the impact of different
dental restorative materials on the formation of cariogenic biofilm
composed of S. mutans, L. acidophilus, S. mitis, S. sanguinis, and S.
salivarius by exposing resin composites to pH 7 (neutral) and pH
5.5 (acidic) conditions. The results showed that bacterial adhesion
to dental materials were mainly influenced by surface roughness
than Biofilm
accumulation was similar across materials, but bacterial counts

and composition rather fluoride release.
varied, especially at acidic pH. Despite high fluoride release,
bacterial growth was not significantly inhibited. Beautifil II is
smooth surface and ion release contributed to lower bacterial
adherence, suggesting its potential to reduce secondary caries risk.

Chen et al. 2024 (46) evaluated the mechanical properties,
wear resistance, antibacterial behavior, and biocompatibility of
several injectable composite materials. The study compares two
injectable nanocomposite resins G-aenial Universal Injectable
and Beautifil II, one flowable composite resin Filtek Supreme,
and one flowable compomer Dyract Flowable. The results
that
mechanical properties, wear resistance, and biocompatibility in

MC3T3-E1 cells compared to the flowable compomer. Water

showed injectable nanocomposites showed superior

storage negatively affected all materials. Biocompatibility tests
showed reduced MC3T3-E1 cell viability, with Dyract Flowable
performing worse. Antibacterial properties tests against S.
mutans were similar across materials, though Filtek Supreme
had slightly higher biofilm density.

Finally, Dey et al. 2024 (44) evaluated bacterial adhesion of .
mutans and surface roughness of two BRCs, Equia Forte and
Cention N (an alkasite), compared to a conventional resin
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TABLE 2 Composition of BRCs based on the manufacturer’s specifications.

Material

Activa bioactive
restorative
(ACT)

Type
Enhanced resin-
modified glass
ionomer (RMGIC)

Resin Matrix
Patented ionic resin matrix, shock-
absorbing rubberized resin (diurethane and
other methacrylates with modified
polyacrylic acid 44.6%)

Reactive ionomer glass fillers 55.4 wt% of bioactive glass
and sodium fluoride

10.3389/froh.2025.1625977

Filler Manufacturer

Pulpdent,
Massachusetts, US

Beautifil 1T (BE)

Giomer

Bis-GMA S-
nanofiller(10-20 nm)

UDMA
Bis-MPEPP
TEGDMA

PRG filler based on fluoroboroaluminosilicate glass and | Shofu, Kyoto, Japan

Cention N (CN)

Alkasite Resin
Composite

UDMA, DCP, Aromatic aliphatic-UDMA,
PEG-400 DMA

Barium aluminum silicate glass, Ytterbium trifluoride,
Isofiller, Calcium barium aluminum fluorosilicate glass,
Calcium fluorosilicate glass (78.4 wt%, 57.6 v% of inorganic
filler) Particle size range of 0.1-35 um Powder/liquid ratio
(g/g) =4.6/1.0

Ivoclar Vivadent
Schaan, Liechtenstein

Equia forte (EF)

Glass Hybrid Bulk
fill Restorative

Powder: Fluoro-alumino-silicate glass,
polyacrylic acid, pigment. Liquid: Water,
polyacrylic acid, carboxylic acid.

GC Corporation,
Tokyo, Japan

SDR flow plus

Bulk fill flowable

Modified UDMA; TEGDMA;
polymerizable dimethacrylate resin and
polymerizable trimethacrylate resin

70.5 wt%/47.4 vol% silanated barium-alumino-fluoro-
borosilicate glass; silanated strontium alumino-fluoro-
silicate glass and surface treated fume silicas

Dentsply Sirona

Bis-GMA (bisphenol A-glycidyl methacrylate); Bis-MPEPP (Bisphenol A polyethoxy dimethacrylate) UDMA (urethane dimethacrylate); TEGDMA (triethyleneglycol dimethacrylate).

TABLE 3 Composition of conventional resin composites based on the manufacturer’s specifications.

Material

Admira
FusionX-tra
(AFX)

Type
Nano-Hybrid and

ORMOCER (ORganically
MOdified CERamic)

Resin Matriz
BisGMA, TEGDMA or HEMA

Filler
Organically modified silicic acid, fumes silica,
2,6-di-tert-butyl-p-cresol

Manufacturer

Voco

Ceram X (CE)

Universal nano-ceramic

restorative

Methacrylate modified polysiloxane,
dimethacrylate resin

Barium alumino fluoro borosilicate glass (BAFG)
and nano-sized silicon dioxide particles (0.85-
0.9 pm, 77% wt)

Dentsply Sirona

Dyract flowable

Compomer restorative

Phosphoric acid modified polymerizable
monomers, carboxylic acid modified
macromonomers

Strontium-alumino-fluoro-silicate glass Dentsply Sirona

Herculite XRV
Ultra

Universal nanohybrid

Bis-GMA, TEGDMA, BisEMA

SiO,, Barium silicate glass, Prepolymerized filler
with barium silicate glass and silica

Kerr Corporation,

Grandio SO Universal nano-hybrid Bis-GMA, Bis-EMA, and TEGDMA Glass-ceramic fillers, and silicon dioxide Voco
nanoparticles
G-aenial Universal Bis-MEPP Silicon dioxide, Barium glass GC Corporation
universal
injectable
Filtek Z350XT | Nanohybrid composite Bis-GMA, Bis-EMA, UDMA Non aggregated 20 nm, Silica filler, nonaggregated = 3M ESPE
(2350) 4-11 nm, zirconia filler, and aggregated silica/
zirconia cluster filler
Filtek bulk fill | Nano composite Bis-MEPP, Bis-GMA, and TEGDMA Silane Treated Silica, Silane Treated Zirconia, 3 M ESPE
(FBF) YbE3
Sonic fill 2 Universal Bis-GMA, TEGDMA, Bis-EMA Si02, glass, oxide Kerr
(KSF)
Tetric® Nanohybrid resin Bis-GMA, Bis-EMA and urethane dimethacrylate | Barium aluminum silicate glass with two different
N-Ceram composite monomer (UDMA), involving advanced mean particle sizes, filler content approximately
(TNC) composite-filler technology, patented light 61%(volume) and 17% polymer fillers or

initiator Ivocerin

“Isofiller”

Bis-GMA (bisphenol A-glycidyl methacrylate); Bis-MPEPP (Bisphenol A polyethoxy dimethacrylate) UDMA (urethane dimethacrylate); TEGDMA (triethyleneglycol dimethacrylate).

composite, Tetric® N-Ceram. Cention N showed the lowest
bacterial adhesion, while the conventional composite had the
smoothest surface. No correlation was found between surface
roughness and bacterial adhesion. These findings suggest that
factors like ion release play a key role, with Cention N and
Equia Forte demonstrating bioactive properties that help inhibit

bacterial adhesion.
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Overall, the results revealed that the differences in bacterial
adhesion between BRCs and conventional resin composites
were not statistically significant. However, Beldiiz et al. 2016
(47), Bilgili et al. 2020 (48), Daabash et al. 2023 (41) and Chen
et al. 2024 (46), have shown that BRCs affect bacterial cell
that the released ions influence

viability, suggesting

bacterial growth.
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The interaction between dental restorative materials and
bacterial adhesion is influenced by multiple factors, including
surface roughness, chemical composition, ion release properties,
and the antimicrobial potential of the resins (50). The in vitro
studies included in this systematic review provide a
comprehensive perspective on the microbial adhesion patterns
and antimicrobial properties of BRCs and conventional resin
their

effectiveness in preventing bacterial colonization and biofilm

composites, highlighting key findings related to
formation. In the present review, the term bioactive resin
composite refers primarily to materials containing fillers capable
of ion release, such as calcium, phosphate, fluoride, or bioactive
glass particles, as summarized in . The polymer matrix
itself is not bioactive, but functions to incorporate and stabilize
these fillers. It should be noted, however, that silanization of
filler particles, which is necessary to achieve durable bonding
with the resin matrix, may reduce their ion-releasing capacity.

It is well known that bacteria are more prone to adhere to
with  high which

significantly impacts the performance of resins composite (51).

hydrophilic  surfaces surface  energy,

Most studies reviewed indicate that BRCs do not consistently
exhibit significant antimicrobial properties or reduced bacterial
adhesion compared to conventional resin composites. Several
investigations, including those by Beldiiz et al. 2016 (47),
Yoshihara et al. 2017 (43), Bilgili et al. 2020 (48), and Sengupta
et al. 2023 (
adhesion between BRCs and conventional resin composites.
Lehrkinder et al. 2024 (49) further demonstrated that S. mutans

exhibited the highest growth under acidic conditions, regardless

), found no significant differences in bacterial

of the resin type, emphasizing that microbial colonization is
heavily influenced by environmental factors.

However, some studies identified variations in bacterial
adhesion depending on the specific composition of BRCs. For
example, Daabash et al. 2023 (

adhesion on Activa Bioactive Restorative, while Chen et al. 2024

) found increased S. mutans

(46) observed lower bacterial viability on Beautifil II compared
to Filtek Supreme.

These findings suggest that not all bioactive materials possess
inherent antimicrobial properties, and their effectiveness may
depend on specific chemical compositions and environmental
conditions: materials capable of releasing ions such as fluoride,
calcium, or zinc can interfere with bacterial metabolism and
biofilm growth, but their long-term efficacy depends on
maintaining stable ion release under oral challenges, including
acidic pH and surface degradation.

4.1 Effect of surface roughness on bacterial
adhesion

Surface roughness has traditionally been considered a crucial
factor in bacterial adhesion, as rougher surfaces provide more
retention sites for microbial colonization (52). However, the results
from several studies challenge this assumption. While Daabash
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et al. 2023 (41) reported that the BRCs Cention N had a rougher
surface yet exhibited reduced bacterial adhesion, Sengupta et al.
2023 (45) showed that conventional resin composite Ceram X had
than bulk-fill
demonstrated no significant differences in bacterial adhesion.
Other studies, such as those by Bilgili et al. 2020 (48) and
Lehrkinder et al. 2024 (49), found that surface roughness alone
additional
chemical

a smoother surface resin composites but

does not determine microbial adhesion. Instead,

factors, such as surface free energy and the
composition of the resin composite, likely play a more
significant role in bacterial colonization.

These findings emphasize that while surface roughness can
influence microbial adhesion, it is not the sole determinant of

bacterial attachment to resin composites (53).
4.2 Chemical composition and its role in
bacterial adhesion

The
particularly the presence of ion-releasing components, plays a

chemical composition of resin-based materials,
significant role in bacterial adhesion and biofilm formation (54,
). While BRCs

phosphate-releasing compounds that promote antimicrobial

some contain fluoride, calcium, and
activity (56), the effectiveness of these components varies.
Certain BRCs, such as Cention N and Beautifil II, have been
shown to release fluoride, calcium, and phosphate ions, creating
an unfavourable environment for bacterial adhesion. Studies,
such as that by Dey et al. 2024, have observed that these ion-
releasing materials exhibit lower S. mutans adhesion, likely due
to their alkalizing effects and ability to promote remineralization.

In addition to ion release, some BRCs incorporate antibacterial
nanoparticles or monomers, such as silver or zinc oxide, to reduce
microbial colonization. However, not all BRCs contain these
components, which may explain the inconsistent antimicrobial
results observed across different studies. The hydrophilicity of
the resin composite, influenced by the type of monomers used in
its formulation, also plays a role in bacterial adhesion.
Monomers such as Bis-GMA, UDMA, and TEGDMA affect the
material’s hydrophilicity (57) with more hydrophilic surfaces
tending to attract bacterial biofilms, while hydrophobic materials
may exhibit reduced microbial attachment. Additionally, the
degree of cross-linking within the polymer network contributes
to bacterial colonization, as more tightly cross-linked resins are
less prone to degradation and microbial penetration (58).

These factors highlight the complexity of bacterial interactions
with resin-based materials and the need for further research to
optimize their antimicrobial properties.

4.3 Antimicrobial properties of bioactive
resin composites

The antimicrobial activity of bioactive resin composites remains
a subject of debate, as studies have reported varying results regarding

their effectiveness in reducing microbial viability (59, 60). While
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some bioactive materials have demonstrated the ability to limit
bacterial growth, others show minimal antimicrobial effects.
Research by Daabash et al. 2023 (41) found that the BRCs Cention
N exhibited lower bacterial viability despite having a rougher
surface, suggesting that chemical composition and ion release may
have a more significant impact on antimicrobial activity than
surface texture alone. Similarly, studies by Bilgili et al. 2020 (48)
and Chen et al. 2024 (46) reported higher numbers of dead
bacterial cells on Beautifil II and Filtek Bulk Fill, supporting the
idea that certain bioactive materials can promote bacterial death
more effectively than conventional resin composites.

Further reinforcing this perspective, Dey et al. 2024 (44) observed
that Equia Forte and Cention N demonstrated reduced S. mutans
counts and biofilm formation, particularly due to their fluoride or
calcium-releasing properties. However, the antimicrobial effects of
BRCs are not consistently observed across all materials. Yoshihara
et al. 2017 (43) found that despite the ion-releasing properties of
Beautifil II, it did not effectively inhibit bacterial growth under
acidic conditions, likely due to its increased surface roughness
under these circumstances provided additional sites for bacterial
retention, counteracting the expected antimicrobial effect.

These findings suggest that while some BRCs can influence
bacterial viability through ion release and surface properties,
their
materials ability to maintain these functions over time, which

antimicrobial potential ultimately depends on the
is governed by their chemical stability and resistance to
environmental degradation.

This systematic review presents several limitations that should
be acknowledged. First, all included studies were conducted in
vitro, which, although controlled, do not fully replicate the
complex biological and mechanical conditions present in the oral
cavity. This limits the direct applicability of the findings to
clinical practice. Second, there was considerable heterogeneity
among the studies in terms of methodology, including differences
in microbial strains used, testing protocols, incubation periods,
and outcome measures, which prevented meaningful quantitative
comparison. In particular, the lack of standardization in how
microbial adhesion and cell viability were measured across studies
further complicates direct comparison and synthesis of results.
Moreover, the microbial spectrum was narrow, with most studies
focusing solely on S. mutans, while few assessed multispecies
biofilms or other cariogenic microorganisms. Additionally, only
five types of commercially available bioactive resin composites
were investigated, which may not represent the full range of
materials used in clinical practice.

Thus, although ion release is often highlighted during the
commercial presentation of BRCs as a key contributor to their
antimicrobial potential, the available scientific evidence remains
largely indirect and inconsistent. Reported concentrations
released from fillers embedded in the resin matrix appear too
limited to ensure a sustained effect, and the process of
silanization—while essential for mechanical reinforcement—may
further reduce ion availability. These limitations suggest that ion
release alone may not fully account for the antimicrobial effects
observed, emphasizing the need for further well-designed studies
to clarify its role.
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These limitations highlight the need for standardized, long-
term, and clinically relevant studies to better understand the
antibacterial performance of bioactive resin composites.

The studies reviewed highlight that bacterial adhesion to
dental restorative materials is not solely determined by surface
roughness but is significantly influenced by chemical
composition, ion release properties, and material hydrophilicity.
While BRCs have the potential to reduce microbial viability
through ion release and antimicrobial agents, their effectiveness
remains inconsistent across different formulations.

To enhance the antimicrobial performance of restorative resin
composites, future research should focus on systematically
evaluating the effectiveness of ion release by considering both
quantity and duration, while also exploring the incorporation of
to balance mechanical

antibacterial agents

durability with surface stability. By addressing these factors, the

and strategies

development of more effective bioactive restorative materials
may contribute to improved clinical outcomes and enhanced
resistance to bacterial colonization. Nevertheless, while BRCs
hold promise for reducing bacterial viability and contributing to
caries prevention, further standardized, long-term in vivo studies
are essential to validate their clinical efficacy and guide
evidence-based material selection in restorative dentistry.
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