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Autosomal dominant optic atrophy (ADOA) is among the most prevalent

inherited optic neuropathies with hallmark symptoms of bilateral, painless,

progressive, and typically permanent vision loss over time. ADOA can affect

patients’ quality of life with debilitating visual symptoms, and there is a pressing

need for effective therapeutics. In this paper, we review the current and future

investigational therapies for ADOA, including the use of intravitreal injections of

antisense oligonucleotides through Targeted Augmentation of Nuclear Gene

Output (TANGO), CRISPR-based therapy, genetic editing, gene replacement

approaches, and idebenone, a small-molecule mitochondrial modulator.

Additionally, we review clinical trials for ADOA treatment and opportunities for

future research on ADOA therapeutics, including the utilization of mitochondria-

targeted peptides and antioxidants, NAD+ boosters/metabolic support,

mitophagy and fission-fusion modulators, and cell-based regenerative therapy.

The use of emerging technology to compensate for OPA1 protein

haploinsufficiency provides new and vast avenues for the management of this

otherwise vision-altering disease. Increased awareness of therapeutics for ADOA

will allow for patient counseling regarding treatment access via clinical trials and

for underscoring the importance of genetically testing family members, whomay

be incidentally identified with ADOA in a timely manner for newly available

therapies. While patients with ADOA typically have poor visual prognoses, there

are increasing promising therapies with the potential for preserving and

improving visual function.
KEYWORDS

autosomal dominant optic atrophy, Targeted Augmentation of Nuclear Gene Output
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1 Introduction

Autosomal dominant optic atrophy (ADOA), also known as

Kjer’s syndrome, affects approximately 1 in 30,000 to 1 in 50,000

people globally, with differing prevalence among specific geographic

populations. For example, 1 in 10,000 individuals in Denmark have

ADOA due in part to a founder effect (1–3). Patients with ADOA

typically develop bilateral loss of vision beginning in childhood,

often in the first decade of life, that is subsequently progressive and

irreversible (1, 4, 5). However, the onset, course, and severity of

ADOA is variable (i.e., variable expressivity) (1). Some patients

experience loss of vision from birth, while clinically significant

symptoms do not occur in others until early childhood or adulthood

(1), and some patients with ADOA are asymptomatic. The

symptoms and signs of ADOA include decreased visual acuity in

both eyes (OU), reduced color vision, visual field deficits (typically

central or cecocentral scotomas OU), and eventual optic disc

atrophy OU (2, 6–8). While the conventional form of ADOA

manifests with optic atrophy and vision loss OU, recent literature

has shed light on additional clinical findings (ADOA+). The

broader ADOA+ phenotype encompasses other systemic, non-

ocular findings including sensorineural hearing loss, progressive

external ophthalmoplegia, myopathy, ataxia, and peripheral

neuropathy, potentially occurring in the absence of optic atrophy

decades after initial vision loss (3). Additionally, ADOA+ has been

associated with more severe visual symptoms (3).

ADOA is genetically heterogeneous, meaning that there is

variation in the causative genetic insult (4, 9, 10). The most

commonly implicated gene, OPA1, is located on chromosome 3

(3q28) (9). Among individuals with ADOA, the prevalence ofOPA1

mutations ranges from 60-90% (2, 11, 12). The OPA1 protein,

synthesized by the OPA1 gene, is a mitochondrial GTPase required

for mitochondrial homeostasis, including mitochondrial import,

fusion and fission, cristae formation and maintenance, respiratory

chain complex functioning, and apoptosis (5, 8, 13–16). Mutations

in one of the two OPA1 gene copies lead to inadequate amounts of

OPA1 protein generation, known as protein haploinsufficiency (17).

Thus, mutation of OPA1 is associated with inadequate

mitochondrial function, leading to apoptosis of retinal ganglion

cells (RGCs) and atrophy of the optic disc (8, 18). Additionally,

ADOA from OPA1 mutations may also occur via a dominant-

negative effect. For instance, missense mutations in the OPA1

GTPase domain may lead to mutated protein product generation

that negatively affects the function of the remaining normal product

from the wild-type allele (5, 14, 19). In the dominant-negative

variant, OPA1 expression levels are not diminished; instead, there is

competition between the protein products of the mutated versus

wild-type allele (14). In fact, the dominant-negative variant of

OPA1-associated ADOA, from the missense mutation, is

associated with more severe multisystem, extraocular symptoms,

aligning with the ADOA+ phenotype (5, 14, 19, 20). The

pathogenesis of ADOA from OPA1 gene mutations represents a

complex interplay of loss-of-function and dominant-negative

effects. Furthermore, some OPA1 mutations occur outside the

GTPase domain, such as in the BSE a-helix or the GTPase
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effector domain and may subsequently impair mitochondrial

fusion (15, 16).
2 Novel therapeutics for ADOA

To counter the progressive, debilitating effects of theOPA1 gene

mutation in ADOA, several therapeutic mechanisms have been

proposed (Table 1), including the use of antisense oligonucleotides,

gene therapy, and idebenone, with additional investigational

therapeutics underway (Table 2) via in vivo studies and

clinical trials.
2.1 TANGO

Targeted Augmentation of Nuclear Gene Output (TANGO) is a

novel and evolving therapeutic modality for individuals with

ADOA, specifically those with OPA1 gene mutations (12, 21).

TANGO therapy, delivered intravitreally, works by preserving the

wild-type (WT) gene’s transcribed products. In ADOA-directed

TANGO therapy, the STK-002 compound is the antisense

oligonucleotide (ASO) delivered to bind nonsense-mediated decay

exons on pre-mRNA transcribed from the WT APO1 gene.

Specifically, this ASO attaches to nonsense-mediated decay exons

in the WT pre-mRNA, preventing WT transcribed mRNA from

degrading prematurely (12, 21, 22). As a result, WT OPA1’s mRNA

pre- and post-splice products increase in stability, abundance, and

concentration (22). This produces a greater quantity of WT OPA1

protein products compared to baseline. Over time, the higher

concentration of stabilized WT mRNA available for translation is

greater than the amount of non-stabilized, mutant mRNA able to

undergo translation. Consequently, the mutant-OPA1 phenotype

seen in OPA1 haploinsufficiency is overcome (12, 21).

While there are currently no Food and Drug Administration

(FDA) approved therapeutics for ADOA in the United States,

TANGO technology shows promising results in preclinical studies

(12, 21, 23, 24). Recent data from Stoke Therapeutics demonstrated,

with preclinical primate models, that repeated intravitreal injections

of antisense oligonucleotides bilaterally led to a dose-dependent

elevation in OPA1 protein levels four weeks after initial injections in

Cynomolgus monkeys and persisted eight weeks after injection

therapy (23). Additionally, TANGO technology was recently

approved for clinical trials, such as the Phase I/II OSPREY study

for evaluation of efficacy among patients with confirmed APO1

mutations (22, 25).
2.2 Gene therapies

Beyond traditional gene replacement approaches like NFS-05,

which is a type of OPA1 gene-replacement therapy that uses an

adeno-associated viral (AAV) vector carrying functional OPA1 for

RGCs, clustered regularly interspersed short palindromic repeat

(CRISPR)-based technologies offer innovative solutions for
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addressing OPA1 haploinsufficiency in ADOA. These approaches

can be broadly categorized into two strategies: CRISPR activation

(CRISPRa), which upregulates OPA1 expression from the wild-type

allele, and direct gene editing, which corrects pathogenic mutations

at the genomic level.

2.2.1 CRISPR activation
Similar to TANGO, CRISPRa addresses the fundamental

problem of OPA1 haploinsufficiency without requiring correction

of the underlying mutation; however, CRISPRa accomplishes this

by altering gene expressivity. By this mechanism, the Cas9

endonuclease is catalytically inactivated (dCas9) and fused to

transcriptional activators (e.g., VP64, p65, Rta), enabling targeted

upregulation of gene expression (26). CRISPRa directs guide RNAs

upstream of the OPA1 transcription start site near the OPA1

promoter, thus enhancing expression across all OPA1 isoforms

and potentially restoring physiological protein concentration and

mitochondrial function (26).

This approach offers several theoretical advantages over

conventional gene replacement therapy. AAV-based gene

therapies are limited by viral packaging capacity and typically

deliver only a single isoform of OPA1. In contrast, CRISPRa

leverages the endogenous wild-type OPA1 gene, thereby restoring

physiologic levels of all eight isoforms. Recent preclinical studies

showed promising results in patient-derived fibroblasts carrying the

common c.2708_2711del OPA1 variant. Using a dCas9-VPR

system with guide RNAs positioned ~150–300 bp upstream of the

transcription start site, researchers achieved significant

upregulation of OPA1 expression (26). Interestingly, isoform 5

expression was selectively increased while maintaining

appropriate splicing regulation, suggesting that cells can preserve

homeostatic isoform ratios under CRISPRa stimulation (26).

Functionally, CRISPRa treatment improved the classic

phenotypes of OPA1 deficiency, including mitochondrial network

fragmentation. Treated cells displayed increased summed branch

length and network branching, indicating partial restoration of

mitochondrial connectivity. Importantly, CRISPRa constructs can

be packaged into AAV vectors for potential intravitreal delivery,

raising the possibility of clinical translation-like conventional gene

replacement, but with the added advantage of restoring physiologic

isoform diversity (26).

2.2.2 Direct gene editing
Another potential CRISPR-based therapy involves directly

correcting pathogenic OPA1 mutations. Unlike CRISPRa, which

enhances expression from the WT allele, this strategy aims to

restore normal gene function by repairing the causative mutation,

potentially providing a permanent cure. Studies using patient-

derived induced pluripotent stem cells (iPSCs) have shown

successful correction of OPA1 variants. For example, correction of

the c.1334A>G (p.R445H) mutation with CRISPR-Cas9 restored

mitochondrial morphology, normalized oxidative phosphorylation

capacity, stabilized mitochondrial DNA, and improved apoptosis

resistance, thus reversing many forms of disease-associated cellular

dysfunction (27). Similarly, correction of additional OPA1
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mutations in iPSC-derived retinal ganglion cells improved

mitochondrial bioenergetics and reduced disease-associated

phenotypes (28). Advances in base-editing and prime-editing

technologies also raise the possibility of correcting OPA1

mutations with higher precision and fewer off-target effects,

further expanding therapeutic feasibility (29).
2.3 Idebenone

In addition to gene-based therapies, novel pharmacologic

agents are being explored to slow the progression of ADOA. One

such drug is idebenone, a synthetic benzoquinone that has already

shown promise for improving visual acuity in patients with Leber

hereditary optic neuropathy (LHON).

Similar to ADOA, LHON is a mitochondrial disease that causes

RGC dysfunction and apoptosis, generally leading to bilateral

central vision loss (30). Furthermore, both LHON and ADOA

show similar patterns of optic nerve degeneration, although

ADOA typically presents earlier in life while LHON onset is more

delayed and progression more rapid (31, 32). However, the

mutations responsible for LHON affect genes encoding the

NADH:ubiquinone oxidoreductase (complex I) subunit, a

component of the mitochondrial oxidative phosphorylation

system that generates ATP (33). This subunit is implicated in

multiple cell signaling pathways and is thought to be one of the

main sites of reactive oxygen species (ROS) production (34).

Consequently, pathogenic complex I variants result in reduced

ATP formation, increased mitochondrial ROS creation, and,

ultimately, cell death.

First synthesized in the 1980s, idebenone was initially

investigated for use as a potential treatment of Alzheimer’s

disease prior to its utilization for mitochondrial disorders (35,

36). Subsequent investigations delved into its efficacy for

managing other conditions. Like other benzoquinones, idebenone

serves to transfer electrons within the mitochondrial respiratory

chain and has been shown to act as a potent antioxidant (37–40).

Though idebenone shares a quinone moiety with Coenzyme Q10

(CoQ10), a naturally occurring benzoquinone marketed as a dietary

supplement to mitigate a range of conditions from migraines to

heart failure and more, the two compounds differ in several key

ways (41). Notably, the bioactivation of mitochondrial CoQ10 is

dependent on proper mitochondrial function, whereas idebenone is

predominantly activated in the cytoplasm (37). Furthermore, in

contrast to CoQ10, idebenone can channel electrons beyond the

complex I directly to complex III, thus maintaining the production

of ATP even in the setting of dysfunctional complex I (38, 42–44).

Researchers soon recognized that idebenone’s unique properties

could lend potential applications in LHON and other

mitochondrial diseases.

In 1992, a case report of LHON successfully treated with

idebenone was published in The Lancet (45). However, it was not

until June 2015 that the European Medicine Agency (EMA)

approved idebenone (Raxone, Santhera Pharmaceuticals, Liestal,

Switzerland) for use in LHON patients. Currently, it remains the
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TABLE 1 Summary of current investigational therapies for autosomal dominant optic atrophy (ADOA).

Key
Summary

TANGO is designed to increase expression of functional nuclear gene
product (OPA1) from the wild-type allele, thus compensating for
reduced protein levels and restoring mitochondrial function in retinal
ganglion cells.
- STK-002: A TANGO ASO (by Stoke Therapeutics) that can be used

to modulate OPA1 splicing and increase OPA1 mRNA and protein
levels in patient-derived cells and animal models.

- PYC-001: A cell-penetrating peptide-antisense oligomer conjugate
targeting OPA1 mRNA (by PYC Therapeutics) that increases OPA1
protein expression from the healthy allele.

CRISPR-based Technologies:
- CRISPR Activation (CRISPRa): A gene regulation technology that

utilizes a catalytically inactive Cas9 and is fused to transcriptional
activators and guide RNAs targeted to promoter regions. This
enables targeted upregulation of gene expression without introducing
permanent genetic alterations or initiating double-stranded breakages
in DNA (unlike traditional CRISPR/Cas9 gene editing).

- Direct gene editing: This technique utilizes induced pluripotent stem
cells (iPSCs) from patients to successfully correct OPA1 variants.

NFS-05 is an OPA1 gene-replacement therapy (by Neurophth) that uses
an adeno-associated viral (AAV) vector carrying functional OPA1,
which is delivered to RGCs via intravitreal injection.

This drug is a synthetic benzoquinone and Coenzyme Q10 analogue that
acts as both a mitochondrial electron carrier and as an antioxidant. It is
primarily used in the treatment of LHON. Idebenone shows promise for
slowing the progression of OPA1-ADOA, and may even provide some
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only approved drug for treating visual impairment in adolescents

and adults with LHON (46). Even so, evidence for its efficacy in

visual recovery remains limited and controversial (35).

Recommendations for idebenone use in LHON vary depending

on the chronicity of disease (30, 47). Additionally, treatment effects

have been shown to differ with patient age, sex, and

mtDNA mutation.

Despite the existence of conflicting data, idebenone’s successes

inspired trials of the drug in patients with ADOA. A pilot study of

seven participants suggested that treatment with idebenone for at

least one year may improve visual acuity in OPA1-mutant ADOA

(32). Similarly, a subsequent cohort examination of 87 OPA1-

ADOA patients found significantly greater visual stabilization and

recovery in patients treated with idebenone compared to untreated

subjects, even after controlling for confounders (32). Dosages

ranged from 135–675 mg/day, with the majority (48%) of

idebenone-treated subjects taking 540 mg/day. Another study of

OPA1-ADOA patients treated with 900 mg/day for 12 months

found significant improvement in visual acuity, visual field testing,

and self-reported vision-related quality of life compared to baseline

measures. However, there were no observed changes in color vision

or contrast sensitivity (48).

Idebenone is generally considered to be safe and well-tolerated,

with most clinical studies demonstrating high compliance with

medication intake and low or no idebenone-related adverse

events (43, 47–49). A longitudinal analysis of idebenone’s efficacy

in LHON patients found that, of the adverse events reported, the

majority were mild and gastrointestinal in nature (e.g., diarrhea),

with the few observed severe/fatal outcomes considered unrelated to

idebenone treatment (46).

Overall, idebenone shows promise for slowing the progression

of OPA1-ADOA and may even restore some visual function by

helping to preserve ATP production and reduce RGC oxidative

damage. Larger-scale trials and prospective investigations are

needed to better elucidate the drug’s efficacy. Additionally, it

remains unclear whether idebenone may benefit ADOA patients

with non-OPA1 mutations. Future studies addressing these gaps

could determine appropriate treatment candidates and dosing

schedules among ADOA patient populations, potentially leading

to new breakthroughs in pharmaceutical management.
2.4 Therapeutics for dominant-negative
OPA1 mutations

TANGO and CRISPRa techniques may have limited application

for patients with dominant-negative OPA1 mutations compared to

the haploinsufficiency form of OPA1 mutations. More specifically,

in dominant-negative OPA1 mutations, the protein product of the

mutated OPA1 gene negatively affects the function of the protein

product of the normal OPA1 allele, thus generating a more severe

ADOA phenotype, including mitochondrial dysfunction and

extraocular disease presentation, such as ADOA + (5, 14, 19, 20).

TANGO technology aims to increase OPA1 protein generation (12,

21); however, by doing so, both the normal and the mutated OPA1
T
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protein is inadvertently increased. Similarly, while CRISPRa may be

successful in genetically editing the mutated copy of the OPA1 gene

(26), any remaining mutated OPA1 protein has the capacity to

disturb the function of the normal OPA1 protein, thus perpetuating

the ADOA phenotype. Instead, specific unique strategies are

necessary to address dominant-negative OPA1 mutations, such as

selective silencing of the mutant allele instead of an overexpression

of the wild-type allele. For instance, viral vectors may be considered

to block the mutant OPA1 allele (5). Additionally, small interfering

RNAs (siRNAs) or ASOs may be harnessed to target certain mRNA

sequences for cleavage, degradation, and subsequent selective gene

silencing (5).
2.5 Other clinical trials for ADOA
therapeutics

Currently, there are no other FDA approved treatments for

individuals with ADOA. However, various novel therapies have

entered preclinical and clinical testing for ADOA in recent years.

They are broadly divided into pharmacological neuroprotection,

gene therapy, and cell-based regenerative therapies (5).

PYC-001 is an OPA1-targeting ASO developed by PYC

Therapeutics. Specifically, PYC-001 is a cell-penetrating peptide-

antisense oligomer conjugate targeting OPA1 mRNA (50). In

patient-derived retinal cell models, PYC-001 increased OPA1
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protein production to nearly normal levels, restoring the

mitochondrial network (50).

A Phase 1b open-label, randomized sequential dose trial has been

set to assess safety, tolerability, and optimal dosage of PYC-001

intravitreal injection therapy for patients with confirmed OPA1

mutations. Additional metrics will assess ocular structural and

function changes as well as the pharmacokinetics of PYC-001 (51).

As of August 2025, the trial has not begun recruiting participants yet.

Gene therapies provide another potential therapeutic option for

patients with ADOA. NFS-05, an OPA1 gene-replacement therapy

created by the biotech company Neurophth, uses an adeno-

associated viral (AAV) vector carrying functional OPA1 that is

delivered to RGCs via intravitreal injection. This therapy received

approval to begin clinical trials in Australia for the treatment of

ADOA (52).

Finally, because RGC loss is central to the pathophysiology of

ADOA, several trials have explored cell-based neuroprotection. In

the Stem Cell Ophthalmology Treatment Study (SCOTS),

autologous bone marrow-derived stem cells (BMSCs) were

infused into the eyes of ADOA patients. In a report of 6 patients,

5 of 6 (83%) showed improved visual acuity, with an average

improvement for all eyes of 29.5% (53). These findings

demonstrate another potential treatment. The NIH-registered

SCOTS2 trial is currently recruiting participants to evaluate the

safety and efficacy of ocular BMSC in retinal and optic nerve

damage and disease (54).
TABLE 2 Summary of potential investigational therapies for autosomal dominant optic atrophy (ADOA).

Modality Candidate MOA Delivery
Evidence/
stage

Key Considerations and limitations

Mitochondria-
targeted
peptide

Elamipretide (SS-31) Binds cardiolipin to
stabilize ETC
supercomplexes and
improve bioenergetics

Subcutaneous;
intravitreal
under study

Investigational
(ocular indications,
not ADOA-specific)

Ocular PK/PD unknown in ADOA; systemic vs.
intraocular delivery strategy

Mitochondria-
targeted
antioxidants

MitoQ, SkQ1 Targets ROS scavenging
within mitochondria to
limit RGC oxidative
damage

Oral/topical
(varies)

Preclinical/early
clinical (non-ADOA)

Translatability to OPA1- haploinsufficiency; long-
term safety.

NAD+
boosters/
metabolic
support

Nicotinamide,
Nicotinamide
riboside

Boost NAD+ to support
mitochondrial function
and resilience

Oral Small studies in optic
neuropathies/
glaucoma; not
ADOA-specific

Dosing, durability, and endpoints specific to ADOA
needed.

Mitophagy &
fission-fusion
modulators

Drp1 inhibitors (e.g.,
Mdivi-1/P110);
OPA1 stabilizers
(concept)

Rebalance fusion/fission;
enhance mitophagy of
damaged mitochondria

Systemic/
intraocular
(preclinical)

Preclinical (models
outside ADOA)

Specificity, off-target mitochondrial effects, ocular
delivery feasibility.

Cell-based
regenerative
therapy

iPSC-derived RGCs;
Muller glia
reprogramming

Replace or rescue
dysfunctional RGCs;
trophic support

Subretinal/
intravitreal
(experimental)

Early preclinical Axonal pathfinding to LGN, synaptogenesis, immune
rejection, scalability.

Autophagy
Modulators

Everolimus mTOR kinase inhibitor Oral/topical Early preclinical Testing with larger sample size and long-term safety
determinations is necessary.

SARM1-
Directed
therapies

Gene therapy/
CRISPR/Cas9,
SARM1 inhibitors,
ASOs

SARM1 knockout Variable Early preclinical Therapeutics are not likely to completely inhibit
SARM1. Need more data on the dose dependence of
RGC destruction with SARM1 activity to develop
therapeutics.
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Overall, the recent clinical trials investigating potential

therapies for ADAO, including TANGO ASO (STK-002 and

PYC-001), gene therapies (NFS-05), idebenone, and cell-based

regenerative therapies, collectively show promise toward disease-

modifying treatment of ADOA.
3 Discussion

3.1 Challenges associated with novel
therapeutics for ADOA

3.1.1 Genetic heterogeneity
The challenges associated with novel therapeutics for ADOA

are multifaceted and involve both the biology of the disease and

transitional barriers. The first challenge arises from the

heterogeneity of OPA1 mutations. More than 400 pathogenic

variants have been described, each producing variable effects on

protein function and clinical severity (7). These mutations range

from missense and nonsense variants to splice-site changes and

large deletions, each producing variable effects on OPA1 protein

stability, mitochondrial dynamics, and ultimately clinical severity

(5). For example, missense mutation in the GTPase domain, such as

the dominant-negative variant of OPA1-linked ADOA often results

in early-onset, severe optic atrophy, whereas truncating mutations

may produce milder or later-onset phenotypes (5, 14). Another

example of the genetic heterogeneity of ADOA includes the

interplay of mutations within and beyond the GTPase domain

(16). In fact, a recent study of patients with ADOA revealed two

forms ofOPA1mutations, including the V465F mutation within the

GTPase domain (GTPase b-fold) and the V560F mutation outside

of the GTPase domain (BSE a-helix) (16). Another study of ADOA
pathogenesis showed an association between the deletion of the

GTPase effector domain of OPA1 and ADOA development, apart

from GTPase domain missense mutations (55). In fact, mutations in

the OPA1 GTPase effector domain have been linked with partial

defects in mitochondrial fusion and GTPase functioning (15).

This diversity complicates the design of treatments that can be

broadly effective across the patient population, since a therapeutic

that rescues haploinsufficiency may not adequately correct

dominant-negative variants. In addition, variable expressivity

within families carrying the same mutation further emphasizes

the need for mutation-specific or genotype-stratified therapeutic

approaches, yet such precision medicine strategies remain

underdeveloped in ADOA research (7) . This genetic

heterogeneity; therefore, establishes a fundamental barrier for the

design of universal therapeutic strategies.

3.1.2 Retinal ganglion cell delivery
Furthermore, a pivotal aspect requiring attention is efficient

delivery to retinal ganglion cells (RGCs), which are the primary site

of degeneration in ADOA. RGCs are post-mitotic and situated deep

in the inner retina, a compartment that is relatively difficult to

access with therapeutic agents, making efficient delivery a challenge.

Preclinical studies have shown that intravitreal injection of ASOs
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and adeno-associated viral (AAV) vectors can achieve a selective

degree of uptake into RGCs (23). For instance, AAV2 vectors

demonstrate preferential tropism for RGCs following intravitreal

delivery, and animal models of optic neuropathies have shown

partial preservation of visual function with this approach (24).

However, translation to durable widespread expression in human

RGCs remains an unmet need. Clinical trials of intravitreal AAV-

based therapies in other optic neuropathies, such as Leber

hereditary optic neuropathy (LHON), emphasize both the

promise and limitation of this route, efficacy has been variable

and expression levels often subtherapeutic (24). These findings

suggest that while vector-based and oligonucleotide-based

therapies are biologically feasible, optimizing delivery methods to

achieve long-term RGC transduction without compromising safety

is still a major challenge.

3.1.3 Modality-specific limitations
Each therapeutic modality introduces its own set of limitations.

ASOs, such as those used in the STK-002 TANGO program, require

repeated intravitreal dosing to sustain activity, raising concerns

about patient compliance and the cumulative, although low, risks

associated with repeated ocular injections, such as endophthalmitis,

retinal detachment, and repeat general anesthesia required for

intravitreal administration in children (12, 21, 23). In parallel,

gene therapy approaches that rely on AAV-mediated OPA1

delivery face the inherent limitation of viral packaging capacity,

since the OPA1 gene (approximately 100 kb isoforms) exceeds the

optimal size for standard AAV vectors (56). Moreover, systemic or

intraocular immune responses to the vector can limit transduction

efficiency or necessitate immunosuppression (57). Small-molecule

therapies such as idebenone, designed to bypass mitochondrial

dysfunction and mitigate oxidative stress, have demonstrated

modest clinical benefit in subsets of patients (32). For example,

idebenone has been shown to improve visual function in certain

patients with optic neuropathies, yet responses in ADOA remain

inconsistent, possibly reflecting underlying genetic heterogeneity.

Taken together, these examples emphasize how each therapeutic

modality presents novel challenges that must be balanced against its

potential benefits.

Additionally, despite preclinical results regarding CRISPR-

based gene therapies, several translational challenges remain.

First, homology-directed repair and other editing mechanisms

can be less efficient in non-dividing cells, like retinal ganglion

cells, which may limit in vivo correction rates. Second, safe and

effective delivery of CRISPR constructs into RGCs presents hurdles,

including viral packaging constraints, immune response risk, and

the need for durable long-term expression. Finally, rigorous in vivo

studies are needed to address the durability of gene correction and

to ensure minimal off-target genomic modifications.
3.2 Clinical trial design

Finally, the design and execution of clinical trials in ADOA

present significant logistical difficulties. Given the rarity of ADOA,
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patient recruitment in clinical trials is inherently limited and

challenged; hence, most studies to date have been small, non-

randomized, open-label, or uncontrolled cohorts, weakening the

strength of conclusions that can be drawn (22). For instance, several

idebenone studies in ADOA included fewer than 20 patients, with

heterogeneous outcome measures, making it difficult to establish

reproducible efficacy (48). The lack of standardized endpoints

further complicates interpretation, visual acuity and optical

coherence tomography (OCT) of the retinal nerve fiber layer

(RNFL) are commonly used however may not capture subtle

disease progression or early treatment effect (58). Moreover, the

slow, variable natural history of ADOA progression necessitates

lengthy follow-up periods, increasing trial costs and complexity.

These challenges suggest not only the difficulty of generating high-

quality evidence but also the urgent need for more coordinated,

multicenter trial infrastructure to advance ADOA therapeutics from

concept to clinical reality.
3.3 Opportunities for further exploration

Future work in ADOA therapeutics is focused on overcoming

the challenges outlined above, with the most immediate advances

expected from ongoing clinical trials. The OSPREY study, which

evaluates the safety and efficacy of STK-002, represents the first

controlled human trial of an antisense oligonucleotide (ASO)

therapy specifically designed for ADOA (22). Early reports

suggest acceptable tolerability and evidence of target engagement;

however, longer-term data are needed to confirm efficacy (59, 60). If

successful, OSPREY could establish proof-of–concept that

modulating OPA1 expression with ASOs is both feasible and

clinically meaningful, setting a benchmark for subsequent trials.

This would not only validate ASOs as a therapeutic modality in

ADOA but may also provide critical insights into trial design,

including the feasibility of patient recruitment and utility of

different outcome measures in a rare disease context. Positive

readouts could therefore catalyze broader investment and

a c c e l e r a t e d e v e l opmen t p ip e l i n e s a c r o s s mu l t i p l e

therapeutic platforms.

At the same time, advances in gene editing hold considerable

promise for more durable, mutation-specific interventions.

Traditional CRISPR-Cas9 approaches face limitations due to

double-strand DNA breaks and the risk of off-target mutations.

Next-generation platforms, such as base editing and prime editing,

offer more precise tools to correct pathogenic OPA1 variants at the

nucleotide level without introducing double-strand breaks (26).

Preclinical studies in other monogenic retinal diseases have

demonstrated the feasibility of these approaches, showing

restoration of normal protein function with fewer off-target

effects. Although OPA1’s large size and isoform complexity add

unique challenges, the rapid evolution of editing tools increases the

likelihood that such approaches could be adapted for ADOA.

Importantly, combining gene editing with improved delivery

platforms may help overcome barriers to efficient RGC targeting,

a key limitation of earlier gene therapy efforts.
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Parallel to gene editing, refined delivery methods will improve

the efficiency of RGC targeting. Conventional AAV vectors are

constrained by their l imited packaging capacity and

immunogenicity, but engineered capsids with enhanced tropism

for RGCs are currently in development (56). In addition, non-viral

nanoparticle systems, including lipid nanoparticles (LNPs) have

shown increasing promise in ocular drug delivery, offering the

potential for reduced immune activation and repeat dosing (57).

These approaches could broaden the therapeutic window while

providing a modality to deliver larger constructs, including those

required for full-length OPA1 isoforms or gene editing machinery.

Advances in delivery, therefore, represent a pivotal step toward

achieving the durable and widespread expression necessary for

long-term disease modification in ADOA.

Combination strategies are also being explored to maximize

therapeutic benefit. For example, small molecules such as idebenone

could be used (48) alongside gene-based therapies to stabilize

mitochondrial function during the early treatment period,

potentially mitigating cellular stress while genetic correction takes

effect. Such multimodal approaches have precedent in other

mitochondrial diseases, where pharmacologic and genetic

strategies together enhance durability of response. For instance,

the combination use of small-molecule inhibitors, ASOs, and gene-

therapy approaches may help to further increase OPA1 protein to

correct haploinsufficiency and to improve mitochondrial

functioning. However, established, robust data is first necessary

regarding each of these therapies individually for ADOA treatment

to better understand the effects of potential combination. Further

testing of combination strategies is necessary to evaluate safety and

efficacy as combination therapy does not necessarily guarantee a

synergistic effect and may run the risk of toxicity. Beyond

therapeutic efficacy, progress in clinical trial infrastructure will

play a crucial role in advancing the field. International registries,

harmonized outcome measures, and multicenter natural history

studies are beginning to emerge, providing the platform necessary

for larger and more rigorous randomized controlled trials (58). As

these efforts mature, they will enable a shift from small,

underpowered exploratory studies to robust investigations capable

of generating regulatory-grade evidence. Collectively, these

developments point toward a future in which targeted, durable,

and accessible therapies may become available for patients

with ADOA.

Other emerging approaches potentially include mitochondrial

transplantation, which is an experimental strategy aimed at

restoring mitochondrial function. Although mitochondrial

transplantation has not yet been used to treat clinical ADOA, the

replacement of mutated mitochondrial DNA (mtDNA) with wild-

type mtDNA via cybrid technology has displayed correction of

another mitochondrial disease: Leber’s hereditary optic neuropathy

(61). Additionally, mitochondrial transfer has been shown to

improve morbidity and mortality in a murine model of Leigh

syndrome, another mitochondrial disease (62). Furthermore,

autophagy modulation is another promising treatment method

for ADOA. In fact, recent studies in patient-derived skin

fibroblasts have shown that OPA1 mutations displaying
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haploinsufficiency may impair autophagy and trigger cellular

senescence (19, 63). Thus, treatment of fibroblasts with

everolimus, an mTOR kinase inhibitor, was successfully able to

restore these phenotypes, suggesting a potential therapeutic strategy

for ADOA (63). More specifically, such evidence showed the ability

for everolimus to protect OPA-1 mutated fibroblasts from

senescence and to restore autophagy (63). However, such

treatment may be more specific to OPA1 haploinsufficiency since

dominant-negative variants of OPA1 mutations are contrastingly

linked with increased autophagy and mitophagy (19). Additionally,

another study revealed a role for autophagy in the control of

mitochondrial content in axons and in visual loss in a mouse

model of ADOA caused by OPA1 deletion (64). More specifically,

the deletion of autophagy and mitophagy genes in RGCs with

mutated OPA1 is linked with a restoration of mitochondrial content

and protection from vision loss (64).

OPA1 mutations are linked with an activation of sterile alpha

and TIR motif containing 1 (SARM1), a prodestructive factor that

codes for a protein, known as an injury-driven NADase, that breaks

down NAD+ into cyclic ADP-ribose (65). SARM1 has a sequence

that allows for specific mitochondrial targeting and is activated in

degenerative, including neurodegenerative, states, leading to axon

degeneration and neuron death (65). A recent study demonstrated

that SARM1 knockout mitigates degeneration in an ADOA mouse

model (65). In fact, emerging SARM1-directed therapies, such as

small-molecule SARM1 inhibitors, ASOs, and gene-therapy

approaches that target SARM1), may be applied to the treatment

of ADOA due to the role of SARM1 activation in ADOA

pathogenesis (65). Current emerging research shows how gene

therapy may be harnessed to block SARM1 and the downstream

axon degeneration (66), how SARM1 inhibitors can help restore

axons that are in moderate injury prior to full degradation (67), and

how Sarm1 ASOs can reduce SARM1 levels and impede axon

degeneration (68), thus showing potential for potential use in

ADOA therapeutics. Furthermore, spliceosome-mediated RNA

trans-splicing may be further investigated as a potential

therapeutic approach for ADOA. This form of gene therapy

targets mutations at the level of transcription (69), which may be

harnessed for OPA1 replacement or to block SARM1. For example,

a recent study aimed to fix OPA1-associated splice mutations to

address haploinsufficiency with engineered U1 snRNA and showed

that engineering the U1 binding process can address the OPA1

splice defect and subsequently elevate the level of properly spliced

OPA1 transcripts (70). Lastly, retinal or retinal ganglion cell

organoids derived from patient-induced pluripotent stem cells

with OPA1 mutations have great potential as a platform for

future therapy testing, given their ability to recapitulate disease-

relevant phenotypes in vitro (71, 72).
4 Conclusion

Although ADOA is a rare genetic disease, it is one of the most

common hereditary optic neuropathies and can drastically impact
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patient quality of life. The increasing use of novel therapies – such

as TANGO technology, CRISPR gene editing, and gene replacement

therapy to address the OPA1 protein haploinsufficiency; idebenone

to stall RGC destruction and protect the Retinal Nerve Fiber Layer;

cell-based regenerative therapy to replace dysfunctional RGCs; and

targeted mitochondrial peptides and antioxidants, NAD+ boosters,

and mitophagy modulators for mitochondrial support – is creating

exciting opportunities for the management of this vision-

threatening condition.

Ophthalmologists and patients should be aware of these options

and the availability of clinical trials for ADOA. Increased knowledge

of such therapeutics will open doors for patient counseling

regarding interventions and the importance of referring family

members for genetic testing. Both will enable pathogenic

mutation identification in a timely manner and allow early

treatment intervention. In short, research into these therapeutic

modalities for hereditary optic neuropathies is ongoing and

represents a major advance in ophthalmology.
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