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Introduction: Eye movement-based perimetry (EMP) is a promising, non-
invasive approach for visual field assessment, particularly in pediatric
populations where standard automated perimetry often fails. However,
completion rates in prior pediatric EMP studies have ranged from 41 to 81%,
and reasons for unsuccessful testing are seldom reported.

Objective: In this perspective article, we aim to highlight practical barriers and
design gaps in EMP systems for children, with a focus on clinical use.
Observations: From our clinical experience with testing two commercially
available EMP systems in children (21 patients with brain tumors and 19 age-
matched controls), we observed recurring challenges, including poor ergonomic
fit, inadequate calibration of eye tracker, and insufficient attention management
strategies. These issues frequently led to data loss and incomplete tests,
underscoring the gap between current technology and pediatric clinical needs.
We outline solutions informed by technological development, vision science and
clinical ophthalmology.

Conclusion: Pediatric testing experience must inform EMP design to ensure
accessibility and reliability. Our observations highlight the need for clinician-
engineer-scientist collaboration, with innovations likely to benefit not only
children but also adults with similar testing challenges.
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1 Introduction

Visual field examination is a cornerstone of diagnosing and
managing ophthalmological and neurological disorders. Visual field
defects (VFDs) can indicate serious conditions such as retinal
disorders, optic neuropathies, or brain tumors (1-3). Early
detection and monitoring are essential for timely and appropriate
intervention, especially in children (4), where preserving visual
function is critical for development and quality of life.

In pediatric patients, reliable visual field assessment is especially
important, as some serious conditions initially present through
visual complaints (5). For instance, 10-20% of children with brain
tumors exhibit VFDs (5, 6) and in some cases this is the only sign of
disease. The true prevalence of VFDs in this population is likely
higher, but due to limitations in current testing methods, many
defects remain undetected (7). This underscores the need for more
effective approaches to pediatric visual field assessment.

Traditional perimetric methods, such as Tangent Screen
Campimetry, Goldmann Visual Fields (GVF), Frequency Doubling
Technology (FDT) and Standard Automated Perimetry (SAP),
provide detailed assessments of visual field sensitivity but rely on
sustained fixation and manual responses. These cognitive and motor
demands make them less suitable for young children. While SAP has
been tested in children as young as 5 years old, results are typically
unreliable under age 6-7 (8-12), with slightly better outcomes
reported only in selected healthy cohorts (13). Notably, none of
these studies included children with neurological impairment or
visual field defects. Children with these conditions are likely to be
at a further disadvantage. Reliability is even lower with other
paradigms, with semi-automated kinetic perimetry (Octopus 900)
reliable only from around age 11 (14), and FDT from age 8-9 in
healthy children (15, 16). GVF, though lacking automated reliability
indices, produces acceptable results from age 7-8 (17, 18) and is often
preferred under age 9 when compared to SAP and Octopus
paradigms (19). Simpler alternatives like confrontational testing are
quick and easy to administer but lack sensitivity and rely on examiner
skills, limiting their value for follow-up (20).

Eye movement-based perimetry (EMP) offers a promising
alternative, leveraging the reflexive saccade: a rapid, automatic eye
movement towards a suddenly appearing stimulus in the peripheral
visual field (also referred to as visual grasp reflex or exogenous
saccade) (21, 22). This instinctive gaze shift is conceptually similar
to the response observed in preferential looking paradigms, widely
used to assess visual function in infants and toddlers. In some EMP
systems, the saccadic movement simply substitutes the manual
response (23), while others quantify saccadic reaction time (SRT)
- the latency from stimulus onset to saccade initiation - as a proxy
for visual field sensitivity (24, 25). In adult cohorts, EMP has
demonstrated feasibility and diagnostic value in glaucoma as well
as various neurological disorders (23, 26, 27). EMP has also been
tested in both healthy and visually impaired children, with varying
degrees of success (28-34). Across pediatric EMP studies, a
consistently high proportion of children, ranging from 41% to
81%, remain partially tested or untested.
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Numerous EMP devices are currently under development, most
targeting glaucomatous visual field loss in adults. Prior studies have
shown that these methods are more intuitive and easier for adults to
perform than traditional SAP (23, 35). Our objective was to
determine whether systems originally developed for adults (adult
systems) can also be used to examine children. We selected two
European eye-tracking systems for evaluation in 4-18-year-olds:
BulbiCAM (36) (BulbiTech AS, Trondheim, Norway), which
mimics SAP with a static-grid paradigm, and SONDA (37) (the
Standardized Oculomotor Neuro-ophthalmic Disorders
Assessment; Reyedar, Groningen, The Netherlands), which relies
on continuous tracking of a moving target.

Translating EMP to pediatric use introduces unique challenges:
children’s limited comprehension and attention, physical
constraints, and immature visual and oculomotor systems
complicate direct application of adult setups. In this perspective
article, we describe pitfalls and usability issues when testing
BulbiCAM and SONDA in a pediatric cohort. We present
practical lessons and recommendations to support improved EMP
implementation for children.

2 Description of two adult systems

The technical specifications and EMP paradigms for BulbiCAM
and SONDA are provided in Table 1, including mounting options,
calibration requirements, stimulus properties, and the criteria for
visual field assessment. The standard output of BulbiCAM and
SONDA is shown in Figure 1.

3 Clinical experience and testing
context

Our experience using BulbiCAM and SONDA is informed by
EMP testing in 21 patients aged 4-18 years diagnosed with a brain
tumor and 19 age-matched healthy controls. Patients were recruited
from the Department of Ophthalmology, Rigshospitalet,
Copenhagen, between March 15, 2023, and September 31, 2024,
following referral by the treating pediatric ophthalmologist. Healthy
controls were recruited through the authors’ personal networks and
were excluded if they had a history of ophthalmic/neurologic
disease or abnormal findings upon ophthalmic examination. The
EMP testing was conducted in a dimly lit examination room at the
Department of Ophthalmology, Rigshospitalet, Copenhagen. All
examinations were conducted by staff experienced in pediatric
ophthalmic testing.

The BulbiCAM was placed on a height-adjustable table and
adapted to each child, allowing for either seated or standing testing.
Bulbitech provided custom face pieces for smaller head sizes, along
with a stable mounting base. These face pieces were secured to the
child’s head using an elastic band and then magnetically attached to
the haploscope to reduce head movements. The test was operated
through a user-interface (BulbiHUB).
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TABLE 1 Technical specification and description of the systems and visual field tests for BulbiCAM and SONDA.

[g]{e}

System Type

BulbiCAM

Haploscope with integrated eye tracker and +6 lenses placed between eye and virtual
image; Software run via accompanying PC

SONDA

Standardized oculomotor assessment platform (monitor,
wearable tracker, companion device (smart phone) and
accompanying PC)

Eye Tracker
Specs

Glint based; 400 Hz (alternating 200 Hz bright pupil/200 Hz dark pupil glint); effective
200 Hz

Video-based; 120 Hz; head-mounted (Pupil Labs Pupil
Invisible)

Monitor specs

14.7 cm viewing distance, screen dimensions: 121x68 mm, 60 Hz monitor refresh rate

60 cm viewing distance, screen dimensions: 598x336 mm,
60 Hz monitor refresh rate

Mounting Ceiling or desk mount (desk-mounted used in study) Monitor on height-adjustable table with chinrest

Options

Calibration None required (fixation assumed to align with target at start of each trial) Calibration-free (deep learning-based analysis); uses screen
detection for head movement correction

Fixation Green, moves smoothly 4 times (center: all corners) to sample different field locations, See “stimulus details”

Target present at all times

Stimulus White stimuli, Goldmann I114e equivalent, on gray (10 cd/m?) background; three Moving Gaussian blob (0.43°, Goldmann I, peak 42 cd/m?)

Details intensity onsets (instant, logarithmic, linear; instant used) on gray background (30 cd/m?)

Visual Field
Protocol

Testing time

60 points per eye, covering central +30° (standard protocol).

2 to 4 minutes per eye (depending on performance).

56 points peer eye (24-2 standard pattern + two points) via
smooth pursuit and step/jump to new locations.

4x40 seconds per eye.

Participant “Look at the green dot, when you see a white dot look at that and then look back at “Follow the white dot with your eyes”

Instructions the green dot”

Requirements | Gaze within a 5-pixel radius circle (eye coordinates) for 2300 ms within 3 seconds None

to show prior to stimulus onset; if not met, stimulus not displayed and position marked as “no

stimulus fixation” (black).

Definition “Seen” if gaze moves +30° toward stimulus 120-1200 ms after onset and subsequent “Seen” if saccade (gaze velocity 30 deg/s or gaze acceleration

‘Seen’/ fixation detected (63 ms, gaze within 1.5 px radius circle); otherwise “unseen” (red in 175 deg/s®) starts within 8° of pre-jump stimulus position and

"Unseen’ plot) or by distance measure (Euclidean distance from target-stimulus vector; gray ends within 8° of post-jump stimulus position; otherwise
scale in plot) “Unseen”

Response Color coding based on latency (time to leave fixation area after stimulus onset) Grayscale coding by SRT quartiles compared to adult,

Time normative data

Mapping

Retesting Locations marked as “no fixation” or “unseen” retested once None

Manual Examiner review and exclude falsely categorized “seen” responses None

Review

Other None Machine learning based analysis of Spatiotemporal properties

Analysis (not performed in current study due to small sample size)

The SONDA setup comprised a monitor mounted on a height-

4.1 Hardware and ergonomics

adjustable table with an attached chinrest. If necessary, the child’s
head was gently held in place by the examiner to minimize
movement. Children were seated in a height-adjustable chair. The
eye tracker was connected to a mobile device, which was linked to a
laptop. The SONDA test was operated through the Ubuntu terminal.

4 Main issues encountered

EMP in children presents age-specific challenges across
hardware, testing procedures, and data interpretation. Below, we
outline the main problem areas in four sections:
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4.1.1 Eye tracker hardware

Most eye-tracking equipment is designed with adult users in
mind, which poses challenges in pediatric applications. The head-
mounted eye tracker used with SONDA was only available in an
adult-size at the time of testing, resulting in slippage, despite the use
of two elastic bands for stabilization. Reyedar now offers a child-size
wearable eye tracker (Pupil Labs GmbH Neon) for use with SONDA.

Similarly, BulbiCAM requires a head strap to minimize movement,
but younger children found this setup distressing. As a result, testing in
these cases was conducted without the head strap, which may have
allowed minor head movements during data collection.
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FIGURE 1

Visual field plots from one patient (9-year-old with temporal hemianopia) and one age-matched control. (A). healthy control tested with BulbiCAM,
(B). patient tested with BulbiCAM, (C). labels, numbers ranging from 500 to 1300 indicate saccadic reaction time in ms, (D). healthy control (SONDA),

(E). patient (SONDA), (F). labels, numbers indicate SRT-percentile.

4.1.2 Seating and mobility

Room furnishings must accommodate all body sizes and
mobility needs. The standard ophthalmic chin rest used with the
SONDA setup was too tall for smaller children, increasing head
movements due to poor headband reach. Similarly, tables and
chairs are often too large and not easily adjustable or movable for
wheelchair users. Ensuring that children feel comfortable and safe
during testing is essential, which includes offering the choice to
remain in their own wheelchair or sit on a parent’s lap. In one case,
a wheelchair-using child was unable to get close enough to the
screen for reliable eye tracking. Tschopp et al. (8) addressed these
challenges by using a custom pediatric chair.
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4.2 Tracking and calibration

4.2.1 Pupil detection

In our initial BulbiCAM trials, many children’s eyes were
untrackable. Similar issues have previously been described in the
literature and might be explained by watery eyes and large pupils
that complicate glint and pupil detection, leading to intermittent
data loss (38, 39). Tobii (another eye tracking manufacturer) even
launched a specific illumination mode specifically designed for
tracking infants’ gaze (40). We found that reducing the IR diode
output solved the issue, although this is not a user-accessible
setting.
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4.2.2 Algorithmic bias

Video-oculography systems like the Pupil Labs Invisible used
with SONDA rely on machine learning algorithms trained
exclusively on healthy adult data (41, 42). This may introduce
inaccuracies in pediatric as well as clinical populations. Although
gaze estimates appeared broadly plausible, formal pediatric
validation is needed. Retraining the algorithms on pediatric data
could further improve accuracy.

4.2.3 Calibration trade-offs

Traditional multi-point calibration requires comprehension,
cooperation, and sustained attention, which is often challenging
in children (28, 32). Both SONDA and BulbiCAM sidestep this
procedure: SONDA uses the calibration-free Pupil Invisible eye
tracker, while BulbiCAM uses an uncalibrated eye tracker in
combination with task adaptations and assumptions about
fixation position. The benefit is speed - but at the cost of
potentially imprecise or even inaccurate gaze estimations, limiting
accurate localization of responses within the visual field.

4.3 Stimulus design and attention
management

4.3.1 Test duration and breaks

Incomplete tests were common in our cohort and have also been
reported in other pediatric visual field studies (8, 28), highlighting the
need for pause options in this population. Both systems used in our
study lack pause buttons to accommodate breaks, which is a
limitation given children’s limited attention spans.

SONDA partially mitigates this issue by dividing the test into
four trials, each lasting ~40 seconds, thereby allowing for three short
breaks per eye. However, this structure has a critical limitation:
interrupted trials or incomplete tests cannot be analyzed, which
reduces its robustness in less cooperative or fatigued participants.

BulbiCAM requires a single uninterrupted session per eye.
Although this increases the demand on the participant,
unfinished tests can still be analyzed, providing greater flexibility.
Additionally, Bulbitech offers shorter paradigms with 16 or 26 test
points. However, the current design tests one quadrant in its
entirety before proceeding to the next, which increases the risk of
a quadrant being affected by temporary inattention. If a pause
function was added, the sequential structure could potentially
improve the reliability of defect detection by maintaining
localized testing within manageable time blocks.

4.3.2 Engagement strategies, test and stimulus
characteristics

Many children found the tests boring. Some even struggled to
stay awake. The dynamic fixation target used in SONDA seemed to
have a slight advantage in keeping children engaged. Nonetheless,
active encouragement from the examiner was required to sustain
attention throughout the test - especially when testing patients and
younger children.
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When tested with BulbiCAM, children quickly recognized the
predictable sequence in which stimuli were presented (each
eccentricity tested from top to bottom before progressing) which
made the test easy to anticipate and, consequently, less engaging.
For children with VEDs, locating the fixation target after a saccade
was often challenging, leading to search behavior.

4.4 Developmental aspects

4.4.1 Normative/ground-truth

Children’s oculomotor and visual systems mature during the
first years of life (43, 44). Therefore, pediatric normative datasets
spanning a wide age range are crucial to capture this developmental
change. However, such datasets for comparison and training
purposes are currently missing. In addition, conventional
methods such as SAP or GVF are unreliable in young children
and cannot be easily used for comparison, highlighted by the fact
that some EMP studies lack any comparative test altogether
(30, 33).

4.4.2 Saccadic reaction time

Both BulbiCAM and SONDA use SRT as a proxy for visual field
sensitivity, enabling rapid data collection. However, SRT is strongly
influenced by factors such as stimulus contrast, cognitive load, and
age (45, 46). Given these dependencies, its suitability as a reliable
proxy is questionable, particularly in children with delayed
cognitive development or neurological conditions affecting
oculomotor control and attention.

4.4.3 Fixation behavior

The BulbiCAM paradigm requires stable fixation to present
stimuli, but in younger children and those with VFDs, this often
failed due to inattention or poor tracking. As a result, fewer stimuli
were shown, reducing engagement further, and causing
interruptions. Additionally, children’s fixation behavior differs
from that of adults (47), making standard assumptions about gaze
events less applicable in pediatric testing.

4.4.4 Data quality and noise management
Inspection of raw data from our trials revealed that gaze often
did not follow the stimulus sequence or trajectory as expected. It
was difficult to determine whether this was due to measurement
noise, poor performance, or true visual field loss. Accurately
distinguishing between these sources of error is essential for
interpreting results and assessing the measurement reliability.

5 The way forward: towards child-
centered EMP design

Building on our experience with BulbiCAM and SONDA, as

well as insights from the broader literature, we offer
recommendations to guide further development of EMP for

frontiersin.org


https://doi.org/10.3389/fopht.2025.1681070
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org

Boethun et al.

children. We propose child-friendly solutions organized around the
four previously mentioned problem areas:

5.1 Prioritize child-specific ergonomics and
reliability

Our testing was marked by limited adaptability of setup and
recurring hardware and software failures. Test setups must
accommodate children while maintaining the robustness essential
for clinical use:

5.1.1 Design with the child in mind

Hardware should accommodate children’s size and movement
while reliably capturing raw data. Wearable options, such as virtual
reality (VR) headsets, may improve stability and allow natural head
movements, potentially making the test more comfortable and
engaging. VR has shown promise for static perimetry in children
as young as nine (48), though further research into usability in
younger children and EMP specifically is needed. For non-wearable
systems, test setups should be equipped with adjustable tables,
seating and mounting solutions to optimize test conditions for all
children, including wheelchair-users.

5.1.2 Robust systems

Unlike adult participants, who may tolerate occasional
equipment malfunctions or repeated trials, children have minimal
tolerance for such disruptions. Therefore, systems intended for
clinical use should undergo especially rigorous testing for
hardware and software reliability, as system robustness is critical
even during early-stage trials in pediatric populations.

5.2 Refine tracking and calibration
techniques for pediatric use

A major lesson from current systems is the necessity for
adaptive, user-friendly tracking and calibration methods,
explicitly validated in pediatric populations:

5.2.1 Illumination modes

Glint based eye tracking systems should offer automated and
user-accessible IR level controls or illumination mode settings,
allowing for tuning to each individual variations in pupil size and
iris reflectivity commonly encountered in children.

5.2.2 Pediatric-trained algorithms

Future machine learning models for gaze and event detection, as
well as data analysis, must be trained on data from children across
multiple developmental stages. Age-stratified datasets are essential
for capturing a full range of typical developmental variability, pupil
characteristics, and oculomotor behaviors seen in the pediatric
population.
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5.2.3 Practical calibration methods

Calibration procedures should balance ease-of-use with spatial
accuracy. Promising approaches include calibration-free eye
trackers (e.g., Pupil Labs Neon), smooth pursuit calibration,
single-point systems (Tobii Pro Glasses 3), and stereoscopic
setups using two cameras per eye (49). However, combining
uncalibrated eye trackers with test compliance requirements (e.g.,
fixation requirements) should be avoided, as this results in poor
spatial resolution and likely increases overall testing time in
the children.

5.3 Attention through stimulus and
engagement design

Maintaining attention and ensuring accessibility for all children,
regardless of impairment, requires thoughtful stimulus and
paradigm design. Several promising strategies include:

5.3.1 Easy pause-and-resume

Tests must include simple, pause and resume functions,
allowing children breaks without losing data or the need for
restarting entire test segments.

5.3.2 Dynamic fixation and stimuli

Based on our experience, children find it more natural to follow
a moving target with their gaze, which in turn enhances
engagement. We therefore suggest that future paradigms
prioritize dynamic over static stimuli. BulbiCAM offers an
optional “green dot animation” feature (a red circle contracting
towards the fixation point) to help guide gaze. This feature may be
useful but was not employed in order to maximize comparability to
other tests and studies.

5.3.3 Color and contrast accessibility

Stimuli should be standardized in terms of luminance contrast,
while additional gaze-guiding features - such as the green dot
animation used in BulbiCAM - may incorporate color. However,
such elements should be designed with common forms of color
vision deficiency in mind to ensure visibility and usability for all
children, regardless of their color perception.

5.3.4 Gamification and natural viewing

Simple gamification is feasible in certain pediatric age groups
(4-12 years) (50). However, the cognitive demands of such designs
must be carefully considered to avoid excluding younger or
cognitively impaired children. A more universally accessible
approach may involve attention-capturing stimuli, such as movie
clips, as demonstrated by Allen et al. (51). Additionally, gaze-
contingent paradigms and free-viewing of naturalistic scenes,
which have been explored in adult populations (52, 53), may offer
promising directions for developing more child-friendly EMP tests
in the future.
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5.4 Toward reliable and interpretable
pediatric EMP data

5.4.1 Age-stratified normative databases

The absence of comprehensive normative pediatric datasets poses
a major limitation for both clinical interpretation and research. Such
reference data describe what is typical at different developmental
stages, including age-related changes in eye movement patterns,
fixation stability, and saccadic reaction time. These norms are
essential not only for identifying deviations that may signal
pathology, but also for guiding model development and validation.

5.4.2 Thresholding and saccadic reaction time
analysis

The suitability of SRT as a proxy for visual field sensitivity
requires further investigation - particularly in children - before it
can be considered reliable. An alternative approach may lie in the
gradual-onset stimulus mode available in BulbiCAM, where the
stimulus progressively increases in luminance. In such cases, SRT
becomes less meaningful, and the luminance level that triggers the
saccade should be recorded instead. However, this method would
likely increase both testing and waiting time, which may limit its
feasibility in pediatric populations.

5.4.3 Novel reliability indices for EMP in children

Standard automated perimetry (SAP) provides easy-to-
interpret reliability indices based on fixation losses, false positives,
and false negatives. Comparable metrics are currently lacking in
EMP, but should be developed. These could reflect the number of
incorrectly presented stimuli, missing raw data, and saccade
characteristics such as accuracy and precision. Age-adjusted
scoring would be essential to account for the immaturity of the
oculomotor system in younger children.

6 Discussion

This perspective paper, based on experience evaluating two
commercial EMP systems in a diverse pediatric sample, highlights
multifaceted challenges related to hardware ergonomics, eye tracking
and calibration, stimulus engagement, and developmental
considerations. To our knowledge, pediatric testing experiences with
EMP systems have not been systematically described in the literature.

Research on EMP in children is limited, with only three systems
tested: SVOP (28-32), EMPP (34), and “Field Bubbles” (33). All
incorporated child-friendly features but relied on calibration, which
failed in 5-25% of cases - except “Field Bubbles”, which successfully
used a one-point calibration procedure. Overall, successful
completion rates in pediatric EMP studies are low (41-81%) (28—
34). Direct comparison between studies is limited by differences in
methodology, reporting, study populations, and the absence of
normative data or reference standards. Together with our
observations, this underscores the need for coordinated progress
in pediatric EMP development.
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Several additional EMP systems are currently under
development and being tested in adults (23, 52, 54, 55). It is likely
that these systems will soon be tested in children as well, especially
given that a recent systematic review identified EMP as a promising
emerging technology for pediatric visual field testing (56). To avoid
repeating earlier pitfalls in system development, set-up, and study
design, we believe that our observations can provide valuable
guidance for future pediatric EMP research and development.

7 Limitations

Our perspective is grounded in hands-on clinical experience
with two adult EMP systems adapted for use in children. To our
knowledge, this is the first report directly comparing multiple
systems in a pediatric setting, but it does not capture the full
diversity of emerging EMP approaches. The population tested
ranged from 4-18 years of age, which limits our ability to
comment specifically on the feasibility of EMP in very young
children. Our recommendations are intentionally broad and not
system-specific, reflecting the early stage of EMP development in
children and the absence of established standards. While principles
such as ergonomic flexibility, attention-capturing stimuli, and
simplified calibration may appear self-evident, these aspects have
not yet been formalized into design guidelines and are not
consistently addressed in existing systems.

8 Conclusion

Incorporating pediatric testing experience into EMP design is
essential to ensure accessibility, reliability, and clinical value. Our
observations underscore the importance of interdisciplinary
collaboration - particularly between clinicians, engineers, and vision
scientists - to adapt these tools for pediatric use. While our focus is on
children, such innovations may also inform adaptations for adult
populations with comparable cognitive or physical challenges.
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